Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-17T21:46:58.989Z Has data issue: false hasContentIssue false

Semiochemical-mediated host selection by Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science

Published online by Cambridge University Press:  24 August 2020

Christopher M. Ranger*
Affiliation:
United States Department of Agriculture – Agricultural Research Service, Horticultural Insects Research Lab, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America
Michael E. Reding
Affiliation:
United States Department of Agriculture – Agricultural Research Service, Horticultural Insects Research Lab, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America
Karla Addesso
Affiliation:
Otis L. Floyd Nursery Research Center, Tennessee State University, College of Agriculture, 472 Cadillac Lane, McMinnville, Tennessee, 37110, United States of America
Matthew Ginzel
Affiliation:
Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, Indiana, 47907, United States of America
Davide Rassati
Affiliation:
Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’ Università, 16, 35020, Legnaro, Padova, Italy
*
*Corresponding author. Email: christopher.ranger@usda.gov

Abstract

Exotic ambrosia beetles (Curculionidae: Scolytinae) in the tribe Xyleborini include destructive pests of trees growing in horticultural cropping systems. Three species are especially problematic: Xylosandrus compactus (Eichhoff), Xylosandrus crassiusculus (Motschulsky), and Xylosandrus germanus (Blandford). Due to similarities in their host tree interactions, this mini-review focuses on these three species with the goal of describing their host-selection behaviour, characterising associated semiochemicals, and assessing how these interactions relate to their management. All three of these Xylosandrus spp. attack a broad range of trees and shrubs. Physiologically stressed trees are preferentially attacked by X. crassiusculus and X. germanus, but the influence of stress on host selection by X. compactus is less clear. Ethanol is emitted from weakened trees in response to a variety of stressors, and it represents an important attractant for all three species. Other host-derived compounds tested are inconsistent or inactive. Verbenone inhibits attraction to ethanol, but the effect is inconsistent and does not prevent attacks. Integrating repellents and attractants into a push–pull management strategy has been ineffective for reducing attacks but could be optimised further. Overall, maintaining host vigour and minimising stress-induced ethanol are keys for managing these insects, particularly X. crassiusculus and X. germanus.

Type
Research Papers
Creative Commons
Parts of this are a work of the United States Government, and it is not subject to copyright protection in the United States of America.
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of the Entomological Society of Canada.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Barbara Bentz

References

Agnello, A.M., Breth, D.I., Tee, E.M., Cox, K.D., Villani, S.M., Ayer, K.M., Wallis, A.D., Donahue, D.J., Combs, D.B., Davis, A.D., and Neal, J.A. 2017. Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) occurrence, fungal associations, and management trials in New York apple orchards. Journal of Economic Entomology, 110: 21492164.CrossRefGoogle ScholarPubMed
Agnello, A., Breth, D., Tee, E., Cox, K., and Warren, H.R. 2015. Ambrosia beetle: an emergent apple pest. New York Fruit Quarterly, 23: 2528.Google Scholar
Addesso, K., Baysal-Gurel, F., Oliver, J., Ranger, C., and O’Neal, P. 2018. Interaction of a preventative fungicide treatment and root rot pathogen on ambrosia beetle attacks during a simulated flood event. Insects, 9: 83.CrossRefGoogle ScholarPubMed
Addesso, K.M., Oliver, J.B., Youssef, N., O’Neal, P.A., Ranger, C.M., Reding, M., Schultz, P.B., and Werle, C.T. 2019. Trap tree and interception trap techniques for management of ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in nursery production. Journal of Economic Entomology, 2: 753762.CrossRefGoogle Scholar
Anderson, D.M. 1974. First record of Xyleborus semiopacus in the continental United States (Coleoptera, Scolytidae). Cooperative Economic Insect Report, 24: 863864.Google Scholar
Anderson, R.L. and Hoffard, W.H. 1978. Fusarium canker ambrosia beetle complex on tulip poplar in Ohio. Plant Disease Reporter, 62: 751.Google Scholar
Bateman, C., Šigut, M., Skelton, J., Smith, K.E., and Hulcr, J. 2016. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environmental Entomology, 45: 883890.CrossRefGoogle ScholarPubMed
Bentz, B.J., Kegley, S., Gibson, K., and Their, R. 2005. A test of high-dose verbenone for stand-level protection of lodgepole and whitebark pine from mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) attacks. Journal of Economic Entomology, 98: 16141621.CrossRefGoogle ScholarPubMed
Birgersson, G., DeBarr, G.L., de Groot, P., Dalusky, M.J., Pierce, H.D. Jr., Borden, J.H., Meyer, H., Francke, W., Espelie, K.E., and Berisford, C.W. 1995. Pheromones in white pine cone beetle, Conophthorus coniperda (Schwarz) (Coleoptera: Scolytidae). Journal of Chemical Ecology, 21: 143167.CrossRefGoogle Scholar
Brown, M.S., Baysal-Gurel, F., Oliver, J.B., and Addesso, K.M. 2019. Evaluation of fungicides and biofungicide to control Phytophthora root rot (Phytophthora cinnamomi Rands) and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) on flowering dogwoods exposed to simulated flood events. Crop Protection, 124: 104834.CrossRefGoogle Scholar
Buchanan, W.D. 1940. Ambrosia beetle Xylosandrus germanus transmits Dutch elm disease under controlled conditions. Journal of Economic Entomology, 33: 819820.CrossRefGoogle Scholar
Buchanan, W.D. 1941. Experiments with an ambrosia beetle, Xylosandrus germanus (Blfd.). Journal of Economic Entomology, 34: 367369.CrossRefGoogle Scholar
Burbano, E.G., Wright, M.G., Gillette, N.E., Mori, S., Dudley, N., Jones, T., and Kaufmann, M. 2012. Efficacy of traps, lures, and repellents for Xylosandrus compactus (Coleoptera: Curculionidae) and other ambrosia beetles on Coffea arabica plantations and Acacia koa nurseries in Hawaii. Environmental Entomology, 41: 133140.CrossRefGoogle ScholarPubMed
Buttery, R.G., Light, D.M., Nam, Y., Merrill, G.B., and Roitman, J.N. 2000. Volatile components of green walnut husks. Journal of Agricultural and Food Chemistry, 4: 28582861.CrossRefGoogle Scholar
Byers, J.A., Zhang, Q.H., and Schlyter, F. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften, 85: 557561.CrossRefGoogle Scholar
CABI (Commonwealth Agricultural Bureaux International) Invasive Species Compendium. 2019a. Xylosandrus compactus (shot-hole borer). CABI Head Office, Wallingford, United Kingdom. Available from http://www.cabi.org/isc/datasheet/57234 [accessed 5 February 2020].Google Scholar
CABI (Commonwealth Agricultural Bureaux International) Invasive Species Compendium. 2019b. Xylosandrus crassiusculus (Asian ambrosia beetle). CABI Head Office, Wallingford, United Kingdom. Available from http://www.cabi.org/isc/datasheet/57235 [accessed 5 February 2020].Google Scholar
CABI (Commonwealth Agricultural Bureaux International) Invasive Species Compendium. 2019c. Xylosandrus germanus (black timber bark beetle). CABI Head Office, Wallingford, United Kingdom. Available from https://www.cabi.org/isc/datasheet/57237 [accessed 5 February 2020].Google Scholar
Cale, J.A., Ding, R., Wang, F., Rajabzadeh, R., and Erbilgin, N. 2019. Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other semiochemicals in media amended with various pine chemicals and beetle-released compounds. Fungal Ecology, 39: 285295.CrossRefGoogle Scholar
Carrillo, D., Duncan, R.E., and Peña, J.E. 2012. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) that breed in avocado wood in Florida. Florida Entomologist, 95: 573579.CrossRefGoogle Scholar
Carrillo, D., Duncan, R.E., Ploetz, J.N., Campbell, A.F., Ploetz, R.C., and Peña, J.E. 2014. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathology, 63: 5462.CrossRefGoogle Scholar
Chong, J.H., Reid, L., and Williamson, M. 2009. Distribution, host plants, and damage of the black twig borer, Xylosandrus compactus (Eichhoff), in South Carolina. Journal of Agricultural and Urban Entomology, 26: 199208.CrossRefGoogle Scholar
Cool, L.G. and Zavarin, E. 1992. Terpene variability of mainland Pinus radiata. . Biochemical Systematics and Ecology, 20: 133144.CrossRefGoogle Scholar
Cook, S.M., Khan, Z.R., and Pickett, J.A. 2007. The use of push-pull strategies in integrated pest management. Annual Review of Entomology, 52: 375400.CrossRefGoogle ScholarPubMed
Copolovici, L. and Niinemets, Ü. 2010. Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant, Cell & Environment, 33: 15821594.Google ScholarPubMed
Coyle, D.R., Brissey, C.L., and Gandhi, K.J. 2015. Species characterization and responses of subcortical insects to trap-logs and ethanol in a hardwood biomass plantation. Agricultural and Forest Entomology, 17: 258269.CrossRefGoogle Scholar
Dallara, P.L., Seybold, S.J., Meyer, H., Tolasch, T., Francke, W., and Wood, D.L. 2000. Semiochemicals from three species of Pityophthorus (Coleoptera: Scolytidae): Identification and field response. The Canadian Entomologist, 132: 889906.CrossRefGoogle Scholar
DeGroot, P. and DeBarr, G.L. 2000. Response of cone and twig beetles (Coleoptera: Scolytidae) and a predator (Coleoptera: Cleridae) to pityol, conophthorin, and verbenone. The Canadian Entomologist, 132: 843851.CrossRefGoogle Scholar
Dickschat, J.S. 2017. Fungal volatiles–a survey from edible mushrooms to moulds. Natural Product Reports, 34: 310328.CrossRefGoogle Scholar
Dodds, K.J. and Miller, D.R. 2010. Test of nonhost angiosperm volatiles and verbenone to protect trap trees for Sirex noctilio (Hymenoptera: Siricidae) from attacks by bark beetles (Coleoptera: Scolytidae) in the northeastern United States. Journal of Economic Entomology, 103: 20942099.CrossRefGoogle ScholarPubMed
Dole, S.A., Jordal, B.H., and Cognato, A.I. 2010. Polyphyly of Xylosandrus Reitter inferred from nuclear and mitochondrial genes (Coleoptera: Curculionidae: Scolytinae). Molecular Phylogenetics and Evolution, 54: 773782.CrossRefGoogle Scholar
Dute, R.R., Miller, M.E., Davis, M.A., Woods, F.M., and McLean, K.S. 2002. Effects of ambrosia beetle attack on Cercis canadensis. International Association of Wood Anatomists Journal, 23: 143160.Google Scholar
Egonyu, J.P. and Torto, B. 2018. Responses of the ambrosia beetle Xylosandrus compactus (Coleoptera: Curculionidea: Scolytinae) to volatile constituents of its symbiotic fungus Fusarium solani (Hypocreales: Nectriaceae). Arthropod-Plant Interactions, 12: 920.CrossRefGoogle Scholar
Felt, E.P. 1932. A new pest in greenhouse grown grape stems. Journal of Economic Entomology, 25: 2.Google Scholar
Forney, C.F., Jordan, M.A., Nicholas, K.U., and DeEll, J.R. 2000. Volatile emissions and chlorophyll fluorescence as indicators of freezing injury in apple fruit. HortScience, 35: 12831287.CrossRefGoogle Scholar
Francke, W., Bartels, J., Meyer, H., Schröder, F., Kohnle, U., Baader, E., and Vité, J.P. 1995. Semiochemicals from bark beetles: new results, remarks, and reflections. Journal of Chemical Ecology, 21: 10431063.CrossRefGoogle Scholar
Frank, S.D., Anderson, A.L., and Ranger, C.M. 2017. Interaction of insecticide and media moisture on ambrosia beetle (Coleoptera: Curculionidae) attacks on selected ornamental trees. Environmental Entomology, 46: 13901396.CrossRefGoogle ScholarPubMed
Frank, S.D. and Ranger, C.M. 2016. Developing a media moisture threshold for nurseries to reduce tree stress and ambrosia beetle attacks. Environmental Entomology, 45: 10401048.CrossRefGoogle ScholarPubMed
Galko, J., Dzurenko, M., Ranger, C.M., Kulfan, J., Kula, E., Nikolov, C., Zúbrik, M., and Zach, P. 2018. Distribution, habitat preference, and management of the invasive ambrosia beetle Xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae) in European forests with emphasis on the West Carpathians. Forests, 10: 10.CrossRefGoogle Scholar
Gandhi, K.J.K., Cognato, A.I., Lightle, D.M., Mosely, B.J., Nielsen, D.G., and Herms, D.A. 2010. Species composition, seasonal activity, and semiochemical response of native and exotic bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in northeastern Ohio. Journal of Economic Entomology, 103: 11871195.CrossRefGoogle Scholar
Garonna, A.P., Dole, S.A., Saracino, A., Mazzoleni, S., and Cristinzio, G. 2012. First record of the black twig borer Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae, Scolytinae) from Europe. Zootaxa, 3251: 6468.CrossRefGoogle Scholar
Gillette, N.E., Stein, J.D., Owen, D.R., Webster, J.N., Fiddler, G.O., Mori, S.R., and Wood, D.L. 2006. Verbenone-releasing flakes protect individual Pinus contorta trees from attack by Dendroctonus ponderosae and Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae). Agricultural and Forest Entomology, 8: 243251.CrossRefGoogle Scholar
Gomez, D.F., Rabaglia, R.J., Fairbanks, K.E., and Hulcr, J. 2018. North American Xyleborini north of Mexico: a review and key to genera and species (Coleoptera, Curculionidae, Scolytinae). ZooKeys, 768: 19.CrossRefGoogle Scholar
Greco, E.B. and Wright, M.G. 2012. First report of exploitation of coffee beans by black twig borer (Xylosandrus compactus) and tropical nut borer (Hypothenemus obscurus) (Coleoptera; Curculionidae: Scolytinae) in Hawaii. Proceedings of the Hawaiian Entomological Society, 44: 7178.Google Scholar
Greco, E.B. and Wright, M.G. 2015. Ecology, biology, and management of Xylosandrus compactus (Coleoptera: Curculionidae: Scolytinae) with emphasis on coffee in Hawaii. Journal of Integrated Pest Management, 6: 7.CrossRefGoogle Scholar
Grégoire, J.C., Piel, F., De Proft, M., and Gilbert, M. 2001. Spatial distribution of ambrosia-beetle catches: a possibly useful knowledge to improve mass-trapping. Integrated Pest Management Reviews, 6: 237242.CrossRefGoogle Scholar
Gugliuzzo, A., Criscione, G., Siscaro, G., Russo, A., and Tropea Garzia, G. 2019a. First data on the flight activity and distribution of the ambrosia beetle Xylosandrus compactus (Eichhoff) on carob trees in Sicily. EPPO Bulletin, 49: 340351.CrossRefGoogle Scholar
Gugliuzzo, A., Criscione, G., and Tropea Garzia, G. 2019b. Unusual behavior of Xylosandrus compactus (Coleoptera: Scolytinae) on carob trees in a Mediterranean environment. Insects, 10: 82.CrossRefGoogle Scholar
Haack, R.A., Rabaglia, R.J., and Peña, J.E. 2013. Exotic bark and ambrosia beetles in the USA: potential and current invaders. In Potential invasive pests of agricultural crops. Edited by Peña, J.E.. Commonwealth Agricultural Bureaux International, Wallingford, United Kingdom. Pp. 4874.CrossRefGoogle Scholar
Hall, F.R., Ellis, M.A., and Ferree, D.C. 1982. Influence of fireblight and ambrosia beetle on several apple cultivars on M9 and M9 interstems [Erwinia amylovora, Xylosandrus germanus, Ohio]. Research Circular Ohio Agricultural Research and Development Center, 272: 2024.Google Scholar
Hara, A.H. 1977. Biology and rearing of the black twig borer, Xylosandrus compactus (Eichhoff) in Hawaii. M.S. thesis, University of Hawaii at Manoa, Hawaii, United States of America.Google Scholar
Hara, A.H. and Beardsley, J.W. 1979. The biology of the black twig borer, Xylosandrus compactus (Eichhoff), in Hawaii. Proceedings of the Hawaiian Entomological Society, 23: 5570.Google Scholar
Harrington, T.C., McNew, D., Mayers, C., Fraedrich, S.W., and Reed, S.E. 2014. Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus. Mycologia, 106: 835845.CrossRefGoogle ScholarPubMed
Heidenreich, E. 1960. Further observations on Xyleborus germanus. Anzeiger fur Schadlingskunde, 33: 187188.CrossRefGoogle Scholar
Holighaus, G. and Rohlfs, M. 2016. Fungal allelochemicals in insect pest management. Applied Microbiology and Biotechnology, 100: 56815689.CrossRefGoogle ScholarPubMed
Holzinger, R., Sandoval-Soto, L., Rottenberger, S., Crutzen, P.J., and Kesselmeier, J. 2000. Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions. Journal of Geophysical Research: Atmospheres, 105: 2057320579.CrossRefGoogle Scholar
Huber, D.P.W. and Borden, J.H. 2001. Protection of lodgepole pines from mass attack by mountain pine beetle, Dendroctonus ponderosae, with nonhost angiosperm volatiles and verbenone. Entomologia Experimentalis et Applicata, 99: 131141.CrossRefGoogle Scholar
Huber, D.P., Gries, R., Borden, J.H., and Pierce, H.D. 1999. Two pheromones of coniferophagous bark beetles found in the bark of nonhost angiosperms. Journal of Chemical Ecology, 25: 805816.CrossRefGoogle Scholar
Hughes, M.A., Martini, X., Kuhns, E., Colee, J., Mafra-Neto, A., Stelinski, L.L., and Smith, J.A. 2017. Evaluation of repellents for the redbay ambrosia beetle, Xyleborus glabratus, vector of the laurel wilt pathogen. Journal of Applied Entomology, 141: 653664.CrossRefGoogle Scholar
Hulcr, J., Atkinson, T.H., Cognato, A.I., Jordal, B.H., and McKenna, D.D. 2015. Morphology, taxonomy, and phylogenetics of bark beetles. In Bark beetles: biology and ecology of native and invasive species. Edited by Vega, F.E. and Hofstetter, R.W.. Academic Press, New York, United States of America. Pp. 4184.CrossRefGoogle Scholar
Hulcr, J., Mann, R., and Stelinski, L.L. 2011. The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts. Journal of Chemical Ecology, 37: 13741377.CrossRefGoogle ScholarPubMed
Hulcr, J. and Stelinski, L.L. 2017. The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology, 62: 285303.CrossRefGoogle ScholarPubMed
Hunt, D.W.A., Borden, J.H., Lindgren, B.S., and Gries, G. 1989. The role of autoxidation of alpha-pinene in the production of pheromones of Dendroctonus ponderosae (Coleoptera: Scolytidae). Canadian. Journal of Forestry Research, 19: 12751282.CrossRefGoogle Scholar
Inward, D.J. 2020. Three new species of ambrosia beetles established in Great Britain illustrate unresolved risks from imported wood. Journal of Pest Science, 93: 117126.CrossRefGoogle Scholar
Ito, M., Kajimura, H., Hamaguchi, K., Araya, K., and Lakatos, F. 2008. Genetic structure of Japanese populations of an ambrosia beetle, Xylosandrus germanus (Curculionidae: Scolytinae). Entomological Science, 11: 375383.CrossRefGoogle Scholar
Jongedijk, E., Cankar, K., Buchhaupt, M., Schrader, J., Bouwmeester, H., and Beekwilder, J. 2016. Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology, 100: 29272938.CrossRefGoogle ScholarPubMed
Juzwik, J., McDermott-Kubeczko, M., Stewart, T.J., and Ginzel, M.D. 2016. First report of Geosmithia morbida on ambrosia beetles emerged from thousand cankers-diseased Juglans nigra in Ohio. Plant Disease, 100: 1238.CrossRefGoogle Scholar
Kelsey, R.G., Beh, M.M., Shaw, D.C., and Manter, D.K. 2013. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak. Journal of Chemical Ecology, 39: 494506.CrossRefGoogle ScholarPubMed
Kessler, K. Jr. 1974. An apparent symbiosis between Fusarium fungi and ambrosia beetles causes canker on black walnut stems. Plant Disease Reporter, 58: 10441047.Google Scholar
Kimmerer, T.W. and Kozlowski, T.T. 1982. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiology, 69: 840847.CrossRefGoogle ScholarPubMed
Kimmerer, T.W. and MacDonald, R.C. 1987. Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiology, 84: 12041209.CrossRefGoogle Scholar
Kinuura, H. 1995. Symbiotic fungi associated with ambrosia beetles. Japan Agricultural Research Quarterly, 29: 5757.Google Scholar
Kirkendall, L.R., Wrensch, D.L., and Ebbert, M.A. 1993. Ecology and evolution of biased sex ratios in bark and ambrosia beetles. In Evolution and diversity of sex ratio in insects and mites. Edited by Wrensch, D.L. and Ebbert, M.A.. Chapman & Hall, New York, NY, United States of America.Google Scholar
Klimetzek, D., Köhler, J., Vité, J.P., and Kohnle, U. 1986. Dosage response to ethanol mediates host selection by “secondary” bark beetles. Naturwissenschaften, 73: 270272.CrossRefGoogle Scholar
Kohnle, U., Densborn, S., Kölsch, P., Meyer, H., and Francke, W. 1992. E-7-methyl-1,6-ioxaspiro[4.5]decane in the chemical communication of European Scolytidae and Nitidulidae. Journal of Applied Entomology, 114: 187192.CrossRefGoogle Scholar
Kreuzwieser, J., Scheerer, U., and Rennenberg, H. 1999. Metabolic origin of acetaldehyde emitted by poplar (Populus tremula × P. alba) trees. Journal of Experimental Botany, 50: 757765.Google Scholar
Kühnholz, S., Borden, J.H., and Uzunovic, A. 2001. Secondary ambrosia beetles in apparently healthy trees: adaptations, potential causes and suggested research. Integrated Pest Management Reviews, 6: 209219.CrossRefGoogle Scholar
La Spina, S., De Cannière, C., Dekri, A., and Grégoire, J. 2013. Frost increases beech susceptibility to scolytine ambrosia beetles. Agricultural and Forest Entomology, 15: 157167.CrossRefGoogle Scholar
Malacrinò, A., Rassati, D., Schena, L., Mehzabin, R., Battisti, A., and Palmeri, V. 2017. Fungal communities associated with bark and ambrosia beetles trapped at international harbours. Fungal Ecology, 28: 4452.CrossRefGoogle Scholar
Masuya, H. 2007. Note on the dieback of Cornus florida caused by Xylosandrus compactus. Bulletin of the Forestry and Forest Products Research Institute, 6: 5963.Google Scholar
Mayers, C.G., McNew, D.L., Harrington, T.C., Roeper, R.A., Fraedrich, S.W., Biedermann, P.H., Castrillo, L.A., and Reed, S.E. 2015. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biology, 119: 10751092.CrossRefGoogle ScholarPubMed
Meyer, P. 1992. The snowbells of Korea. Arnoldia, 52: 28.Google Scholar
Millar, J.G., Zhao, C.H., Lanier, G.N., O’Callaghan, D.P., Griggs, M., West, J.R., and Silverstein, R.M. 1986. Components of moribund American elm trees as attractants to elm bark beetles, Hylurgopinus rufipes and Scolytus multistriatus . Journal of Chemical Ecology, 12: 583608.CrossRefGoogle ScholarPubMed
Miller, J.R. and Cowles, R.S. 1990. Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. Journal of Chemical Ecology, 16: 31973212.CrossRefGoogle ScholarPubMed
Miller, D.R., Dodds, K.J., Hoebeke, E.R., Poland, T.M., and Willhite, E.A. 2015. Variation in effects of conophthorin on catches of ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ethanol-baited traps in the United States. Journal of Economic Entomology, 108: 183191.CrossRefGoogle ScholarPubMed
Miller, D.R. and Rabaglia, R.J. 2009. Ethanol and (−)-α-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern U.S. Journal of Chemical Ecology, 35: 435448.CrossRefGoogle Scholar
Montgomery, M.E. and Wargo, P.M. 1983. Ethanol and other host-derived volatiles as attractants to beetles that bore into hardwoods. Journal of Chemical Ecology, 9: 181190.CrossRefGoogle ScholarPubMed
Ngoan, N.D., Wilkinson, R.C., Short, D.E., Moses, C.S., and Mangold, J.R. 1976. Biology of an introduced ambrosia beetle, Xylosandrus compactus, in Florida. Annals of the Entomological Society of America, 69: 872876.CrossRefGoogle Scholar
Normark, B.B., Jordal, B.H., and Farrell, B.D. 1999. Origin of a haplodiploid beetle lineage. Proceedings of the Royal Society of London B: Biological Sciences, 266: 22532259.CrossRefGoogle Scholar
Obenland, D.M., Aung, L.H., Bridges, D.L., and Mackey, B.E. 2003. Volatile emissions of navel oranges as predictors of freeze damage. Journal of Agricultural and Food Chemistry, 51: 33673371.CrossRefGoogle ScholarPubMed
Oliveira, C.M., Flechtmann, C.A., and Frizzas, M.R. 2008. First record of Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae) on soursop, Annona muricata L. (Annonaceae) in Brazil, with a list of host plants. The Coleopterists Bulletin, 62: 4548.CrossRefGoogle Scholar
Oliver, J.B. and Mannion, C.M. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environmental Entomology, 30: 909918.CrossRefGoogle Scholar
Ott, E. 2007. Chemical ecology, fungal interactions, and forest stand correlations of the exotic Asian ambrosia beetle Xylosandrus crassiusculus (Coleoptera: Scolytinae). M.S. thesis. University of Louisiana, Baton Rouge, Louisianna, United States of America.Google Scholar
Peer, K. and Taborsky, M. 2005. Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution, 59: 317323.CrossRefGoogle ScholarPubMed
Pyke, B., Rice, M., Sabine, B., and Zalucki, M.P. 1987. The push-pull strategy-behavioural control of Heliothis. Australian Cotton Grower, 9: 79.Google Scholar
Rabaglia, R.J., Cognato, A.I., Hoebeke, E.R., Johnson, C.W., LaBonte, J.R., Carter, M.E., and Vlach, J.J. 2019. Early detection and rapid response: a 10-year summary of the USDA forest service program of surveillance for non-native bark and ambrosia beetles. American Entomologist, 65: 2942.CrossRefGoogle Scholar
Rabaglia, R.J., Dole, S.A., and Cognato, A.I. 2006. Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of Mexico, with an illustrated key. Annals of the Entomological Society of America, 99: 10341055.CrossRefGoogle Scholar
Ranger, C.M., Biedermann, P.H.W., Phuntumart, V., Beligala, G.U., Ghosh, S., Palmquist, D.E., Mueller, R., Barnett, J., Schultz, P.B., Reding, M.E., and Benz, J.P. 2018. Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. Proceedings of the National Academy of Sciences, 115: 44474452.CrossRefGoogle ScholarPubMed
Ranger, C.M., Gorzlancyk, A., Addesso, K., Oliver, J.B., Reding, M.E., Schultz, P.B., and Held, D. 2014. Conophthorin enhances the electroatennogram and field behavioral response of Xylosandrus germanus (Coleoptera: Curculionidae) to ethanol. Agricultural and Forest Entomology, 16: 327334.CrossRefGoogle Scholar
Ranger, C.M., Reding, M.E., Gandhi, K., Oliver, J., Schultz, P., Cañas, L., and Herms, D. 2011. Species dependent influence of (-)–alpha-pinene on attraction of ambrosia beetles to ethanol-baited traps in nursery agroecosystems. Journal of Economic Entomology, 104: 574579.CrossRefGoogle ScholarPubMed
Ranger, C.M., Reding, M.E., Persad, A.B., and Herms, D.A. 2010. Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles (Coleoptera: Curculionidae, Scolytinae). Agricultural and Forest Entomology, 12: 177185.CrossRefGoogle Scholar
Ranger, C.M., Reding, M.E., Schultz, P.B., and Oliver, J.B. 2012. Ambrosia beetle (Coleoptera: Curculionidae) responses to volatile emissions associated with ethanol-injected Magnolia virginiana L. Environmental Entomology, 41: 636647.CrossRefGoogle Scholar
Ranger, C.M., Reding, M.E., Schultz, P., and Oliver, J. 2013a. Influence of flood-stress on ambrosia beetle (Coleoptera: Curculionidae, Scolytinae) host-selection and implications for their management in a changing climate. Agricultural and Forest Entomology, 15: 5664.CrossRefGoogle Scholar
Ranger, C.M., Reding, M.E., Schultz, P.B., Oliver, J.B., Frank, S.D., Addesso, K.M., Chong, J.H., Sampson, B., Werle, C., Gill, S., and Krause, C. 2016. Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. Journal of Integrated Pest Management, 7: 123.CrossRefGoogle Scholar
Ranger, C.M., Schultz, P.B., Frank, S.D., and Reding, M.E. 2019. Freeze stress of deciduous trees induces attacks by opportunistic ambrosia beetles. Agricultural and Forest Entomology, 21: 168179.CrossRefGoogle Scholar
Ranger, C.M., Schultz, P.B., Frank, S.D., Chong, J.H., and Reding, M.E. 2015a. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLOS ONE, 10: e0131496.CrossRefGoogle ScholarPubMed
Ranger, C.M., Tobin, P.C., and Reding, M.E. 2015b. Ubiquitous volatile compound facilitates efficient host location by a non-native ambrosia beetle. Biological Invasions, 17: 675686.CrossRefGoogle Scholar
Ranger, C.M., Tobin, P.C., Reding, M.E., Bray, A.M., Oliver, J.B., Schultz, P.B., Frank, S.D., and Persad, A.B. 2013b. Interruption of semiochemical-based attraction of ambrosia beetles to ethanol-baited traps and ethanol-injected trap trees by verbenone. Environmental Entomology, 42: 539547.CrossRefGoogle ScholarPubMed
Ranger, C.M., Werle, C.T., Schultz, P.B., Addesso, K.M., Oliver, J.B., and Reding, M.E. 2020. Long-lasting insecticide netting for protecting tree stems from attack by ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). Insects, 11: 8. doi: 10.3390/insects11010008.CrossRefGoogle Scholar
Rassati, D., Contarini, M., Ranger, C.M., Cavaletto, G., Rossini, L., Speranza, S., Faccoli, M., and Marini, L. 2020. Fungal pathogen and ethanol affect host selection and colonization success in ambrosia beetles. Agricultural and Forest Entomology, 22: 19.CrossRefGoogle Scholar
Rassati, D., Faccoli, M., Battisti, A., and Marini, L. 2016a. Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biological Invasions, 18: 28092821.CrossRefGoogle Scholar
Rassati, D., Lieutier, F., and Faccoli, M. 2016b. Alien wood-boring beetles in Mediterranean regions. In Insects and diseases of mediterranean forest systems. Edited by Paine, T.D. and Lieutier, F.. Springer International Publishing, Switzerland. Pp. 293327.CrossRefGoogle Scholar
Reding, M.E., Oliver, J.B., Schultz, P., and Ranger, C.M. 2010. Monitoring flight activity of ambrosia beetles in ornamental nurseries with ethanol-baited traps: influence of trap height on captures. Journal of Environmental Horticulture, 28: 8590.CrossRefGoogle Scholar
Reding, M.E. and Ranger, C.M. 2019. Attraction of invasive ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) to ethanol-treated tree bolts. Journal of Economic Entomology, 113: 321329. doi: 10.1093/jee/toz282.Google Scholar
Reding, M.E., Ranger, C.M., Oliver, J., Schultz, P., Youssef, N., and Bray, A. 2017. Ethanol-injection induces attacks by ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) on a variety of tree species. Agricultural and Forest Entomology, 19: 3441.CrossRefGoogle Scholar
Reding, M.E., Ranger, C.M., Sampson, B.J., Werle, C.T., Oliver, J.B., and Schultz, P.B. 2015. Movement of Xylosandrus germanus (Coleoptera: Curculionidae) ornamental nurseries and surrounding habitats. Journal of Economic Entomology, 108: 19471953.CrossRefGoogle ScholarPubMed
Reding, M.E., Schultz, P.B., Ranger, C.M., and Oliver, J.B. 2011. Optimizing ethanol-baited traps for monitoring damaging ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) in ornamental nurseries. Journal of Economic Entomology, 104: 20172024.CrossRefGoogle Scholar
Reed, S.E., Juzwik, J., English, J.T., and Ginzel, M.D. 2015. Colonization of artificially stressed black walnut trees by ambrosia beetle, bark beetle, and other weevil species (Coleoptera: Curculionidae) in Indiana and Missouri. Environmental Entomology, 44: 14551464.CrossRefGoogle ScholarPubMed
Renwick, J.A.A. 1967. Identification of two oxygenated terpenes from the bark beetles Dendroctonus frontalis and Dendroctonus brevicomis. Contributions from Boyce Thompson Institute, 23: 355360.Google Scholar
Schedl, K.E. 1963. Scolytidae und Platypodidae Afrikans. Band 2. Familie Scolytidae. Revista de Entomologia de Moçambique, 5: 1594.Google Scholar
Soné, K., Mori, T., and Ide, M. 1998. Spatial distribution pattern of attack of the oak borer, Platypus quercivorus (Murayama) (Coleoptera: Platypodidae), and scolytid ambrosia beetles (Coleoptera: Scolytidae) on fresh logs. Journal of Forest Research, 3: 225229.CrossRefGoogle Scholar
Storer, C., Payton, A., McDaniel, S., Jordal, B., and Hulcr, J. 2017. Cryptic genetic variation in an inbreeding and cosmopolitan pest, Xylosandrus crassiusculus, revealed using dd RAD seq. Ecology and Evolution, 7: 1097410986.CrossRefGoogle Scholar
Vannini, A., Contarini, M., Faccoli, M., Valle, M.D., Rodriguez, C.M., Mazzetto, T., Guarneri, D., Vettraino, A.M., and Speranza, S. 2017. First report of the ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations. EPPO Bulletin, 47: 100103.CrossRefGoogle Scholar
VanDerLaan, N. and Ginzel, M. 2013. The capacity of conophthorin to enhance the attraction of two Xylosandrus species (Coleoptera: Curculionidae: Scolytinae) to ethanol and the efficacy of verbenone as a repellent. Agricultural and Forest Entomology, 15: 391397.CrossRefGoogle Scholar
Weber, B.C. and McPherson, J.E. 1983. World list of host plants of Xylosandrus germanus (Blandford) (Coleoptera: Scolytidae). The Coleopterists Bulletin, 37: 114134.Google Scholar
Weber, B.C. and McPherson, J.E. 1984. Attack on black walnut trees by the ambrosia beetle Xylosandrus germanus (Coleoptera: Scolytidae). Forest Science, 30: 864870.Google Scholar
Weber, B.C. and McPherson, J.E. 1985. Relation between attack by Xylosandrus germanus (Coleoptera: Scolytidae) and disease symptoms in black walnut. The Canadian Entomologist, 117: 12751277.CrossRefGoogle Scholar
Werle, C.T., Chong, J.H., Sampson, B.J. Reding, M.E., and Adamczyk, J.J. 2015. Seasonal and spatial dispersal patterns of select ambrosia beetles (Coleoptera: Curculionidae) from forest habitats into production nurseries. Florida Entomologist, 98: 884891.CrossRefGoogle Scholar
Werle, C.T., Ranger, C.M., Schultz, P.B., Reding, M.E., Addesso, K.M., Oliver, J.B., and Sampson, B.J. 2019. Integrating repellent and attractant semiochemicals into a push–pull strategy for ambrosia beetles (Coleoptera: Curculionidae). Journal of Applied Entomology, 143: 333343.CrossRefGoogle Scholar
Zach, P., Topp, W., Kulfan, J., and Simon, M. 2001. Colonization of two alien ambrosia beetles (Coleoptera, Scolytidae) on debarked spruce logs. Biologia (Bratislava), 56: 175181.Google Scholar
Zhang, Q.H., Tolasch, T., Schlyter, F., and Francke, W. 2002. Enantiospecific antennal response of bark beetles to spiroacetal (E)-conophthorin. Journal of Chemical Ecology, 28: 18391852.CrossRefGoogle Scholar
Zhao, T., Ganji, S., Schiebe, C., Bohman, B., Weinstein, P., Krokene, P., Borg-Karlson, A.K., and Unelius, C.R. 2019. Convergent evolution of semiochemicals across kingdoms: bark beetles and their fungal symbionts. The ISME Journal, 13: 15351545.CrossRefGoogle ScholarPubMed