ON INTERSECTING FAMILIES OF FINITE SETS

Peter Frankl

```
Let F be a family of k-element subsets of an n-set,
n}>\mp@subsup{n}{0}{}(k). Suppose any two members of F have non-empty
intersection. Let }\tau(F)\mathrm{ denote min |T|, T meets every member
of F. Erdös, Ko and Rado proved }|F|\leq(\begin{array}{l}{n-1}\\{k-1}\end{array})\mathrm{ and that if
equality holds then \tau(F)=1. Hilton and Milner determined
max}|F|\mathrm{ for }\tau(F)=2. In this paper we solve the problem for
\tau(F)=3.
```

The extremal families look quite complicated which shows the power of the methods used for their determination.

1. Introduction

Let X be a finite set of cardinality n and let F be a family of k-element subsets of it. The family F is called intersecting if for any two $F, G \in F$ we have $F \cap G \neq \emptyset$.

The transversal number. $\tau(F)$ is defined to be the smallest integer t such that there exists a t-element subset Y of X satisfying $F \cap Y \neq \emptyset$ for every $F \in F$.

Clearly, for F intersecting, $\tau(F) \leq k$ holds. Erdös, Ko and Rado proved the following

THEOREM 1 (Erdös, Ko and Rado [2]). If F is intersecting and $n>2 k$ then $|F| \leq\binom{ n-1}{k-1}$. In the case of equality for some $x \in X$ we

Received 19 November 1979. The author is indebted to J.-C. Bermond for suggesting this problem to him.
have $F=\{F \subset X| | F \mid=k, x \in F\}$; that is, $\tau(F)=1$.
Hilton and Milner generalized this theorem.
THEOREM 2 (Hilton and Milner [4]). Suppose F is intersecting, $\tau(F) \geq 2$ and that the cardinality of F is maximal subject to these restrictions. Then there exist $k+1$ different elements $y, x_{1}, \ldots, x_{k} \in X$ such that setting

$$
y_{0}=\left\{x_{1}, \ldots, x_{k}\right\}, Y_{1}=\left\{y, x_{1}\right\}, \ldots, Y_{k}=\left\{y, x_{k}\right\}
$$

we have

$$
F=\left\{F \subset X| | F \mid=k, \exists i, 0 \leq i \leq k, Y_{i} \subseteq F\right\} .
$$

Clearly in this case $\tau(F)=2$.
The aim of this paper is to investigate the case $\tau(F)>2$.

2. The statement of the result and some preliminaries

Let $x \in X, Y \subset X,|Y|=k, \quad 2 \subset X,|z|=k-1$, $x \neq(Y \cup Z), Y \cap Z=\varnothing$. Let $Y_{0}=\left\{y_{1}, y_{2}\right\}$ be a 2-element subset of y. Let us set
$G=\{G \subset X| | G \mid=3, x \in G, G \cap Y \neq \varnothing, G \cap Z \neq \varnothing\} \cup\left\{x \cup Y_{0}\right\}$
$\cup\{y\} \cup\left\{y_{1} \cup z\right\} \cup\left\{y_{2} \cup z\right\}$.
Let us define now

$$
F_{G}=\{F \subset X| | F \mid=k, \exists G \in G, G \subseteq F\}
$$

It is easy to see that F_{G} is intersecting and that $\tau\left(F_{G}\right)=3$. We prove the following

THEOREM 3. Let F be an intersecting family consisting of k-element subsets of x such that $\tau(F) \geq 3$. Suppose further $k \geq 3$, $n>n_{0}(k)$. Then $|F| \leq\left|F_{G}\right|$ and for $k \geq 4$ up to isomorphism F_{G} is the only optimal family.

Before proceeding with the proof of this theorem we need some preparations. The following definitions and lemmas are from [3].

$$
\begin{aligned}
& F^{*}=\left\{E \subset X\left|E \neq \emptyset, \exists F_{1}, F_{2}, \ldots, F_{(k+1)}\right| E \mid \in F\right. \\
&\text { such that } \left.F_{i} \cap F_{j}=E, 1 \leq i<j \leq(k+1)|E|\right\} ;
\end{aligned}
$$

$B(F)=\left\{B \in F^{*} \mid \nmid \in \in F^{*}, E \subset B\right\}$.
Then obviously $F^{*} \supseteq F$; consequently for every $F \in F$ there exists $B \in B(F)$ such that $B \subseteq F$. Therefore $B(F)$ is called the Δ-base of F.

Obviously if $B_{1}, B_{2} \in B(F)$ then $B_{1} \cap B_{2} \neq \varnothing$. Hence for any $B \in B$ we have
(1)

$$
|B| \geq \tau(F)
$$

By a Δ-system of cardinality s we mean a family $C=\left\{C_{1}, \ldots, C_{s}\right\}$ such that for some $K \subset C_{1}$ we have $C_{i} \cap C_{j}=K$ for any $1 \leq i<j \leq s$ (cf. Erdös and Rado [1]).

The next lemma is a consequence of Lemma 1 in [3].
LEMMA 1. Among the members of $B(F)$ we cannot find $B_{1}, \ldots, B_{(k+1)^{i}}$ forming a Δ-system of cardinality $(k+1)^{i}$ and satisfying further $\left|B_{j}\right|=i+1$ for $1 \leq j \leq(k+1)^{i}$.

Now a result of Erdös and Rado [1] implies that $|B(F)| \leq k_{0}$ where k_{0} is a constant depending only on k.

We infer

$$
\begin{equation*}
|F| \leq \sum_{B \in B}\binom{n-|B|}{k-|B|} \tag{2}
\end{equation*}
$$

3. Some reductions

From now on we suppose that F is an intersecting k-family satisfying $\tau(F) \geq 3$, and of maximal size.

Let $D_{1}, D_{2}, \ldots, D_{t}$ be the 3-sets in $B(F)$. Then using (1) and (2) we conclude

$$
\begin{equation*}
|F| \leq t\binom{n-3}{k-3}+o\left(\binom{n-4}{k-4}\right) . \tag{3}
\end{equation*}
$$

Comparing the right-hand side of (3) to the cardinality of F_{G} in Theorem 3, for $n>n_{0}(k)$ we infer $t \geq k^{2}-k+1$.

In the case $k=3,|F| \leq 10=\left|F_{G}\right|$ is folklore. So we see that we can as sume that $k \geq 4$.

We investigate $D=\left\{D_{1}, \ldots, D_{t}\right\}$.
As $t \geq 4^{2}-4+1=13$ and D is intersecting we infer from the case $k=3$ that $\tau(D) \leq 2$.

Our next aim is to prove $\tau(D)=1$.
Let $C=\left\{u_{1}, u_{2}\right\}$ be a 2-element set satisfying $D_{i} \cap C \neq \varnothing$ for $1 \leq i \leq t$.

We need a lemma.
LEMMA 2. Among the members of D we cannot find $k+1$ forming a Δ-system.

Proof. Let us suppose on the contrary that $B_{1}, \ldots, B_{k+1} \in D$ form a Δ-system with kernel K. Then $|K| \leq 2$. Hence there exists an $F \in F$ such that $F \cap K=\emptyset$, implying $F \cap\left(B_{i}-K\right) \neq \emptyset$ for $i=1,2, \ldots, k+1$. But the sets $B_{i}-K, i=1, \ldots, k+1$, are pairwise disjoint and we come to a contradiction with $|F|=k$.

Using Lemma 2 we infer that in D at most k sets contain C.
Let D_{1}, \ldots, D_{v} be the remaining sets. Then $v \geq t-k \geq(k-1)^{2}$. These remaining sets contain exactly one of u_{1}, u_{2}.

Let us suppose D_{1}, \ldots, D_{s} are the sets in D containing u_{1} but not u_{2}. By symmetry reasons we may assume $s \geq t / 2$.

$$
\text { Let us set } D_{1}=\left\{D_{i}-C \mid i=1, \ldots, s\right\}, D_{2}=\left\{D_{i}-C \mid s<i \leq t\right\} .
$$ D_{1} and D_{2} are families of 2-element subsets such that for $D \in D_{1}$,

$D^{*} \in D_{2}$ we have $D \cap D^{*} \neq \varnothing$. Suppose first $D_{2} \neq \varnothing$.
If $\tau\left(D_{2}\right)>1$ then $\left|0_{1}\right| \leq 4$ follows yielding
$t \leq 2 s \leq 8<9 \leq(k-1)^{2}$, a contradiction. Hence $\tau\left(\mathcal{D}_{2}\right)=1$. Let v be an element satisfying $v \in D$ for every $D \in D_{2}$.

If $\left|D_{2}\right| \geq 3$ then we conclude that v is contained in every set $D_{i}, 1 \leq i \leq s$. Hence the sets D_{1}, \ldots, D_{s} form a Δ-system of cardinality $s \geq(k-1)^{2} / 2$, contradicting Lemma 2 .

If $\left|D_{2}\right|=2$ then we conclude that at most one of D_{1}, \ldots, D_{s} does not contain v, and we obtain again a Δ-system of cardinality at least $t-3 \geq(k-1)^{2}-3 \geq k+1$, contradicting Lemma 2 .

If $\left|D_{2}\right|=1$ then let $D_{2}=\left\{\left\{u_{2}, u_{3}, u_{4}\right\}\right\}$.
Then every member of $D-D_{2}$ contains u_{1} and has non-empty intersection with $\left\{u_{2}, u_{3}, u_{4}\right\}$. Hence for $\left(k^{2}-k\right) / 3>k$ we come to a contradiction with Lemma 2. The only remaining possibility is $k=4$, $|D|=13$. It follows further from Lemma 2, that $\left|D \cap\left\{u_{2}, u_{3}, u_{4}\right\}\right|=1$ and that exactly four of the D 's intersect $\left\{u_{2}, u_{3}, u_{4}\right\}$ in $\left\{u_{2}\right\}-$ otherwise we could find a A-system of cardinality 5 .

Let these sets be $\left\{u_{1}, u_{2}, v_{j}\right\}$ where $j=1,2,3,4$. As $\tau(F)>2$, there must be an $F \in F$ such that $F \cap\left\{u_{1}, u_{2}\right\}=\varnothing$. As $\left\{u_{1}, u_{2}, v_{j}\right\} \in B(F)$, we infer $F \cap\left\{u_{1}, u_{2}, v_{j}\right\} \neq \emptyset$. Hence we conclude $F=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. However it is a contradiction as $\left\{u_{2}, u_{3}, u_{4}\right\} \in B(F)$ and $\left\{u_{2}, u_{3}, u_{4}\right\} \cap F=\varnothing$.

Now we have proved that $\left|D_{2}\right|=0$, that is every set in D contains $u_{1} ;$ thus $\tau(D)=1$.

4. The structure of D

In this paragraph we determine the exact structure of $D=\left\{D_{1}, \ldots, D_{t}\right\}$. We know already that $u_{1} \in D_{i}$ for every $i=1, \ldots, t$ and that $t \geq k^{2}-k+1$. As $\tau(F)>1$, there exists a set, say $F=\left\{f_{1}, \ldots, f_{k}\right\} \in \mathcal{F}$ such that $u_{1} \notin F$.

As $D_{i} \in B(F), D_{i} \cap F \neq \emptyset$ for $i=1, \ldots, t$.
Let us set $E_{i}=D_{i}-\left\{u_{1}\right\}$ for $i=1, \ldots, t$. Then the E_{i} 's are the edges of a simple 2-graph, which we denote by E. Let $c_{i}\left(d_{i}\right)$ be the number of edges adjacent to f_{i} and having their other extremity in F (not in F), respectively.

Then we have
(4)

$$
t=\sum_{i=1}^{k}\left(d_{i}+\frac{1}{2} c_{i}\right)
$$

Now we prove

$$
\begin{equation*}
d_{i}+c_{i} \leq k \quad(i=1, \ldots, k) \tag{5}
\end{equation*}
$$

Suppose that (5) fails for some i. It means that we can find $k+1$ edges, say $E_{1}^{i}, \ldots, E_{k+1}^{i}$ which are adjacent to f_{i}.

As $\tau(F)>2$, there exists a $G \in F$ such that $G \cap\left\{u_{1}, f_{i}\right\}=\varnothing$.
But F is intersecting and the D_{i} 's belong to its Δ-base;
consequently, for $j=1, \ldots, k+1,\left(E_{j}^{i}-\left\{f_{i}\right\}\right\} \in G$ holds. However this is impossible since $|G|=k<k+1$. Now (5) is proved.

Next we prove

$$
\begin{equation*}
d_{i} \leq k-1 \quad(i=1, \ldots, k) \tag{6}
\end{equation*}
$$

Suppose that, on the contrary, (6) fails for a given i. Then by (5) we have $d_{i}=k$.

Let g_{1}, \ldots, g_{k} be the other endpoints of the edges adjacent to
f_{i}. If G is an edge of F, which necessarily exists since $\tau(F)>2$, disjoint to $\left\{u_{1}, f_{i}\right\}$ then we conclude in the above way $G=\left\{g_{1}, \ldots, g_{k}\right\}$. However $G \cap F=\varnothing$, a contradiction proving (6).

As $t \geq k^{2}-k+1$, we conclude from (4), taking into account (5) and (6), that there are at least two of the $f_{i} ' s$, say f_{1}, f_{2}, such that $d_{i}=k-1, c_{i}=1$.

We distinguish two cases.
(a) $\left\{u_{1}, f_{1}, f_{2}\right\} \in B(F)$.

This means that $\left\{f_{1}, f_{2}\right\}$ is an edge in E. Let $\left\{g_{1}, \ldots, g_{k-1}\right\}$ be the set of points different to f_{2} and connected in E to f_{1}. Then for $G \in F, G \cap\left\{u_{1}, f_{1}\right\}=\emptyset$ we infer $G=\left\{f_{2}, g_{1}, \ldots, g_{k-1}\right\} \cdot$ As $\tau(F)>2, G \in F$. Similarly if $f_{1}, g_{1}^{\prime}, \ldots, g_{k-1}^{\prime}$ are the points adjacent to f_{2}, then $G^{\prime}=\left\{f_{1}, g_{1}^{\prime}, \ldots, g_{k-1}^{\prime}\right\} \in F$.

Let $3 \leq i \leq k$, and let h be a point which is adjacent to f_{i}. 'fien $\left\{u_{1}, f_{i}, h\right\} \in B(F)$ implies

$$
\begin{equation*}
h \in\left(G \cap G^{\prime}\right) \tag{7}
\end{equation*}
$$

If $\left|G \cap G^{\prime}\right| \leq k-2$ we infer $t \leq 2 k-1+(k-2)(k-2)<k^{2}-k+1$, a contradiction.

Hence $\left|G \cap G^{\prime}\right|=k-1$; that is,

$$
\left\{g_{1}, g_{2}, \ldots, g_{k-1}\right\}=\left\{g_{1}^{\prime}, \ldots, g_{k-1}^{\prime}\right\}
$$

Now $t \geq k^{2}-k+1$ and (7) imply $\left\{u_{1}, f_{i}, g_{j}\right\} \in B(F)$ for every $1 \leq i \leq k$, $1 \leq j<k$. Thus D has the same structure as it has in F_{G}.
(b) $\left\{u_{1}, f_{1}, f_{2}\right\} \notin B(F)$.

This means $\left\{f_{1}, f_{2}\right\} \notin E$.
Let $f_{3}, g_{1}, \ldots, g_{k-1}$ be the points adjacent to f_{1} in E. As
$\tau(F)>2$, there exists $F \in F$ such that $F \cap\left\{u_{1}, f_{1}\right\}=\varnothing$. From the intersecting property and $|F|=k$ we deduce $F=\left\{f_{3}, g_{1}, \ldots, g_{k-1}\right\}$. Now if $\left\{u_{1}, f_{2}, h\right\} \in B(F)$ then it follows $\left\{u_{1}, f_{2}, h\right\} \cap F \neq \varnothing$; that is, $h \in F$. Hence we conclude that f_{2} is adjacent in E to the same points as f_{1}.

It follows in the same way for $4 \leq i \leq k$ and any h such that $\left\{u_{1}, f_{i} h\right\} \in B(F): h \in F$. Hence we have

$$
\begin{equation*}
t=\sum_{i=1, i \neq 3}^{k} d_{i}+d_{3}+c_{3} \tag{8}
\end{equation*}
$$

From (8) using (4) and $t \geq k^{2}-k+1$ we deduce $d_{i}=k-1$ for $i \neq 3$ and $d_{3}+c_{3}=k$.

Let h_{1}, \ldots, h_{k} be the neighbours of f_{3} in E. As $\tau(F)>2$ there exists $H \in F$ such that $H \cap\left\{u_{1}, f_{3}\right\}=\emptyset$. We infer $H=\left\{h_{1}, \ldots, h_{k}\right\}$.

We know $\left\{f_{1}, f_{2}\right\} \subset H$, whence for some $j, 1 \leq j \leq k-1, g_{j} \notin H$. If for some $i, 4 \leq i \leq k, f_{i} \notin H$, then $\left\{u_{1}, f_{i}, g_{j}\right\} \in B(F)$ and $\left\{u_{1}, f_{i}, g_{j}\right\} \cap H=\emptyset$ gives a contradiction.

Hence $f_{1}, f_{2}, f_{4}, f_{5}, \ldots, f_{k}$ are all neighbours of f_{3} in E.
As $F \cap H \neq \emptyset$, we conclude that the remaining neighbour of f_{3} is one of the $g_{j}^{\prime \prime} \mathrm{s}$, say g_{1}.

Now setting $y=\left\{g_{1}, g_{2}, \ldots, g_{k-1}, f_{3}\right\}, z=\left\{f_{1}, f_{2}, f_{4}, \ldots, f_{k}\right\}$, $x=u_{1}$, we see that again D has the same structure as it has in F_{G}.

5. The deduction of Theorem 3 and some remarks

For optimal families we have now proved the existence of

$$
\begin{gathered}
x \in X, \quad Z \subset X, \quad Y \subset X, \quad Y_{0} \subset Y, \\
|Z|=k-1, \quad|Y|=k, \quad\left|Y_{0}\right|=2, \quad x \notin(Y \cup Z), \quad Y \cap Z=\emptyset
\end{gathered}
$$

such that

$$
\begin{aligned}
B_{3}=\{B \in B(F) & ||B|=3\} \\
& =\{B \subset X| | B \mid=3, x \in B, B \cap Y \neq \emptyset, B \cap Z \neq \emptyset\} \cup\left\{x \cup Y_{0}\right\} .
\end{aligned}
$$

Moreover we proved $Y \in F$. Let $Y_{0}=\left\{y_{1}, y_{2}\right\}$ and let $F_{1}, F_{2} \in F$ such that $F_{i} \cap\left\{x, y_{i}\right\}=\varnothing$. Such sets exist as $\tau(F)>2$. We infer $F_{i}=\left\{y_{3-i} \cup z\right\}$ for $i=1,2$.

As for every subset of cardinality at most k of X which does not contain any of the sets in $B=\mathcal{B}_{3} \cup\left\{F_{1}, F_{2}, Y\right\}$ we can find a set $B \in B$ which is disjoint to it, we infer $B=B(F)=G$. Hence the maximality of $|F|$ implies $F=F_{G}$. //

Now the next problem would be to determine $\max |F|$ for F intersecting, $\tau(F)>3$. Or more generally $\tau(F) \geq \tau$.

We could only prove $|F| \leq(1+0(1)) k^{\tau-1}\binom{n-\tau}{k-\tau}$.
To obtain a lower estimate let $x \in X$ and let $Y_{1}, Y_{2}, \ldots, Y_{\tau-1}$ be disjoint subsets of $X-x$. Let further $z_{i} \subset Y_{i},\left|z_{i}\right|=\tau-i$, $\left|y_{i}\right|=k-i+1$.

Let us define
$B_{\tau}=\{B \subset X| | B \mid=\tau, x \in B, \exists j, 1 \leq j \leq \tau$, such that $B \cap Y_{i} \neq \emptyset$ for $\left.I \leq i<j, z_{j} \subseteq B\right\}$.

Let us set further
$B_{k}=\{B \subset X| | B \mid=k, \exists j$
such that $1 \leq j<\tau, Y_{j} \subseteq B, B \cap Z_{i} \neq \emptyset$ for $\left.1 \leq i<j\right\}$.
Now we define $B\left(F_{\tau}\right)=B_{\tau} \cup B_{k}$; that is,

$$
F_{\tau}=\left\{F \subset X| | F \mid=k, \exists B \in B\left(F_{\tau}\right) \text { such that } B \subseteq F\right\} .
$$

It is not hard to see that F is intersecting, $\tau(F)=\tau$, and

$$
|F|=\left\{\sum_{0 \leq i \leq \tau-1, i \neq \tau-2}(k)_{i}\right)\binom{n-\tau}{k-\tau}(1+o(1))
$$

$\left((k)_{i}=k(k-1) \ldots(k-i+1),(k)_{0}=1\right.$.

Let us conclude this paper with a conjecture.
CONJECTURE. Suppose F is an intersecting family of k-subsets of $X, \tau(F) \geq \tau$. Suppose further $k>k_{0}(\tau), n>n_{0}(k)$. Then
$|F| \leq\left|F_{\tau}\right|$.

References

[1] P. Erdös and R. Rado, "Intersection theorems for systems of sets", J. London Math. Soc. 35 (1960), 85-90.
[2] P. Erdös, Chao Ko, and R. Rado, "Intersection theorems for systems of finite sets", Quart. J. Math. Oxford (2) 12 (1961), 313-320.
[3] Peter FrankI, "On families of finite sets no two of which intersect in a singleton", BuZl. Austral. Math. Soc. 17 (1977), 125-134.
[4] A.J.W. Hilton and E.C. Milner, "Some intersection theorems for systems of finite sets", Quart. J. Math. Oxford (2) 18 (1967), 369-384.

CNRS,
7 Quai Anatole France, 75007 Paris,

France.

