ON INTERSECTING FAMILIES OF FINITE SETS

PETER FRANKL

Let F be a family of k-element subsets of an n-set, $n > n_0(k)$. Suppose any two members of F have non-empty intersection. Let $\tau(F)$ denote min|T|, T meets every member of F. Erdös, Ko and Rado proved $|F| \leq \binom{n-1}{k-1}$ and that if equality holds then $\tau(F) = 1$. Hilton and Milner determined max|F| for $\tau(F) = 2$. In this paper we solve the problem for $\tau(F) = 3$.

The extremal families look quite complicated which shows the power of the methods used for their determination.

1. Introduction

Let X be a finite set of cardinality n and let F be a family of k-element subsets of it. The family F is called *intersecting* if for any two F, $G \in F$ we have $F \cap G \neq \emptyset$.

The transversal number $\tau(F)$ is defined to be the smallest integer t such that there exists a t-element subset Y of X satisfying $F \cap Y \neq \emptyset$ for every $F \in F$.

Clearly, for F intersecting, $\tau(F) \leq k$ holds. Erdös, Ko and Rado proved the following

THEOREM 1 (Erdös, Ko and Rado [2]). If F is intersecting and n > 2k then $|F| \le \binom{n-1}{k-1}$. In the case of equality for some $x \in X$ we

Received 19 November 1979. The author is indebted to J.-C. Bermond for suggesting this problem to him.

363

have $F = \{F \subset X \mid |F| = k, x \in F\}$; that is, $\tau(F) = 1$.

Hilton and Milner generalized this theorem.

THEOREM 2 (Hilton and Milner [4]). Suppose F is intersecting, $\tau(F) \ge 2$ and that the cardinality of F is maximal subject to these restrictions. Then there exist k + 1 different elements $y, x_1, \ldots, x_k \in X$ such that setting

$$Y_0 = \{x_1, \ldots, x_k\}, Y_1 = \{y, x_1\}, \ldots, Y_k = \{y, x_k\}$$

we have

$$F = \{F \subset X \mid |F| = k, \exists i, 0 \le i \le k, Y_i \subseteq F\}$$

Clearly in this case $\tau(F) = 2$.

The aim of this paper is to investigate the case $\tau(F) > 2$.

2. The statement of the result and some preliminaries

Let $x \in X$, $Y \subset X$, |Y| = k, $Z \subset X$, |Z| = k - 1, $x \notin (Y \cup Z)$, $Y \cap Z = \emptyset$. Let $Y_0 = \{y_1, y_2\}$ be a 2-element subset of Y. Let us set $G = \{G \subset X \mid |G| = 3, x \in G, G \cap Y \neq \emptyset, G \cap Z \neq \emptyset\} \cup \{x \cup Y_0\}$ $\cup \{Y\} \cup \{y_1 \cup Z\} \cup \{y_2 \cup Z\}$.

Let us define now

$$F_G = \{F \subset X \mid |F| = k, \exists G \in G, G \subseteq F\}$$

It is easy to see that ${\rm F}_G$ is intersecting and that $\tau({\rm F}_G)$ = 3 . We prove the following

THEOREM 3. Let F be an intersecting family consisting of k-element subsets of X such that $\tau(F) \ge 3$. Suppose further $k \ge 3$, $n > n_0(k)$. Then $|F| \le |F_G|$ and for $k \ge 4$ up to isomorphism F_G is the only optimal family.

Before proceeding with the proof of this theorem we need some preparations. The following definitions and lemmas are from [3].

364

$$F^* = \left\{ E \subset X \mid E \neq \emptyset, \exists F_1, F_2, \dots, F_{(k+1)} | E | \in F \\$$

such that $F_i \cap F_j = E, 1 \leq i < j \leq (k+1)^{|E|} \right\};$

 $B(F) = \{B \in F^* \mid E \in F^*, E \subset B\}.$

Then obviously $F^* \supseteq F$; consequently for every $F \in F$ there exists $B \in \mathcal{B}(F)$ such that $B \subseteq F$. Therefore $\mathcal{B}(F)$ is called the Δ -base of F.

Obviously if $B_1, B_2 \in \mathcal{B}(F)$ then $B_1 \cap B_2 \neq \emptyset$. Hence for any $B \in \mathcal{B}$ we have

$$|B| \ge \tau(F)$$

By a Δ -system of cardinality s we mean a family $C = \{C_1, \ldots, C_s\}$ such that for some $K \subset C_1$ we have $C_i \cap C_j = K$ for any $1 \leq i < j \leq s$ (cf. Erdös and Rado [1]).

The next lemma is a consequence of Lemma 1 in [3].

LEMMA 1. Among the members of B(F) we cannot find $B_1, \ldots, B_{(k+1)i}$ forming a Δ -system of cardinality $(k+1)^i$ and satisfying further $|B_j| = i + 1$ for $1 \le j \le (k+1)^i$.

Now a result of Erdös and Rado [1] implies that $|\mathcal{B}(F)| \le k_0$ where k_0 is a constant depending only on k.

We infer

$$|F| \leq \sum_{B \in \mathcal{B}} \binom{n - |B|}{|k - |B|}$$

3. Some reductions

From now on we suppose that F is an intersecting k-family satisfying $\tau(F) \ge 3$, and of maximal size.

Let D_1, D_2, \ldots, D_t be the 3-sets in $\mathcal{B}(F)$. Then using (1) and (2) we conclude

Peter Frankl

$$|\mathsf{F}| \leq t \binom{n-3}{k-3} + O\left(\binom{n-4}{k-4}\right)$$

Comparing the right-hand side of (3) to the cardinality of F_G in Theorem 3, for $n > n_0(k)$ we infer $t \ge k^2 - k + 1$.

In the case k = 3, $|F| \le 10 = |F_G|$ is folklore. So we see that we can assume that $k \ge 4$.

We investigate $\mathcal{D} = \{D_1, \ldots, D_t\}$.

As $t \ge 4^2 - 4 + 1 = 13$ and \mathcal{D} is intersecting we infer from the case k = 3 that $\tau(\mathcal{D}) \le 2$.

Our next aim is to prove $\tau(\mathcal{D}) = 1$.

Let $C = \{u_1, u_2\}$ be a 2-element set satisfying $D_i \cap C \neq \emptyset$ for $1 \le i \le t$.

We need a lemma.

LEMMA 2. Among the members of D we cannot find k + 1 forming a Δ -system.

Proof. Let us suppose on the contrary that $B_1, \ldots, B_{k+1} \in \mathcal{D}$ form a Δ -system with kernel K. Then $|K| \leq 2$. Hence there exists an $F \in F$ such that $F \cap K = \emptyset$, implying $F \cap (B_i - K) \neq \emptyset$ for $i = 1, 2, \ldots, k+1$. But the sets $B_i - K$, $i = 1, \ldots, k+1$, are pairwise disjoint and we come to a contradiction with |F| = k.

Using Lemma 2 we infer that in \mathcal{D} at most k sets contain C. Let D_1, \ldots, D_v be the remaining sets. Then $v \ge t-k \ge (k-1)^2$. These remaining sets contain exactly one of u_1, u_2 .

Let us suppose D_1, \ldots, D_s are the sets in \mathcal{D} containing u_1 but not u_2 . By symmetry reasons we may assume $s \ge t/2$.

Let us set $\mathcal{D}_1 = \{D_i - C \mid i = 1, ..., s\}$, $\mathcal{D}_2 = \{D_i - C \mid s < i \le t\}$. \mathcal{D}_1 and \mathcal{D}_2 are families of 2-element subsets such that for $D \in \mathcal{D}_1$,

https://doi.org/10.1017/S0004972700006225 Published online by Cambridge University Press

366

 $D^* \in \mathcal{D}_{\mathcal{D}}$ we have $D \cap D^* \neq \emptyset$. Suppose first $\mathcal{D}_{\mathcal{D}} \neq \emptyset$.

If $\tau(\mathcal{P}_2) > 1$ then $|\mathcal{P}_1| \leq 4$ follows yielding $t \leq 2s \leq 8 < 9 \leq (k-1)^2$, a contradiction. Hence $\tau(\mathcal{P}_2) = 1$. Let vbe an element satisfying $v \in D$ for every $D \in \mathcal{P}_2$.

If $|\mathcal{D}_2| \ge 3$ then we conclude that v is contained in every set \mathcal{D}_i , $1 \le i \le s$. Hence the sets $\mathcal{D}_1, \ldots, \mathcal{D}_s$ form a Δ -system of cardinality $s \ge (k-1)^2/2$, contradicting Lemma 2.

If $|\mathcal{D}_2| = 2$ then we conclude that at most one of $\mathcal{D}_1, \ldots, \mathcal{D}_s$ does not contain v, and we obtain again a Δ -system of cardinality at least $t-3 \ge (k-1)^2 - 3 \ge k+1$, contradicting Lemma 2.

If $|\mathcal{D}_2| = 1$ then let $\mathcal{D}_2 = \{\{u_2, u_3, u_4\}\}$.

Then every member of $\mathcal{D} - \mathcal{D}_2$ contains u_1 and has non-empty intersection with $\{u_2, u_3, u_4\}$. Hence for $(k^2-k)/3 > k$ we come to a contradiction with Lemma 2. The only remaining possibility is k = 4, $|\mathcal{D}| = 13$. It follows further from Lemma 2, that $|\mathcal{D} \cap \{u_2, u_3, u_4\}| = 1$ and that exactly four of the \mathcal{D} 's intersect $\{u_2, u_3, u_4\}$ in $\{u_2\}$ otherwise we could find a Δ -system of cardinality 5.

Let these sets be $\{u_1, u_2, v_j\}$ where j = 1, 2, 3, 4. As $\tau(F) > 2$, there must be an $F \in F$ such that $F \cap \{u_1, u_2\} = \emptyset$. As $\{u_1, u_2, v_j\} \in \mathcal{B}(F)$, we infer $F \cap \{u_1, u_2, v_j\} \neq \emptyset$. Hence we conclude $F = \{v_1, v_2, v_3, v_4\}$. However it is a contradiction as $\{u_2, u_3, u_4\} \in \mathcal{B}(F)$ and $\{u_2, u_3, u_4\} \cap F = \emptyset$.

Now we have proved that $|\mathcal{D}_2| = 0$, that is every set in \mathcal{D} contains u_1 ; thus $\tau(\mathcal{D}) = 1$.

Peter Frankl

4. The structure of D

In this paragraph we determine the exact structure of $\mathcal{D} = \{D_1, \ldots, D_t\}$. We know already that $u_1 \in D_i$ for every $i = 1, \ldots, t$ and that $t \ge k^2 - k + 1$. As $\tau(F) > 1$, there exists a set, say $F = \{f_1, \ldots, f_k\} \in F$ such that $u_1 \notin F$.

As $D_i \in \mathcal{B}(F)$, $D_i \cap F \neq \emptyset$ for $i = 1, \ldots, t$.

Let us set $E_i = D_i - \{u_1\}$ for i = 1, ..., t. Then the E_i 's are the edges of a simple 2-graph, which we denote by E. Let $c_i(d_i)$ be the number of edges adjacent to f_i and having their other extremity in F(not in F), respectively.

Then we have

(4)
$$t = \sum_{i=1}^{k} (d_i + \frac{1}{2}c_i)$$

Now we prove

(5)
$$d_i + c_i \le k \quad (i = 1, ..., k)$$

Suppose that (5) fails for some i. It means that we can find k + 1 edges, say E_1^i , ..., E_{k+1}^i which are adjacent to f_i .

As $\tau(F) > 2$, there exists a $G \in F$ such that $G \cap \{u_1, f_i\} = \emptyset$. But F is intersecting and the D_i 's belong to its Δ -base;

consequently, for j = 1, ..., k+1, $\left[E_{j}^{i} - \{f_{i}\}\right] \in G$ holds. However this is impossible since |G| = k < k+1. Now (5) is proved.

Next we prove

(6)
$$d_i \leq k-1 \quad (i = 1, ..., k)$$
.

Suppose that, on the contrary, (6) fails for a given i . Then by (5) we have $d_i = k$.

Let g_1, \ldots, g_k be the other endpoints of the edges adjacent to

 f_i . If G is an edge of F, which necessarily exists since $\tau(F) > 2$, disjoint to $\{u_1, f_i\}$ then we conclude in the above way $G = \{g_1, \ldots, g_k\}$. However $G \cap F = \emptyset$, a contradiction proving (6).

As $t \ge k^2 - k + 1$, we conclude from (4), taking into account (5) and (6), that there are at least two of the f_i 's, say f_1 , f_2 , such that $d_i = k - 1$, $c_i = 1$.

We distinguish two cases.

(a) $\{u_1, f_1, f_2\} \in B(F)$.

This means that $\{f_1, f_2\}$ is an edge in E. Let $\{g_1, \ldots, g_{k-1}\}$ be the set of points different to f_2 and connected in E to f_1 . Then for $G \in F$, $G \cap \{u_1, f_1\} = \emptyset$ we infer $G = \{f_2, g_1, \ldots, g_{k-1}\}$. As $\tau(F) \ge 2$, $G \in F$. Similarly if $f_1, g'_1, \ldots, g'_{k-1}$ are the points adjacent to f_2 , then $G' = \{f_1, g'_1, \ldots, g'_{k-1}\} \in F$.

Let $3 \le i \le k$, and let h be a point which is adjacent to f_i . Then $\{u_1, f_i, h\} \in \mathcal{B}(F)$ implies

$$(7) h \in (G \cap G') .$$

If $|G \cap G'| \leq k-2$ we infer $t \leq 2k - 1 + (k-2)(k-2) < k^2 - k + 1$, a contradiction.

Hence $|G \cap G'| = k - 1$; that is,

$$\{g_1, g_2, \dots, g_{k-1}\} = \{g'_1, \dots, g'_{k-1}\}$$

Now $t \ge k^2 - k + 1$ and (7) imply $\{u_1, f_i, g_j\} \in \mathcal{B}(F)$ for every $1 \le i \le k$, $1 \le j \le k$. Thus \mathcal{D} has the same structure as it has in F_G .

(b) $\{u_1, f_1, f_2\} \notin B(F)$. This means $\{f_1, f_2\} \notin E$. Let $f_3, g_1, \ldots, g_{k-1}$ be the points adjacent to f_1 in E. As $\tau(F) > 2$, there exists $F \in F$ such that $F \cap \{u_1, f_1\} = \emptyset$. From the intersecting property and |F| = k we deduce $F = \{f_3, g_1, \ldots, g_{k-1}\}$. Now if $\{u_1, f_2, h\} \in \mathcal{B}(F)$ then it follows $\{u_1, f_2, h\} \cap F \neq \emptyset$; that is, $h \in F$. Hence we conclude that f_2 is adjacent in E to the same points as f_1 .

It follows in the same way for $4 \le i \le k$ and any h such that $\{u_1, f_i, h\} \in \mathcal{B}(F) : h \in F$. Hence we have

(8)
$$t = \sum_{i=1, i\neq 3}^{k} d_i + d_3 + c_3.$$

From (8) using (4) and $t \ge k^2 - k + 1$ we deduce $d_i = k - 1$ for $i \ne 3$ and $d_3 + c_3 = k$.

Let h_1, \ldots, h_k be the neighbours of f_3 in E. As $\tau(F) > 2$ there exists $H \in F$ such that $H \cap \{u_1, f_3\} = \emptyset$. We infer $H = \{h_1, \ldots, h_k\}$.

We know $\{f_1, f_2\} \subset H$, whence for some j, $1 \leq j \leq k-1$, $g_j \notin H$. If for some i, $4 \leq i \leq k$, $f_i \notin H$, then $\{u_1, f_i, g_j\} \in B(F)$ and $\{u_1, f_i, g_j\} \cap H = \emptyset$ gives a contradiction.

Hence $f_1, f_2, f_4, f_5, \ldots, f_k$ are all neighbours of f_3 in E.

As $F \cap H \neq \emptyset$, we conclude that the remaining neighbour of f_3 is one of the g_j 's, say g_1 .

Now setting $Y = \{g_1, g_2, \dots, g_{k-1}, f_3\}$, $Z = \{f_1, f_2, f_4, \dots, f_k\}$, $x = u_1$, we see that again \mathcal{D} has the same structure as it has in F_G .

5. The deduction of Theorem 3 and some remarks

For optimal families we have now proved the existence of

Intersecting families of finite sets

$$\begin{aligned} x \in X , & Z \subset X , & Y \subset X , & Y_0 \subset Y , \\ & \left| Z \right| = k - 1 , & \left| Y \right| = k , & \left| Y_0 \right| = 2 , & x \notin (Y \cup Z) , & Y \cap Z = \emptyset , \end{aligned}$$

such that

$$\begin{split} B_3 &= \{B \in \mathcal{B}(F) \mid |B| = 3\} \\ &= \{B \subset X \mid |B| = 3, \ x \in B, \ B \cap Y \neq \emptyset, \ B \cap Z \neq \emptyset\} \cup \{x \cup Y_0\} \end{split}$$

Moreover we proved $Y \in F$. Let $Y_0 = \{y_1, y_2\}$ and let $F_1, \ F_2 \in F$ such that $F_i \cap \{x, y_i\} = \emptyset$. Such sets exist as $\tau(F) > 2$. We infer
 $F_i = \{y_{3-i} \cup Z\}$ for $i = 1, 2$.

As for every subset of cardinality at most k of X which does not contain any of the sets in $B = B_3 \cup \{F_1, F_2, Y\}$ we can find a set $B \in B$ which is disjoint to it, we infer B = B(F) = G. Hence the maximality of |F| implies $F = F_G$. //

Now the next problem would be to determine $\max |F|$ for F intersecting, $\tau(F) > 3$. Or more generally $\tau(F) \geq \tau$.

We could only prove $|F| \leq (1+o(1))k^{\tau-1} \binom{n-\tau}{k-\tau}$.

To obtain a lower estimate let $x \in X$ and let $Y_1, Y_2, \ldots, Y_{\tau-1}$ be disjoint subsets of X - x. Let further $Z_i \subset Y_i$, $|Z_i| = \tau - i$, $|Y_i| = k - i + 1$.

Let us define

 $B_{\tau} = \{ B \subset X \mid |B| = \tau, x \in B, \exists j, 1 \leq j \leq \tau, \}$

such that $B \cap Y_i \neq \emptyset$ for $1 \leq i < j, Z_j \subseteq B$.

Let us set further

$$\mathcal{B}_{k} = \{ B \subset X \mid |B| = k, \exists j \}$$

such that $1 \leq j < \tau$, $Y_j \subseteq B$, $B \cap Z_i \neq \emptyset$ for $1 \leq i < j$.

Now we define $B(F_{\tau}) = B_{\tau} \cup B_{k}$; that is,

$$F_{\tau} = \{F \subset X \mid |F| = k, \exists B \in \mathcal{B}(F_{\tau}) \text{ such that } B \subseteq F\}$$

It is not hard to see that F is intersecting, $\tau(F) = \tau$, and

$$|F| = \left(\sum_{0 \leq i \leq \tau-1, i \neq \tau-2} (k)_i\right) \binom{n-\tau}{k-\tau} (1+o(1)) .$$

$$((k)_{i} = k(k-1) \dots (k-i+1), (k)_{0} = 1$$
.

Let us conclude this paper with a conjecture.

CONJECTURE. Suppose F is an intersecting family of k-subsets of X, $\tau(F) \ge \tau$. Suppose further $k > k_0(\tau)$, $n > n_0(k)$. Then $|F| \le |F_{\tau}|$.

References

- P. Erdös and R. Rado, "Intersection theorems for systems of sets", J. London Math. Soc. 35 (1960), 85-90.
- [2] P. Erdös, Chao Ko, and R. Rado, "Intersection theorems for systems of finite sets", Quart. J. Math. Oxford (2) 12 (1961), 313-320.
- [3] Peter Frankl, "On families of finite sets no two of which intersect in a singleton", Bull. Austral. Math. Soc. 17 (1977), 125-134.
- [4] A.J.W. Hilton and E.C. Milner, "Some intersection theorems for systems of finite sets", Quart. J. Math. Oxford (2) 18 (1967), 369-384.

CNRS, 7 Quai Anatole France, 75007 Paris, France.