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ON A THEOREM OF NIELSEN

SAROOP K. KAUL AND DALE V. THOMPSON

The following theorem proved in this paper is a generalization of

a result of Jakob Nielsen. Suppose G is a group of linear

fractional transformations acting on the unit disc D in the

complex plane; suppose also that each element of G , except the

identity, is either a hyperbolic or a parabolic transformation.

Then any homeomorphism h of the open disc u onto itself which

satisfies the functional equation hg = g'h , for some

automorphism g -*• g' of G , has a unique extension to a

homeomorphism of D onto itself.

In this paper we wish to give a topological proof of a theorem of

Nielsen. Nielsen in [H] considers a finitely generated group H , acting

on the disc D = {z € C : |s| 5 1, C the set of complex numbers} , each of

whose elements, except the identity e , is a hyperbolic substitution and

whose fundamental domain K has the property that K c D , D being the
o

open disc {z € C : |s| < l} . It is easy to see then that D is a
o

covering space of the orbit space D/H . Nielsen then proved that any
o o

lifting h to D , of a homeomorphism of D/H onto itself, has a unique

extension to the boundary S = {z € C : \z\ 5 l} of D ; h has the

further property that it induces an automorphism g •* g' of H onto

itself such that hg = g'h .

Before we can state our result we need the definitions of

homeomorphisms of type 1 and type 2 the "topological analogues" of

parabolic and hyperbolic substitutions respectively.
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38 Saroop K. Kaul and Dale V. Thompson

Let X be a compact metric space and g be a homeomorphism of X

onto itself. Then g is said to tie of type 2 if there exist two

distinct points a(g) and b(g) in X , fixed under g , such that for

any compact set C c X - ib(g)} , lim g (C) = a(g) , and for any compact

set C c X - {a{g)} , lim gn(C) = b(g) ; a(g) is called the attractive
M-K-OO

point of g and b{g) the repulsive point of g . We say that g is of

type 1 if in the above definition a(g) = b(g) . That is, g has only one

fixed point and it acts as both the attractive and the repulsive point for

g . These homeomorphisms have been studied by Kinoshita [8], L9], [10] and

Homma and Kinoshita [2], [3], and Kaul [4], [5].

A group G acting on X is said to be of type 1 (type 2) if each

element g of G and g ± e is of type 1 (respectively type 2). We say

that G is a general group if each g € G - {e} is either of type 1 or of

type 2.

Let G be a general group acting on X and let

L = {a{g) : g € G-{e}} and 0 = X - L . A homeomorphism h of 0 onto

itself is said to be admissible if it induces an automorphism g •+ g' of

G onto itself such that hg = g'h on 0 . For any a ? L , let

G = {g € G : g(a) = a} denote the stabilizer of a . For the definition

of minimal set see [JD. We shall prove the following theorems.

THEOREM 1. Let G be a general group acting on the disc D . Let

L be infinite and for any a € L , G # G . If h is an admissible

homeomorphism of 0 onto itself, then h can be extended to a

homeomorphism of D onto itself.

THEOREM 2. Let G be a general group acting on the disc D . Let

L have at most two points. If h is an admissible homeomorphism of 0

onto itself then h can be extended to a homeomorphism of D onto itself.

REMARK I. The problem of generalizing the result of Nielsen

mentioned in the opening paragraph above was first proposed by Kinoshita in

an unpublished paper [9]. In that paper Kinoshita also announced a theorem

similar to Theorem 1; for example:

THEOREM (Kinoshita). Suppose G is a group of type 2 acting on the
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disc D . If G satisfies the

(1) "continuity" condition,

(2) "commutativity" condition, and

(3) Sperners condition on 0 and L is infinite,

then any homeomorphism of the orbit space 0/G onto itself has a lifting

to a homeomorphism h of 0 onto itself which is admissible and h has a

unique extension to all of D .

REMARK 2. In Theorem 1 above the three conditions of Kinoshita's

theorem have been replaced by the condition that for any a € L , G t G .

Furthermore, the group admits elements of both types 1 and 2. In Theorems

1 and 2, in contrast to Nielsen's result, no conditions are imposed on the

nature of the fundamental domain or the number of generators of G .

1.

In this section we shall prove some properties of a general group G

acting on a compact metric space X that are needed later. Lemma 1.2

(Hi) is new.

LEMMA 1.1. Let g be a homeomorphism of type 1 or 2 acting on a

compact metric space X . Let f be any homeomorphism of X onto itself.

Then fgf is a homeomorphism of type 1 or 2 respectively, and

1) = f{a(g)) and b{fgfX) = f[b{g)) .

Proof. Clearly f[a(g)) and f[b(g)) are fixed points of fgf'1 .

Suppose C c X - {f[b(g))\ is compact, then

lim {fgf-1)n(O = lim (ft"/"1) «?) = 'f H » gn[fhc)) = f[a(g)) ,

since f (C) c X - {b(g)} . Similarly, we can prove that for any compact

C c X - {f{a{g))\ , lim [fgnf~1)(C) = f[b{g)) and the proof is complete.

LEMMA 1.2. Let X be a compact metric space and G be a general

group acting on X . Then the following hold:

(i) for any f (. G , f(L) = L , hence f(~L) = L and
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/(0) = 0 ;

(ii) if L has more than two points then L is a perfect set;

hence L is infinite;

(Hi) if for each a € L , G ± G then L is a minimal set;

(iv) if X = D then L c S .

Proof, (i) If x € L then x = a(g) for some g (• G t and by Lemma

1.1, for any f € G , /(x) = f[a{g)) = aifgf'1) . Since G is a group,

and f,g*G, fgf'1 € G and f(x) (. L . Hence f(L) c L . Applying

the same argument to f~ we get that f~ (£) c L .; Hence /(£) = L .

(ii) Let a € L . Since L has more than two points there is an

x € L such that x ? a{g) or b(g) , where a = a(g) . Since g is a

type 1 or 2, lim g (x) = a and by W each g (x) d L . Hence each point

of L is a limit point of L . This proves (H) .

(Hi) It is enough to show that for any x € L ,

L c ig(x) : g Z G}~ = G(x) . So let y € i and f € G be such that

a(/) = J/ , and suppose x f y .

Suppose f is of type 1. Then by definition lim j (x) = y and

y € Gjx) .

Suppose f is of type 2. Two cases arise.

CASE 1. f(x) * x . Then by definition lim /"(x) = y and the proof

is complete.

CASE 2. /(x) = x . Since G ± G there is a g i G such that

g(x) t x . Hence x ± a{g) or i>(#) and g (x) converges to a(g) . If

a{g) = y , then y € G(x) . If not, then, since x, y are fixed points of

f , a{g) is not a fixed point of f . Hence lim /*(a(g-)) = y . Finally
n-**>

since {j } is equicontinuous at a{g) [2], and {g (x)} converges to

fl(ff) ' U 9 M?))} converges to y [6, Lemma (l.l), p. 226].
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(iv) For i f a{g) € D for g € G-e , then lim g (s) = a{g) , which

i s impossible because g(D) = D .

2.

A Euclidean neighbourhood of a point x € D is an open set U in D

containing x such that U is homeomorphic to the disc. We shall denote

the boundary of any set A by 3̂4 . Any homeomorphic image of the closed

unit interval is called an arc.

LEMMA 2.1. Let g be a homeomorphism of type 1 or 2 on D . Then

any Euclidean neighbourhood U of a(g) contains an arc 3 such that

00

a = U g [3] c D and a = a u {a(g)} and is an arc in D .
m=0

Proof. By a well known result of Kerekjarto any homeomorphism of type

1 or 2 is respectively topologically equivalent to a parabolic or a hyper-

bolic transformation [7]. Given a parabolic or hyperbolic transformation
o o

k and any point x € D there is an arc 3 in D from x to k(x) such
00

that a = U k (3) is homeomorphic to the half open interval. Now 3
n=0

being a compact subset of D , {k (3)} converges only to a(k) . Hence

a = a u a(k) is an arc, and the same is true of g .

Now given any U containing a(g) take a point x € U such that

g[x) € U , and construct an arc 3 as above.

LEMMA 2.2. Let G be a general group acting on the disc D . Let

L be infinite and L be minimal. Then any non-empty open set V in S

containing a point a{g) of L contains another point a(f) of L

distinct from a(g) such that a(f') f a{g') , where g •* g' is an

automorphism of G .

Proof. Suppose the lemma is not true. Then there exists a non-empty

open set U containing an a(g) € L , such that, if a(f) € U n L , then

a(f') = a(g') . By minimality of L there exists a finite set

jpi : 1 5 t < nj in G such that L c: U{p.U : 1 5 i 5 n) [/, Remark

(2.12), p. 1I4]. That is, for any / 6 G , a(f) € p .V for some i ,
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1 5 i 5 n . Hence p~?~a{.f) € U . But p T 1 a ( / ) = a p T V p • (Lemma l . l ) ,
If If ^ % If J

and by the above assumption a \\p~. fp-\ = a(g') . Now

P7 /P.,- = Vl- f'Pl- 5 since g -+ g' is a homomorphism, and by Lemma

1.1, afp^" 1 5 / ^ ] =Pl{-l)a(f) . Hence a(f') =pUz(g') . Now g + #'

being an automorphism of G , L - {a(f') :/€(?} = {p'.a{g') : 1 5 i 2 M}

contradicts the assumption that L is infinite. Hence the lemma is true.

3.

In this section we shall prove Theorem 1. We therefore assume

throughout that G is a general group acting on the disc D , that L is

infinite and that for each a d L , Ga t G so that L is a minimal set

(Lemma 1.2 (Hi)), and lastly that h is an admissible homeomorphi sin of 0

onto itself inducing an automorphism of G , g -* g' , so that hg = g'h .

For any A ^ D we define A = A n L .

LEMMA 3.1. Let a € L and U be any Euclidean neighbourhood of

a . If for any g € G , a(g) I V , then a(g') I intJMJ') , where

U' = U n 0 .

Proof. By Lemma 2.2 the open set V = D - U containing a(g) € L

contains an a(f) € L , such that a(f) t a(g) and a{f) f a(g') . By

Lemma 1.2 (iv) , ?) c 0 .

It is easy to see that using Lemma 2.1 we can construct an open arc

a = a u a2 u a_ in V where

«! = U /[B] eg , a = U /[R] eg ,
1 k=0 x d k=0 d

— o

and a_ connects the end points of a and a_ in V n D and is other-

wise disjoint with them, so that a = a u {a(f), a(g)} is an arc in D

with acfl and its end points a(f) and a(g) in S . Hence ha = 3

is an open arc in D and 8 = ha. u ho. u ha . But ha = ha since a
o

i s a n a r c i n D . Now
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OO OO 00 ,.

fta1 = ft U 3 [Bj = U hg [&J = U g' ft [3.,] .

o o
Since g' is of type 1 or 2, ft maps D onto D and ftg is a compact

subset of D , ha has the unique limit point a(g') . Similarly, /zou

has the unique limit point a(f') . Thus 3 = 3 u {a(f'), a(g')} is a

closed arc in D with end points a(f') and a(j') . Since a c 8 - U ,

3 = fta c 8 - fty as ft maps 8 onto 8 .

Now 3 separates D into two components £ and E . Since U is

a Euclidean neighbourhood, U' = U n 0 is a connected set, and

a n U' = 0 , hence ftf/' lies either in ff or E . Suppose hU' c E .

Then fti/' = W n L c E n S and a(g') being an end point of 3 is not

an interior point of E n S with respect to S . Hence a(g') is not an

interior point of hU' with respect to S . This proves the lemma.

For any a € L consider a decreasing nested sequence {il } of

oo

Euclidean neighbourhoods of a so that H U = {a} . Then U' = 0 n U

n=l n n n

and 0 - U are arcwise connected for n = 1, 2, ... . Let

oo

A{a) = fl hU' . Then A(a) being the intersection of compact connected

non-empty subsets of D is non-empty compact and connected.
00

LEMMA 3.2. For any a € L , A(a) = fl W' .
n=l n

Proof. If x € A(a) n 0 then for a l l n > 1 , x € ft7/7 . Since h

is a homeomorphi sm on 0 , h~ x (. U' . Hence h~ x (. fl £/' = {a} 6
n=l "

h~ x (. U' . Hence h~

which is a contradiction, since 0 n L = 0 . Consequently,

oo , oo •. oo o

i4(a) = n ftiT7 = n fty7 n l = n fftlT7 n i ) = n

«=1 M W "J M

and the proof is complete.
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LEMMA 3.3. If a € L then A(a) is a singleton; and if a = a(f)

for some f € G , then A{a) = ia(f')} .

Proof. First we claim that J = lntJ^ia) = 0 : suppose not. Then by

Lemma 2.2 there exist distinct points a{f) and a(g) in I , such that

a(f') t O-ig') • Suppose a(g') + a . Now a(g) t I implies that

a(g) € Intc|?zy'| for each n = 1, 2, ... . Hence by Lemma 3.1,
<-? n

oo

a(g') € U for each n , that is, a{g') (. fl U = {a} , which is a
n n=l n

contradiction.

Thus A(a) is a non-empty compact connected subset of 5 with an

empty interior. Hence A(a) is a singleton.

If a = a(f) for some / £ G then / being of type 1 or 2 for any

x € 0 , lim f (x) = a ; so that the sequence {j'ix)} lies eventually in
n-*»

each U' = U n 0 . Hence {^/"(x)} = {f'n[h{x)}} lies eventually in each

OO

W , n = 1, 2, .... Since f\ hll' = A{a) is a singleton,
n n=l n

lim f'n[h{x)) = 4(a) . But f being of type 1 or'2, and since hx € 0 ,

lim f'n(Ma:)) = a(/') . Therefore a{f) = A(a) . This completes the

proof of the lemma.

Proof of Theorem 1. Define h* : D -*• D as follows: for x € 0 , let

h*(x) = h(x) and for a € L let ^*(a) = 4(a) . We claim that h* is

the required extension.

It is easy to see that for any two defining sequences {u } and {V }

00 OO

of Euclidean neighbourhood of a € L , 0 hU' = fl hV , since they both

n=l n n=l n

form a neighbourhood base at a . Hence, A(a) being a singleton, h* is

well defined. Since 0 is open in D , h* is clearly continuous at each

point of 0 . To see that h* is continuous at a € L , let E > 0 be

https://doi.org/10.1017/S0004972700007413 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007413


A t h e o r e m o f N i e l s e n 45

given. Since A(a) = D hU' € u[h*(a), e) , where u[h*[a), e) is
«=1 n

e-neighbourhood of h*{a) , there exists an integer m , such that

hU' c u(h*{a), e) for all n > m . Recall that V = U n 0 . Let

x i U n L and {w } be a defining sequence of Euclidean neighbourhood

oo

for x . Then fl w = {«} implies that for some m' , w, c U for all
., ft K, Tfi

n=l

k > m' . Hence TaF c ^ c £/(fe*(a), e) for all & 5 m' implying that
fe*(a;) € U[h*{a), e) . Thus ?z*(y) cy(7z*(a), e) for some n for which

U c y and /i* is continuous at a and hence on D .
n m

Now g •*• g' being an automorphism of G such that h g' = gh ,

h is also an admissible homeomorphism of 0 . Working with h

similarly we have a continuous extension [h )* of h to D . Hence

h*(h )* and {h ]*h* are continuous extensions of the identity mappings

of 0 and therefore identity themselves. Thus h is one-to-one and onto

and D being compact h is a homeomorphism. This proves the theorem.

4.

Let U(x, r) denote the r-neighbourhood of a point x .

Proof of Theorem 2. CASE 1. Suppose L is a singleton {a} . Then

there is an / € G of type 1 such that a = a(f) . Assume that there is

an e > 0 such that for every positive integer n ,

h[U(a, l/n)-{a}] <{: U(a, e) . Then there is a sequence {x } such that

x i U(a, 1/n) and y = hx € D - U(a, e) , n = 1, 2, ... . Clearly

yi y > converges to a . But D - U(a, e) being compact, assume without

loss of generality that {y } converges to y € D . But then y # a

implies that y € 0 , and h~ being continuous at y we have h~ y = a .

But this is a contradiction since hy € 0 . Thus for any e > 0 there is

an n such that h[U(a, l/n)-{a}] c u(a, e) .

Define h* : D •*• D by h*{x) = Hx) if x € 0 and h*(a) = a . By
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the last paragraph then h* is continuous and a homeomorphism.

CASE 2. L has two points L = {a, b} . Then a, b lies in 5 .

There is a Euclidean neighbourhood U of a such that a = W is an arc

in 0 with end points a, d i n O n S , a, d separate a, b in S ,

and b € D - U . Then ha is an arc in 0 with end points ho and hd

in S such that ho and 7z<i separate a, b in 5 . Therefore only one

of the points a and b lies in hU , say a (. hll . Let h* = h on 0

and ?7*(a) = a and ?z*(fo) = b . Then a similar argument as in Case 1

shows that h* is the required extension. If b € hU , define h*(a) = b

and ft*(2j) = a . Again an argument as in Case 1 proves h* to be the

required extension.

This completes the proof.
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