SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS MOHSEN SHAH HOSSEINI and MOHSEN ERFANIAN OMIDVAR ${ }^{\boxtimes}$

(Received 30 March 2016; accepted 17 May 2016; first published online 26 September 2016)

Abstract

We introduce some new refinements of numerical radius inequalities for Hilbert space invertible operators. More precisely, we prove that if $T \in \mathcal{B}(\mathcal{H})$ is an invertible operator, then $\|T\| \leq \sqrt{2} \omega(T)$.

2010 Mathematics subject classification: primary 47A62; secondary 46C15, 47A30, 15A24.
Keywords and phrases: bounded linear operator, Hilbert space, norm inequality, numerical radius.

1. Introduction and preliminaries

Let $\mathcal{B}(\mathcal{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} with inner product $\langle\cdot, \cdot\rangle$ and let $\mathcal{B}^{-1}(\mathcal{H})$ denote the set of all invertible operators in $\mathcal{B}(\mathcal{H})$. For $T \in \mathcal{B}(\mathcal{H})$, let

$$
\omega(T)=\sup \{|\langle T x, x\rangle|:\|x\|=1\}
$$

and

$$
\|T\|=\sup \{\|T x\|:\|x\|=1\}
$$

respectively, denote the numerical radius and operator norm of T. It is well known that $\omega(\cdot)$ is a norm on $\mathcal{B}(\mathcal{H})$ and that, for all $T \in \mathcal{B}(\mathcal{H})$,

$$
\begin{equation*}
\omega(T) \leq\|T\| \leq 2 \omega(T) \tag{1.1}
\end{equation*}
$$

In [1], Berger proved that for any $T \in \mathcal{B}(\mathcal{H})$ and natural number n,

$$
\omega\left(T^{n}\right) \leq \omega^{n}(T)
$$

Also, Holbrook in [6] showed that, for any $A, B \in \mathcal{B}(\mathcal{H})$,

$$
\begin{equation*}
\omega(A B) \leq 4 \omega(A) \omega(B) \tag{1.2}
\end{equation*}
$$

In the case $A B=B A$,

$$
\omega(A B) \leq 2 \omega(A) \omega(B)
$$

[^0]If A and B are operators in $\mathcal{B}(\mathcal{H})$, we write the direct sum $A \oplus B$ for the 2×2 operator matrix $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$, regarded as an operator on $\mathcal{H} \oplus \mathcal{H}$. Thus,

$$
\begin{equation*}
\|A \oplus B\|=\max \{\|A\|,\|B\|\} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(A \oplus B)=\max \{\omega(A), \omega(B)\} \tag{1.4}
\end{equation*}
$$

The following result from [5] may be stated as well: if T is normal, then

$$
\left\|T^{n}\right\|=\|T\|^{n} \quad(n \in \mathbb{N})
$$

and

$$
\begin{equation*}
\omega(T)=\|T\| . \tag{1.5}
\end{equation*}
$$

In [3], Dragomir has shown that if $T \in \mathcal{B}(\mathcal{H}), s \in \mathbb{C}-\{0\}, r \in \mathbb{R}$ are such that $\|T-s I\| \leq r$, then

$$
\begin{equation*}
\sqrt{1-\frac{r^{2}}{|s|^{2}}}\|T\| \leq \omega(T) \quad(\text { for } r<|s|) \tag{1.6}
\end{equation*}
$$

In Section 2, we establish a considerable improvement of inequalities (1.1) and (1.2). Also, for $T \in \mathcal{B}(\mathcal{H})$, we find an upper bound for $\omega^{2}(T)-\omega\left(T^{2}\right)$ and consider some further inequalities for invertible operators.

2. Main results

In order to derive our main results, we need the following lemma.
Lemma 2.1. Let \mathcal{H} be a Hilbert space. If $a, b \in \mathcal{H}$ and $t \in \mathbb{R}$, then

$$
\begin{equation*}
\|a\|^{2}\|b\|^{2}-|\langle a, b\rangle|^{2} \leq\|a\|^{2}\|b-t a\|^{2} \tag{2.1}
\end{equation*}
$$

Proof. Since $|\operatorname{Re}\langle a, b\rangle| \leq|\langle a, b\rangle|$, the discriminant of the quadratic polynomial

$$
q(t)=\|a\|^{4} t^{2}-2 \operatorname{Re}\langle a, b\rangle\|a\|^{2} t+|\langle a, b\rangle|^{2}
$$

is not positive. This implies that $q(t) \geq 0$ for all $t \in \mathbb{R}$. Hence,

$$
\|a\|^{2}\|b\|^{2}-|\langle a, b\rangle|^{2} \leq\|a\|^{4} t^{2}-2 \operatorname{Re}\langle a, b\rangle\|a\|^{2} t+\|a\|^{2}\|b\|^{2}=\|a\|^{2}\|b-t a\|^{2}
$$

Now we are in a position to give a new proof for the inequality (1.6).
Theorem 2.2. If $T \in \mathcal{B}(\mathcal{H}), \beta \in \mathbb{C}-\{0\}$ and $r \in \mathbb{R}$ are such that $\|T-\beta I\| \leq r$, then

$$
\begin{equation*}
\sqrt{1-\frac{r^{2}}{|\beta|^{2}}}\|T\| \leq \omega(T) \quad(\text { for } r<|\beta|) \tag{2.2}
\end{equation*}
$$

Proof. Suppose that $x \in \mathcal{H}$ with $\|x\|=1$. Choose $a=T x, b=\beta x$ in (2.1) to give

$$
\|T x\|^{2}\|\beta x\|^{2}-|\langle T x, \beta x\rangle|^{2} \leq\|T x\|^{2}\|t T x-\beta x\|^{2}
$$

whence

$$
\|T x\|^{2}-|\langle T x, x\rangle|^{2} \leq\|T x\|^{\|} \frac{\|t T x-\beta x\|^{2}}{|\beta|^{2}} .
$$

Taking the supremum over $x \in \mathcal{H}$ with $\|x\|=1$ gives

$$
\|T\|^{2}-\omega^{2}(T) \leq\|T\|^{2} \frac{\|t T-\beta I\|^{2}}{|\beta|^{2}}
$$

By hypothesis, $\|T-\beta I\| \leq r$, so taking $t=1$ gives

$$
\left(1-\frac{r^{2}}{|\beta|^{2}}\right)\|T\|^{2} \leq \omega^{2}(T)
$$

We need the following lemma to give some applications of the inequality (2.2).
Lemma 2.3 [2]. If $a, b, e \in \mathcal{H}$ and $\|e\|=1$, then

$$
\begin{equation*}
2|\langle a, e\rangle\langle e, b\rangle| \leq\|a\|\|b\|+|\langle a, b\rangle| . \tag{2.3}
\end{equation*}
$$

Theorem 2.4. If $T \in \mathcal{B}(\mathcal{H}), \beta \in \mathbb{C}-\{0\}$ and $r \in \mathbb{R}$ are such that $\|T-\beta I\| \leq r$, then

$$
\left(2-\frac{|\beta|^{2}}{|\beta|^{2}-r^{2}}\right) \omega^{2}(T) \leq \omega\left(T^{2}\right) \quad(\text { for } r<|\beta|)
$$

Proof. Putting $a=T x, b=T^{*} x$ and $e=x,\|x\|=1$ in Lemma 2.3 gives

$$
2|\langle T x, x\rangle|^{2} \leq\left|\left\langle T^{2} x, x\right\rangle\right|+\left\|T^{*} x\right\|\|T x\| .
$$

Taking the supremum over $x \in \mathcal{H}$ with $\|x\|=1$ gives

$$
2 \omega^{2}(T) \leq \omega\left(T^{2}\right)+\|T\|^{2} \leq \omega\left(T^{2}\right)+\frac{|\beta|^{2}}{|\beta|^{2}-r^{2}} \omega^{2}(T)
$$

by (2.2). Hence,

$$
\left(2-\frac{|\beta|^{2}}{|\beta|^{2}-r^{2}}\right) \omega^{2}(T) \leq \omega\left(T^{2}\right)
$$

We use the following lemma due to Dragomir and Sandor [4] to improve the second inequality (1.1). See also [7] for more information.

Lemma 2.5 [4]. If $a, b \in \mathcal{H}$ and $p \geq 2$, then

$$
\begin{equation*}
\|a\|^{p}+\|b\|^{p} \leq \frac{1}{2}\left(\|a+b\|^{p}+\|a-b\|^{p}\right) \tag{2.4}
\end{equation*}
$$

Theorem 2.6. If $T \in \mathcal{B}^{-1}(\mathcal{H}), s=\inf _{\|x\|=1}\|T x\| /\|T\|$ and $p \geq 2$, then

$$
\|T\|^{p} \leq \frac{\left\|T+T^{*}\right\|^{p}+\left\|T-T^{*}\right\|^{p}}{2\left(1+s^{p}\right)} \leq \frac{2^{p} \omega^{p}(T)}{1+s^{p}}
$$

Proof. For the first inequality, put $a=T x$ and $b=T^{*} x$, where $x \in \mathcal{H}$ and $\|x\|=1$, in (2.4). Then

$$
\|T x\|^{p}+\left\|T^{*} x\right\|^{p} \leq \frac{1}{2}\left(\left\|T x+T^{*} x\right\|^{p}+\left\|T x-T^{*} x\right\|^{p}\right)
$$

Now, by the definition of s,

$$
s^{p}\|T\|^{p}+\left\|T^{*} x\right\|^{p} \leq \frac{1}{2}\left(\left\|T x+T^{*} x\right\|^{p}+\left\|T x-T^{*} x\right\|^{p}\right) .
$$

Taking the supremum over x,

$$
\left(1+s^{p}\right)\|T\|^{p} \leq \frac{1}{2}\left(\left\|T+T^{*}\right\|^{p}+\left\|T-T^{*}\right\|^{p}\right)
$$

For the second inequality, since $\left(T^{*}+T\right)$ and $\left(T-T^{*}\right)$ are normal, (1.5) yields

$$
\begin{aligned}
\left\|T+T^{*}\right\|^{p}+\left\|T-T^{*}\right\|^{p} & =\omega^{p}\left(T+T^{*}\right)+\omega^{p}\left(T-T^{*}\right) \\
& \leq\left(\omega(T)+\omega\left(T^{*}\right)\right)^{p}+\left(\omega(T)+\omega\left(T^{*}\right)\right)^{p}=2^{p+1} \omega^{p}(T)
\end{aligned}
$$

Therefore,

$$
\|T\|^{p} \leq \frac{\left\|T+T^{*}\right\|^{p}+\left\|T-T^{*}\right\|^{p}}{2\left(1+s^{p}\right)} \leq \frac{2^{p} \omega^{p}(T)}{1+s^{p}}
$$

Remark 2.7. If $T \in \mathcal{B}^{-1}(\mathcal{H}), p \geq 2$ and $s=\inf _{\|x\|=1}\left\|T^{*} x\right\| /\|T\|$, employing an argument similar to that used in the proof of Theorem 2.6,

$$
\|T\|^{p} \leq \frac{\left\|T+T^{*}\right\|^{p}+\left\|T-T^{*}\right\|^{p}}{2\left(1+s^{p}\right)} \leq \frac{2^{p} \omega^{p}(T)}{1+s^{p}} .
$$

Remark 2.8. If $T \in \mathcal{B}^{-1}(\mathcal{H}), p=2$ and $s=\inf _{\|x\|=1}\left\|T^{*} x\right\| /\|T\|$, the parallelogram law gives

$$
\|T\|^{2} \leq \frac{\left\|T+T^{*}\right\|^{2}+\left\|T-T^{*}\right\|^{2}}{2\left(1+s^{2}\right)} \leq \frac{4 \omega^{2}(T)}{1+s^{2}}
$$

Corollary 2.9. For $A, B \in \mathcal{B}^{-1}(\mathcal{H})$, define

$$
\alpha_{1}=\inf _{\|x\|=1} \frac{\|A x\|}{\|A\|}, \quad \alpha_{2}=\inf _{\|x\|=1} \frac{\left\|A^{*} x\right\|}{\|A\|}, \quad \beta_{1}=\inf _{\|x\|=1} \frac{\|B x\|}{\|B\|}, \quad \beta_{2}=\inf _{\|x\|=1} \frac{\left\|B^{*} x\right\|}{\|B\|} .
$$

If $\alpha=\max \left\{\alpha_{1}, \alpha_{2}\right\}$ and $\beta=\max \left\{\beta_{1}, \beta_{2}\right\}$, then

$$
\begin{equation*}
\|A\| \leq \frac{2 \omega(A)}{\sqrt[p]{1+\alpha^{p}}} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(A B) \leq \frac{4 \omega(A) \omega(B)}{\sqrt[p]{\left(1+\alpha^{p}\right)\left(1+\beta^{p}\right)}} \tag{2.6}
\end{equation*}
$$

Proof. The inequality (2.5) follows from Theorem 2.6 and Remark 2.7. Similarly,

$$
\begin{equation*}
\|B\| \leq \frac{2 \omega(B)}{\sqrt[p]{1+\beta^{p}}} \tag{2.7}
\end{equation*}
$$

For the inequality (2.6), observe, using (1.1) in the first inequality and (2.5) and (2.7) in the third, that

$$
\begin{aligned}
\omega(A B) & \leq\|A B\| \\
& \leq\|A\|\|B\| \leq \frac{4 \omega(A) \omega(B)}{\sqrt[p]{\left(1+\alpha^{p}\right)\left(1+\beta^{p}\right)}}
\end{aligned}
$$

The inequalities (2.5) and (2.6) strengthen (1.1) and (1.2), respectively.
Theorem 2.10. If $T \in \mathcal{B}^{-1}(\mathcal{H}), \beta \in \mathbb{C}-\{0\}$ and $s=\inf _{\|x\|=1}\|T x\| /\|T\|$, then

$$
\omega^{2}(T)-\omega\left(T^{2}\right) \leq \inf _{\beta} \frac{\left\|\beta T \pm T^{*}\right\|^{2}}{1+s^{2}}
$$

Proof. Put $a=\beta T x$ and $b=T^{*} x$, where $x \in \mathcal{H},\|x\|=1$, in (2.1). We deduce that

$$
\|\beta T x\|^{2}\left\|T^{*} x\right\|^{2}-\left|\left\langle\beta T x, T^{*} x\right\rangle\right|^{2} \leq\|\beta T x\|^{2}\left\|\beta T x-T^{*} x\right\|^{2}
$$

Taking the supremum over $x \in \mathcal{H},\|x\|=1$ gives

$$
\begin{equation*}
\sup _{\|x\|=1}\left(\|T x\|\left\|T^{*} x\right\|\right)^{2} \leq \omega^{2}\left(T^{2}\right)+\|T\|^{2}\left\|t \beta T-T^{*}\right\|^{2} \tag{2.8}
\end{equation*}
$$

On the other hand, by (2.3) with $a=T x, b=T^{*} x, e=x$,

$$
2|\langle T x, x\rangle|^{2}-\left|\left\langle T^{2} x, x\right\rangle\right| \leq\|T x\|\left\|T^{*} x\right\|
$$

and taking the supremum over $x \in \mathcal{H},\|x\|=1$ gives

$$
2 \omega^{2}(T)-\omega\left(T^{2}\right) \leq \sup _{\|x\|=1}\left(\|T x\|\left\|T^{*} x\right\|\right)
$$

Hence, by (2.8) for $t=1$,

$$
\begin{equation*}
\left(2 \omega^{2}(T)-\omega\left(T^{2}\right)\right)^{2} \leq \omega^{2}\left(T^{2}\right)+\|T\|^{2}\left\|\beta T-T^{*}\right\|^{2} \tag{2.9}
\end{equation*}
$$

and, applying (2.9) and Theorem 2.6,

$$
4 \omega^{4}(T)-4 \omega^{2}(T) \omega\left(T^{2}\right) \leq\|T\|^{2}\left\|\beta T-T^{*}\right\|^{2} \leq \frac{4 \omega^{2}(T)}{1+s^{2}}\left\|\beta T-T^{*}\right\|^{2}
$$

Consequently,

$$
\omega^{2}(T)-\omega\left(T^{2}\right) \leq \frac{\left\|\beta T-T^{*}\right\|^{2}}{1+s^{2}}
$$

and, finally,

$$
\omega^{2}(T)-\omega\left(T^{2}\right) \leq \inf _{\beta} \frac{\left\|\beta T-T^{*}\right\|^{2}}{1+s^{2}}
$$

Replacing T by $i T$ gives the related inequality

$$
\omega^{2}(T)-\omega\left(T^{2}\right) \leq \inf _{\beta} \frac{\left\|\beta T+T^{*}\right\|^{2}}{1+s^{2}}
$$

Corollary 2.11. If $T \in \mathcal{B}^{-1}(\mathcal{H}), \alpha, \beta \in \mathbb{C}-\{0\}, r \in \mathbb{R}$ are such that $\|T-\alpha I\| \leq r$, then

$$
\omega^{2}(T)-\omega\left(T^{2}\right) \leq \frac{|\alpha|^{2}}{4\left(|\alpha|^{2}-r^{2}\right)} \inf _{\beta}\left\|\beta T \pm T^{*}\right\|^{2}
$$

Proof. By Theorem 2.10,

$$
\omega^{2}(T)-\omega\left(T^{2}\right) \leq \frac{\|T\|^{2}}{4 \omega^{2}(T)}\left\|\beta T \pm T^{*}\right\|^{2}
$$

From the hypothesis $\|T-\alpha I\| \leq r$ and Theorem 2.2,

$$
\omega^{2}(T)-\omega\left(T^{2}\right) \leq \frac{|\alpha|^{2}}{4\left(|\alpha|^{2}-r^{2}\right)} \inf _{\beta}\left\|\beta T \pm T^{*}\right\|^{2}
$$

From Theorem 2.6, we have an interesting result for invertible operators.
Theorem 2.12. Let $T \in \mathcal{B}^{-1}(\mathcal{H})$. Then $\|T\|^{2} \leq 2 \omega^{2}(T)$ or $\left\|T^{-1}\right\|^{2} \leq 2 \omega^{2}\left(T^{-1}\right)$.
Proof. For any $x \in \mathcal{H},\|x\|=1$,

$$
\frac{1}{\left\|T^{-1}\right\|} \leq\|T x\|
$$

Since $\left(\left\|T^{-1}\right\|\|T\|\right)^{-1} \leq s=\inf _{\|x\|=1}\|T x\| /\|T\|$,

$$
\|T\|^{2} \leq \frac{\left\|T+T^{*}\right\|^{2}+\left\|T-T^{*}\right\|^{2}}{\left.2\left(\left\|T^{-1}\right\|\|T\|\right)^{-2}+1\right)}
$$

by Remark 2.8, and so

$$
\frac{1}{\left\|T^{-1}\right\|^{2}}+\|T\|^{2} \leq \frac{1}{2}\left(\left\|T+T^{*}\right\|^{2}+\left\|T-T^{*}\right\|^{2}\right) \leq 4 \omega^{2}(T) .
$$

If $\left\|T^{-1}\right\| \leq\|T\|$, then

$$
\frac{1}{\|T\|^{2}}+\|T\|^{2} \leq 4 \omega^{2}(T)
$$

Replacing T by $T /\|T\|$ in the last inequality gives

$$
\begin{equation*}
\|T\|^{2} \leq 2 \omega^{2}(T) \tag{2.10}
\end{equation*}
$$

If, on the other hand, $\|T\| \leq\left\|T^{-1}\right\|$, by replacing T by T^{-1} in (2.10), we deduce the desired result.

Corollary 2.13. If $T \in \mathcal{B}^{-1}(\mathcal{H})$, then

$$
\max \left\{\|T\|,\left\|T^{-1}\right\|\right\} \leq \sqrt{2} \max \left\{\omega(T), \omega\left(T^{-1}\right)\right\}
$$

Proof. Let $A=\left[\begin{array}{cc}T & 0 \\ 0 & T^{-1}\end{array}\right]$, so that $A^{-1}=\left[\begin{array}{cc}T_{0}^{-1} & 0 \\ 0 & T\end{array}\right]$. By Theorem 2.12,

$$
\|A\| \leq \sqrt{2} \omega(A) \quad \text { or } \quad\left\|A^{-1}\right\| \leq \sqrt{2} \omega\left(A^{-1}\right)
$$

Since $\|A\|=\left\|A^{-1}\right\|$ and $\omega(A)=\omega\left(A^{-1}\right)$, the result follows from (1.3) and (1.4).

The following theorem is a considerable improvement of the second inequality in (1.1) for Hilbert space invertible operators.

Theorem 2.14. If $T \in \mathcal{B}^{-1}(\mathcal{H})$, then

$$
\|T\| \leq \sqrt{2} \omega(T)
$$

Proof. First we show that if $\left\|T^{-1}\right\| \leq \frac{1}{4}$, then $\|T\| \leq \sqrt{2} \omega(T)$. By (1.2),

$$
\omega\left(T T^{-1}\right) \leq 4 \omega(T) \omega\left(T^{-1}\right)
$$

and so

$$
\frac{1}{4} \leq \omega(T) \omega\left(T^{-1}\right)
$$

Since $\omega\left(T^{-1}\right) \leq \frac{1}{4}$, it follows that $\omega\left(T^{-1}\right) \leq \omega(T)$ and, by Corollary 2.13,

$$
\|T\| \leq \sqrt{2} \omega(T)
$$

Now take $T \in \mathcal{B}^{-1}(\mathcal{H})$ and put $A=4\left\|T^{-1}\right\| T$. Since $\left\|A^{-1}\right\|=\frac{1}{4}$,

$$
\|A\| \leq \sqrt{2} \omega(A)
$$

which leads to

$$
\|4\| T^{-1}\|T\| \leq \sqrt{2} \omega\left(4\left\|T^{-1}\right\| T\right)
$$

and the result follows from the fact that $\omega(\cdot)$ is a norm.
Corollary 2.15. If $A, B \in \mathcal{B}^{-1}(\mathcal{H})$, then

$$
\omega(A B) \leq 2 \omega(A) \omega(B)
$$

Proof. By Theorem 2.14,

$$
\|A\| \leq \sqrt{2} \omega(A)
$$

and also

$$
\|B\| \leq \sqrt{2} \omega(B)
$$

Therefore,

$$
\omega(A B) \leq\|A\|\|B\| \leq 2 \omega(A) \omega(B)
$$

which is exactly the desired result.

References

[1] C. Berger, 'A strange dilatation theorem', Notices Amer. Math. Soc. 12 (1965), 590.
[2] M. L. Buzano, 'Generalizzazione della diseguaglianza di Cauchy-Schwarz', Rend. Semin. Mat. Univ. Politec. Torino 31(1971-1973) (1974), 405-409 (in Italian).
[3] S. S. Dragomir, 'Reverse inequalities for the numerical radius of linear operators in Hilbert space', Bull. Aust. Math. Soc. 73 (2006), 255-262.
[4] S. S. Dragomir and J. Sandor, 'Some inequalities in perhilbertian space', Stud. Univ. Babeş-Bolyai Math. 32(1) (1987), 71-78.
[5] K. E. Gustafson and D. K. M. Rao, Numerical Range (Springer, New York, 1997).
[6] J. A. R. Holbrook, 'Multiplicative properties of the numerical radius in operator theory', J. reine angew. Math. 237 (1969), 166-174.
[7] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis (Kluwer Academic, Dordrecht, 1993).

MOHSEN SHAH HOSSEINI, Department of Mathematics, Mashhad Branch, Islamic Azad University,
Mashhad, Iran
e-mail: mohsen_shahhosseini@yahoo.com
MOHSEN ERFANIAN OMIDVAR, Department of Mathematics, Mashhad Branch, Islamic Azad University,
Mashhad, Iran
e-mail: erfanian@mshdiau.ac.ir

[^0]: (c) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

