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For the problem of horizontal convection the Nusselt number based on entropy
production is bounded from above by C Ra1/3 as the horizontal convective Rayleigh
number Ra→∞ for some constant C (Siggers et al., J. Fluid Mech., vol. 517, 2004,
pp. 55–70). We re-examine the variational arguments leading to this ‘ultimate regime’
by using the Wentzel–Kramers–Brillouin method to solve the variational problem in
the Ra→∞ limit and exhibiting solutions that achieve the ultimate Ra1/3 scaling. As
expected, the optimizing flows have a boundary layer of thickness ∼Ra−1/3 pressed
against the non-uniformly heated surface; but the variational solutions also have rapid
oscillatory variation with wavelength ∼Ra−1/3 along the wall. As a result of the
exact solution of the variational problem, the constant C is smaller than the previous
estimate by a factor of 2.5 for no-slip and 1.6 for no-stress boundary conditions. This
modest reduction in C indicates that the inequalities used by Siggers et al. (J. Fluid
Mech., vol. 517, 2004, pp. 55–70) are surprisingly accurate.

Key words: ocean circulation, variational methods

1. Introduction
Horizontal convection (HC) is convection generated in a fluid layer by imposing

non-uniform buoyancy along a single horizontal surface (Rossby 1965; Hughes
& Griffiths 2008). Consideration of HC is motivated by the observation that the
ocean is mainly heated and cooled at the sea surface. The oceanographic history
is long and controversial (Sandström 1908; Jeffreys 1925; Munk & Wunsch 1998;
Coman, Griffiths & Hughes 2006; Kuhlbrodt 2008). Horizontal convection can also
be considered as a basic problem in fluid mechanics, particularly as a counterpoint to
the more widely studied problem of Rayleigh–Bénard convection in which the fluid
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layer is heated at the bottom and cooled at the top. In that context HC is interesting
because there is a restrictive bound on the rate of dissipation of kinetic energy and
on net vertical buoyancy flux (Paparella & Young 2002; Scotti & White 2011; Gayen
et al. 2013).

These strands of HC research are entwined because buoyancy (or heat) transport is
a prime index of the strength of the HC, and also of the strength of ocean circulation.
From this perspective, the strong bound on kinetic energy dissipation is of secondary
importance except, perhaps, for its role in limiting the buoyancy transport of HC.

The strength of HC is measured by the Nusselt number Nu. (Notation is defined
in § 2.) The problem of developing bounds on HC Nu was first addressed by Siggers,
Kerswell & Balmforth (2004), SKB hereafter, using the background method of
Doering & Constantin (1996). The main result of SKB is that the HC Nusselt
number, based on entropy production, has the Ra→∞ bound

Nu<CNu Ra1/3, (1.1)

where CNu is a constant and Ra is the HC Rayleigh number. Siggers et al. (2004)
avoided detailed solution of the relevant variational problem and instead expeditiously
obtained (1.1) via relatively simple inequalities, such as those developed here in
appendix A. Winters & Young (2009) obtained the upper bound (1.1) using a
different set of inequalities due to Howard (1972). The approach of Winters & Young
(2009) results in a substantially larger constant CNu than that of SKB.

Siggers et al. (2004) refer to the scaling in (1.1) as the ‘ultimate regime’ of HC;
see also Shishkina, Grossmann & Lohse (2016). The expectation is that at sufficiently
high Ra, HC will achieve the scaling Nu ∼ Ra1/3, and that further increases in Ra
will not change the exponent from 1/3. To better understand the underpinnings of
the hypothetical ultimate regime, in § 4 we exhibit the Ra→∞ solution of a relevant
variational problem and thus find smaller values of the constant CNu. While the
exponent is unchanged from 1/3, the variational solution is of interest because it
may contain clues as to the structure of the Boussinesq flows that might achieve the
ultimate scaling.

2. Formulation of the horizontal convection problem

Consider a Boussinesq fluid with density ρ = ρ0(1− g−1b), where ρ0 is a constant
reference density and b is the ‘buoyancy’. If the fluid is stratified by temperature
variations then b = gα(T − T0) where T0 is a reference temperature and α is the
thermal expansion coefficient. The Boussinesq equations of motion are

Du
Dt
+∇p= bẑ+ ν1u, (2.1)

Db
Dt
= κ1b, (2.2)

∇ · u= 0. (2.3)

The kinematic viscosity is ν, the thermal diffusivity is κ and ∆= ∂2
x + ∂

2
y + ∂

2
z is the

Laplacian.
We suppose the fluid occupies a rectangular domain with depth h, length `x

and width `y; we assume periodicity in the x and y directions. At the bottom surface
(z= 0) and top surface (z= h) the boundary conditions on the velocity u= (u, v, w)
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FIGURE 1. Panel (a) snapshot of stream function and (b) the buoyancy at κt/h2
= 0.6.

This is a no-stress solution with the sinusoidal bs in (2.4); control parameters are Ra=
6.4× 109, Pr = 1, `x/h= 4 and `y = 0. This solution is unsteady and fluctuations in the
attachment point of the plume to the upper surface z = h break the midpoint symmetry
of the circulation. The black contour in (b) is b=−0.75b?, which is close to the bottom
buoyancy, defined as the (x, t)-average of b at z= 0.

are w= 0 and for the viscous boundary condition either no-slip, u= v= 0, or no-stress,
uz = vz = 0. At z= 0 the buoyancy boundary condition is no-flux, κbz = 0 and at the
top, z= h, the boundary condition is b= bs(x), where the top surface buoyancy bs is
a prescribed function of x. As an illustrative surface buoyancy field we use

bs(x)= b? cos kx, (2.4)

where k def
= 2π/`x. This choice is convenient for the analytic work in later sections.

Figure 1 shows a two-dimensional solution (`y = 0) illustrating the formation of the
buoyancy boundary layer adjacent to the non-uniform upper surface. The solution in
figure 1 is unsteady due to vacillation of the plume.

The problem is characterized by four non-dimensional parameters: the Rayleigh and
Prandtl numbers

Ra def
=
`3

xb?
νκ

and Pr def
=
ν

κ
, (2.5a,b)

and the aspect ratios `x/h and `y/h.
In (2.4), the coordinate x is distinguished by the assumption that the imposed

surface buoyancy varies only along the x-axis. Hence the definition of Ra in (2.5)
employs `x. Rosevear, Gayen & Griffiths (2017) have recently considered surface
buoyancy distributions with two-dimensional variation, such as bs ∝ sin2 kx sin2 ky.
Here, however, we confine attention to the most basic version of HC in which
variation of the surface buoyancy bs is only along the x-axis.

We use an overbar to denote an average over x, y and t, taken at any fixed z and
〈〉 to denote a total volume average over x, y, z and t. Using this notation, we recall
some results from Paparella & Young (2002) that are used below.

Horizontally averaging the buoyancy equation (2.2) we obtain the zero-flux
constraint

wb− κ b̄z = 0. (2.6)
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Taking 〈u · (2.1)〉, we obtain the kinetic energy power integral

ε= 〈wb〉, (2.7)

where ε def
= ν〈|∇u|2〉 is the rate of dissipation of kinetic energy and 〈wb〉 is rate of

conversion between potential and kinetic energy.
Vertically integrating (2.6) from z= 0 to h, and setting the reference density ρ0 so

that bs= 0, we obtain another expression for 〈wb〉; substituting this into (2.7) we find

hε=−κ b̄(0), (2.8)
6 κb?. (2.9)

In (2.8), b̄(0) is the (x, y, t)-average of the buoyancy at the bottom z = 0. The
inequality (2.9) follows from the extremum principle for the buoyancy advection-
diffusion equation (2.2) with boundary condition (2.4).

In § 3 the inequality in (2.9) is employed to obtain Ra→∞ bounds on Nu. We have
not been able to obtain an analytic estimate of the difference between −b̄(0) and the
largest value allowed by the extremum principle, namely b?. However, in the example
shown in figure 1, with Ra= 6.4× 109, the bottom buoyancy is b̄(0)≈−0.755b? and
thus the right of inequality (2.9) is approximately 33 % larger than hε. In figure 2 we
show results from a suite of calculations with Pr= 1 and varying Ra. These numerical
results suggest, but do not prove, that as Ra→∞ the ratio b̄(0)/b? approaches a
limiting value that is greater than −1. The solution in figure 1 is in this hypothetical
regime: figure 2 shows that increasing Ra by a factor of ten does not substantially
change b̄(0)/b?. Chiu-Webster, Hinch & Lister (2008) consider very viscous HC, that
is Pr = ∞; their figure 25 shows b̄(0)/b? extrapolated to Ra = ∞. Based on this
numerical result, Chiu-Webster et al. (2008) also conclude that the bottom buoyancy
remains greater than the minimum value found on the upper surface. The main result
from these numerical investigations is that inequality (2.9) entails an overestimate of
hε that in some cases is as large as 30 %.

Young (2010) shows that if the Mach number is zero, then the small divergence
of the exact non-Boussinesq velocity, U, due, for instance, to thermal expansion,
can be diagnosed from within the Boussinesq approximation as ∇ · U ≈ κ1b/g.
Using this result, the energy source on the right of (2.8) can alternatively be written
as h〈−zκ1b〉 = 〈P∇ · U〉, where the total pressure P is well approximated by the
hydrostatic background −ρ0gz; see also the appendix of Wang & Huang (2005). In
other words, the energy source on the right of (2.8) is the conversion of internal
energy into kinetic energy by ‘piston work’ −P dV .

3. Bounds on the horizontal-convective Nusselt number

Siggers et al. (2004) discuss the difficulty of defining the Nusselt number of HC.
We follow Paparella & Young (2002) and SKB by first introducing the diffusive
dissipation of buoyancy variance,

χ
def
= κ〈|∇b|2〉. (3.1)

Then the Nusselt number is
Nu def
=

χ

χdiff
, (3.2)
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FIGURE 2. The ‘instantaneous bottom buoyancy’, defined as an (x, y)-average of
b(x, y, 0, t). This is a suite of five no-stress solutions with the sinusoidal bs in (2.4); all
solutions started with initial buoyancy −0.7b?. Control parameters are Pr = 1, `x/h = 4
and `y = 0 (two-dimensional solutions); the Rayleigh number Ra is indicated in the
legend. These computations were performed with tools developed by the Dedalus
project: a spectral framework for solving partial differential equations (Burns et al. 2019,
www.dedalus-project.org).

where χdiff
def
= κ〈|∇bdiff |

2
〉 is the buoyancy dissipation of the diffusive solution i.e.

κ1bdiff = 0 with bdiff satisfying the same boundary conditions as b.
An advantage in bounding χ for HC is that the elementary bound (2.9) takes

care of the kinetic energy dissipation ε. Bounds on HC are simpler than those
of Rayleigh–Bénard convection because in the Rayleigh–Bénard problem it is
necessary to deal with ε and χ simultaneously (Doering & Constantin 1996; Kerswell
2001). In the HC problem the strategy is to first ignore the momentum equations
(2.1) and obtain a bound on χ considering only the buoyancy equation (2.2) and
incompressibility (2.3). The resulting bound in (3.17) below applies equally to a
passive scalar and contains 〈|∇u|2〉 (but not ν). Dynamical information is then finally
injected by replacing 〈|∇u|2〉 with ε/ν and using (2.9) to bound ε. This approach
identifies the ε-bound in (2.9) as the only dynamical information incorporated into
the χ -bound.

We begin by introducing a ‘comparison function’, c(x), which is any time-inde-
pendent function that satisfies the same boundary conditions as b(x, t): cz(x, y, 0)= 0
and c(x, y, h)= bs(x). Forming 〈c(2.2)〉, we find

χ = κ〈∇b · ∇c〉 − 〈bu · ∇c〉. (3.3)

We use the comparison function

c= bs(x)C(z) and C(z) def
=

coshµz
coshµh

; (3.4a,b)

(Balmforth & Young 2003; Winters & Young 2009). The parameter µ in (3.4) is
later determined to optimize the χ -bound. We consider a general surface buoyancy
bs(x) and specialize to bs = b? cos kx for numerical examples. With a general surface
buoyancy profile we define the buoyancy scale as

b?
def
= max

x
|bs(x)|, (3.5)
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883 A41-6 C. B. Rocha and others

and represent the surface buoyancy as

bs(x)= b?τ(x), (3.6)

where the function τ is dimensionless. Without loss of generality we choose the
Boussinesq reference density ρ0 so that the horizontal average of τ is zero: τ̄ = 0.

As µh→∞ the comparison function (3.4) forms a boundary layer adjacent to the
non-uniform surface at z=h. Thus the integrands on the right-hand side of the identity
(3.3) are localized in the boundary layer at z = h. This observation shows that χ
and Nu can be determined solely by the statistical properties of b and u within the
boundary layer. Thus, at least as far as Nu is concerned, conditions in the bulk of the
flow can be ignored.

We decompose the buoyancy as

b(x, t)= c(x)+ a(x, t), (3.7)

so that a(x, t) has homogeneous boundary conditions: a(x, y, h, t) = 0 and
az(x, y, 0, t)= 0. Substituting the decomposition (3.7) into (3.3) we find

χ = κ〈|∇c|2〉 + κ〈∇a · ∇c〉 − 〈au · ∇c〉. (3.8)

An upper bound on χ follows from (3.8) by noting that there is an η such that∣∣〈au · ∇c〉
∣∣6 η√〈|∇a|2

〉 〈
|∇u|2

〉
. (3.9)

With the family of comparison functions in (3.4), η is a function of µ that is most
precisely determined by solving the variational problem sequestered in § 4. Following
SKB and using Young’s inequality, equation (3.9) implies that∣∣〈au · ∇c〉

∣∣6 1
2η
[
ω−1

〈
|∇a|2

〉
+ω

〈
|∇u|2

〉]
, (3.10)

where ω is any positive number. Substituting inequality (3.10) into the identity (3.8)
one obtains

χ 6 κ〈|∇c|2〉 + κ〈∇a · ∇c〉 +
1
2
ηω−1

〈
|∇a|2

〉
+

1
2
ηω
〈
|∇u|2

〉
, (3.11)

=

(
κ −

1
2
ωκ2

η

)
〈|∇c|2〉 +

1
2
η

ω

〈
|∇a+

κω

η
∇c|2

〉
+

1
2
ηω
〈
|∇u|2

〉
. (3.12)

Judiciously choosing ω= η/κ makes the middle term on the right of (3.12) equal to
χ/2, so that (3.12) collapses to

χ 6 κ
〈
|∇c|2

〉
+
η2

κ

〈
|∇u|2

〉
. (3.13)

The inequality (3.13) is the main tool used to upper-bound Nu in (3.2).
The next step is to determine the dependence of η on the boundary-layer parameter

µ in the limit µ→∞. The result from § 4 is that as µ→∞

η∼K
b?
µ
, (3.14)
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where the non-dimensional factor K depends on the surface-buoyancy shape function
τ(x), the viscous boundary condition, but not the aspect ratio of the domain e.g. for
τ = cos kx see (4.51) and (4.52). We proceed by substituting the µ→∞ asymptotic
result (3.14) into (3.13). Evaluating the first term on the right of (3.13) in the µ→∞
limit we then have an asymptotic inequality

χ .
κb?2τ 2

2h
µ+

K2b?2
〈|∇u|2〉
κµ2

. (3.15)

The best upper bound on χ is obtained by finding the µ that minimizes the right-hand
side of (3.15). This is

µ=

(
4K2
〈|∇u|2〉h
τ 2κ2

)1/3

. (3.16)

The best upper bound is therefore

χ . 3

(
Kτ 2

4

)2/3 (
κ〈|∇u|2〉

h2

)1/3

b?2. (3.17)

The bound in (3.17) follows from the buoyancy equation (2.2) and the incompressi-
bility condition (2.3) – the momentum equation has not been used. Dynamical
information is supplied using inequality (2.9) to bound 〈|∇u|2〉 in (3.17) by κb?/νh,
resulting in

χ . 3

(
Kτ 2

4

)2/3

︸ ︷︷ ︸
def
=Cχ

(
κ2

νh3

)1/3

b?7/3. (3.18)

After normalization by χdiff , (3.18) results in the Ra1/3-bound in (1.1).
Using bs(x) = b? cos kx as an illustration, we express (3.18) in non-dimensional

variables. In this case τ 2 = 1/2 and χdiff = κkb2
? tanh kh/(2h), so that

Nu .
3K2/3

4π︸ ︷︷ ︸
def
=CNu

coth khRa1/3. (3.19)

The aspect ratio, h/`x = kh/(2π), enters the bound only through the normalization
factor χdiff : the constant Cχ in (3.18) does not depend on aspect ratio.

We have four different estimates of the constant K, leading to four different values
for the prefactor CNu in (3.19). The simplest results for CNu follow from the asymptotic
inequalities of SKB,

CSKB
Nu =

3
22/3π7/3

= 0.1307. (3.20)

The analogous result from appendix A is K = 0.3458 in (A 14), so that

C Appendix
Nu = 0.1176. (3.21)
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The values of CNu above are independent of boundary conditions. More precise results
for K are provided by the solution of the variational problem in § 4, culminating in
the exact asymptotic expressions for K in (4.51) and (4.52). These result in

C no slip
Nu = 0.0525 and C no stress

Nu = 0.0808. (3.22a,b)

It is remarkable that the relatively crude estimates in (3.20) and (3.21) are so close
to (3.22).

The bounds in (3.22) are based on the cosh µz comparison function introduced in
(3.6). Further improvements might be possible with other comparison functions, or
perhaps by strengthening the bound on kinetic energy dissipation in (2.9) so that it
agrees more closely with clues provided by the numerical solution of figure 2. The
results from § 4, however, show that such improvements will not alter the exponent
1/3 in (3.19): the 1/3 is a consequence of η∼µ−1 in (3.14), and we now proceed to
show constructively that there are trial functions that achieve η∼µ−1.

4. The variational problem for η
The quantity η, introduced in (3.9), is defined as

η
def
= max

θ,v

|〈θv · ∇c〉|√
〈|∇θ |2〉〈|∇v|2〉

, (4.1)

where the incompressible vector field v satisfies the same homogeneous boundary
conditions as u and the scalar field θ satisfies the same homogeneous boundary
conditions as a in (3.7). The comparison function c(x, z; µ) is defined in (3.4) and
we are interested in the boundary-layer limit µ→∞ corresponding to Ra→∞.

The SKB-type inequalities in appendix A result in

η. 0.3458
b?
µ
, as µ→∞. (4.2)

Appendix A, however, does not exhibit (v, θ) that actually achieve the η ∼ µ−1

scaling suggested by the asymptotic inequality in (4.2), and nor do SKB. Thus it
is possible that η . µ−n with an exponent n that is larger than 1: this would be
consistent with inequality (4.2). One might expect that it would be easy to settle this
question by guessing a ‘trial’ (v, θ) that achieves the scaling η ∼ µ−1 suggested by
(4.2). We found, however, that ‘obvious’ guesses at (θ, v) resulted in µ−2 for no-slip
boundary conditions and µ−3/2 for no-stress. Via (3.17), these alternative asymptotic
inequalities would dramatically lower the 1/3 exponent in (1.1) to 1/5 and 1/4,
respectively. Unfortunately the obvious guesses do not at all resemble the optimal
(v, θ) determined in this section.

(Another way to view the inequalities in appendix A is to say that the optimal
solution determined there is exhibited as a velocity field with u= v= 0 and with b(z)
and w(z) as the functions θ(z) and ω(z) that optimize the functionals in (A 6). The
‘one-dimensional’ velocity field u=ω(z)ẑ does not satisfy the continuity equation (2.3).
In this sense, the inequalities in appendix A do not take full advantage of ∇ · u= 0.)

The main result of this section is to establish the asymptotic equality in (3.14) by
showing that there are (v, θ), with ∇ · v = 0, that actually produce the µ−1 scaling
suggested by (4.2). We also calculate the constant K in (3.14); unlike the constant
0.3485 in (4.2), this K depends on the choice between no-stress and no-slip boundary
conditions and provides the strongest version of the upper bound on χ in (3.13).
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4.1. A variational problem
The straightforward approach to obtaining η in (4.1) is to calculate the maximum of
the right-hand side using variational methods. With this hope, one can reformulate the
problem posed in (4.1) by introducing the constrained functional

E[v, θ ] def
= 〈θv · ∇c〉 − 〈φ∇ · v〉 + 1

2ξ [〈|∇v|2〉 − 1] + 1
2η[〈|∇θ |

2
〉 − 1]. (4.3)

In (4.3) the Lagrange multipliers ξ and η ensure normalization of θ and v, and φ(x)
enforces incompressibility of v.

The Euler–Lagrange equations corresponding to extremization of (4.3) are

δE
δθ
= 0 : v · ∇c= η1θ, (4.4)

δE
δv
= 0 : θ∇c+∇φ = ξ1v, (4.5)

δE
δφ
= 0 : ∇ · v = 0. (4.6)

Note that if (θ, v, φ, ξ, η) is a solution of the Euler–Lagrange equations above then
so is (−θ, v, −φ, −ξ, −η). This transformation flips the sign of 〈θv · ∇c〉. Thus if
(θ, v, φ, ξ, η) is a minimum of E then (−θ, v,−φ,−ξ,−η) is a maximum.

Forming 〈θ (4.4)〉 and 〈v · (4.5)〉 one has

− 〈θv · ∇c〉 = η
〈
|∇θ |2

〉︸ ︷︷ ︸
=1

and − 〈θv · ∇c〉 = ξ
〈
|∇v|2

〉︸ ︷︷ ︸
=1

. (4.7a,b)

The identities (4.7) imply that
ξ = η, (4.8)

and so we can regard the system in (4.4) through to (4.6) as an eigenproblem with
eigenvalue η. We take ξ =η>0 and it follows from (4.7) that we are seeking the most
negative value of 〈θv · ∇c〉, corresponding to the largest positive value of η. In other
words, η in (4.1) is the most positive eigenvalue of the Euler–Lagrange equations (4.4)
through to (4.6), and from the identities in (4.7)

η=−min
∀v,θ

E[v, θ ] =max
∀ v,θ

E[v, θ ]. (4.9)

Thus the Lagrange multiplier η in (4.3) is the same as the η in (3.9) and (4.1).
We begin by considering two-dimensional solutions with a stream function ψ such

as
v = (ψz, 0,−ψx). (4.10)

With this simplification, the Euler–Lagrange equations in (4.4) through to (4.6) reduce
to

cxψz − czψx = η1θ, (4.11)
cxθz − czθx = η∆

2ψ. (4.12)

In terms of ψ and θ , the functional in (4.3) is

E[ψ, θ ] = 〈θJ(c, ψ)〉 + 1
2η
[〈
(1ψ)2

〉
− 1
]
+

1
2η
[〈
|∇θ |2

〉
− 1
]
. (4.13)
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883 A41-10 C. B. Rocha and others

We attempted a numerical assault on (4.11) and (4.12). This failed miserably: we
show below in § 4.5 that as µ → ∞ the numerical solution develops small-scale
oscillations in x with a wavelength ∼µ−1. The solution is also boundary layered in
z. Given the boundary-layer structure of the comparison function c(x, z; µ) in (3.3),
the boundary layer in (ψ, θ) was expected and was built into our numerical solution.
The fast oscillation in x, however, was not anticipated. Consequently the available
x-resolution became inadequate at only moderately large values of µ and it was not
possible to make a reliable estimate of η in the limit µ→∞. But once one is alerted
to the existence of rapid oscillations, the Wentzel–Kramers–Brillouin (WKB) method
is suggested as a means of attacking (4.11) and (4.12). Moreover, with this insight, it
is also easy to manufacture trial functions that produce the asymptotic lower bounds
of the form

K low b?
µ
< η. (4.14)

These trial-function lower bounds are complementary to the upper bound in (4.2)
and show definitively that η is proportional to µ−1 as µ→∞. Moreover, one can
systematically judge the quality of trial functions: the best trial function produces the
largest value of K low. We found that systematic examination of three trial functions
developed the intuition that is required to successfully apply the WKB method to
(4.11) and (4.12). Thus we begin by estimating K low with trial functions.

(As for the miserable failure mentioned above: we applied a Fourier series in x to
(4.11) and (4.12). With the sinusoidal bs in (2.4), symmetry considerations show that
the series has the form

ψ = ψ̂1(z) sin kx+ ψ̂3(z) sin 3kx+ · · · (4.15)

θ = θ̂0(z)+ θ̂2(z) cos 2kx+ θ̂4(z) cos 4kx+ · · · (4.16)

The most efficient approach is to keep N terms in the ψ-series and N + 1 in the
θ -series. The Galerkin method was used to obtain a system of 2N + 1 ordinary
differential equations in z, with analytically determined coefficients. We then solved
the resulting eigenvalue problem for η using Matlab’s bvp5c boundary value solver
(a collocation method). For given µ, increasing N eventually results in satisfactory
convergence of the eigenvalue η. For example, with µ= 10, N = 5 was enough. But
as µ is increased, ever larger values of N are required for convergence, indicating that
the solution is developing ever smaller scales in x. With hindsight, we see that (4.15)
and (4.16) are attempting to represent a large-µ solution such as the example shown
figure 3; this requires N of order 1000. As µ→∞, η ∼ µ−χ and a main goal is to
determine the exponent χ . But the values of µ that were accessible with truncations
of (4.15) and (4.16) were too small to reliably indicate the exponent χ . The result
χ = 1 follows from numerically assisted application of the WKB approximation in
§ 4.5.)

4.2. The first trial function
The first trial function we consider is

ψ1 = aψ eαZZ2 sinµS and θ1 = aθ eαZZ cosµS, (4.17a,b)

where Z def
= µ(z− h) and

S(x) def
= γ

∫ x

0
τ(x′) dx′. (4.18)
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Horizontal convection 883 A41-11

In (4.18), τ is the dimensionless surface buoyancy introduced in (3.6) and the
disposable constants α and γ are selected to maximize E[v, θ]. The amplitudes
aψ and aθ in (4.17) are determined by enforcing the normalization conditions that
〈(1ψ)2〉 = 〈|∇θ |2〉 = 1. The trial function ψ1 in (4.17) satisfies no-slip conditions at
the top surface (corresponding to Z = 0). In the limit hµ→∞ one can safely ignore
the bottom boundary conditions where both the comparison function c(x, z; µ) and
the trial functions are exponentially small.

The non-obvious aspect of the trial function in (4.17) is the rapid oscillation of
cosµS and sinµS in the limit µ→∞. This rapid oscillation of the variational solution
is key to all results in this section.

Now we evaluate the functional E[v1, θ1] using (4.17). We freely use µ→∞ to
evaluate all x-integrals; typical µ→∞ simplifications are

τ(x)2 sin2 µS→ 1
2τ

2, τ (x)4 sin2 µS→ 1
2τ

4, (4.19a,b)

τx(x)2 cos2 µS→ 1
2τ

2
x , τ ′(x) τ (x)2 sinµS cosµS→ 0, (4.20a,b)

where the overbar denotes an x-average. After some calculation we find that the
normalization conditions are

1=
a2
ψµ

3

8αh
(3+ 2r2τ 2 + 3τ 4r4)+

3a2
ψµ

16α3h
r2τ 2

x , (4.21)

1=
a2
θµ

8αh
(1+ τ 2r2), (4.22)

where r def
= γ /α. We drop the final O(µ) term in (4.21) relative to the much larger µ3

term.
After the normalization conditions are applied, the functional is

E[v1, θ1] = 〈θ1ψ1zcx〉︸ ︷︷ ︸
∼µ−2

− 〈θ1ψ1xcz〉︸ ︷︷ ︸
∼µ−1

. (4.23)

Thus, as in the upper bound in (A 5), only the vertical advection by ψ1x is
asymptotically important. The leading-order approximation to the functional is then

E[v1, θ1] =
3τ 2b?µ

h
aψaθγ
(1+ 2α)4

, (4.24)

=
96τ 2b?
µ

r√
(24+ 16τ 2 r2 + 24τ 4 r4)(2+ 2τ 2 r2)

α2

(1+ 2α)4
. (4.25)

The parameters α and r = γ /α are determined so as to maximize E[v1, θ1]. Thus
α = 1/2 for all τ . With τ(x) = cos kx we have τ 2 = 1/2 and τ 4 = 3/8. In this case,
the optimal value of r= γ /α is 1.01819 and

E[v1, θ1] ∼ 0.0676451︸ ︷︷ ︸
def
=Klow

1

b?
µ
. (4.26)

The constant K low
1 is smaller by a factor of approximately 5 than the upper-bound

constant 0.3458 in (4.2).
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4.3. The second trial function

To obtain a larger value of K low we consider a second trial function with the same
horizontal structure as (ψ1, θ1), but with general z-structure

ψ2 =µ
−3/2P(Z) sinµS and θ2 =µ

−1/2T(Z) cosµS. (4.27a,b)

Here S(x) is defined in (4.18). The factors µ−3/2 and µ−1/2 are included so that P and
T are order unity as µ→∞. Using simplifications such as (4.19) and (4.20) one can
evaluate the x-integrals in the functional E[v2, θ2] to obtain

E[v2, θ2] = −
b?τ 2 γ

2hµ

∫ 0

−∞

eZTP dZ +
1
2
η

[
1

2h

∫ 0

−∞

T2
Z + τ

2γ 2T2 dZ − 1
]

+
1
2
ξ

[
1
2h

∫ 0

−∞

P2
ZZ + 2γ 2τ 2 P2

Z + γ
4τ 4 P2 dZ − 1

]
. (4.28)

Setting the variational derivatives with respect to T and P to zero we obtain the
Euler–Lagrange equations. Again one can show that ξ = η and thus we obtain the
eigenproblem

PZZZZ − 2τ 2γ 2PZZ + τ 4γ 4P− λ τ 2γ eZ T = 0, (4.29)

TZZ − τ 2γ 2 T + λ τ 2γ eZ P= 0, (4.30)

where the eigenvalue is λ def
= b?/ηµ= 1/K low

2 .
Solving (4.29) and (4.30) numerically with τ = cos kx and no-slip boundary

conditions, P(0)= PZ(0)= 0, and optimizing using the parameter γ , we find

E[v2, θ2] ∼ 0.070028︸ ︷︷ ︸
def
=Klow

2

b?
µ
. (4.31)

Comparing (4.26) with (4.31), we see that the more elaborate trial function in (4.27)
has increased K low by only 3.4 %.

4.4. The third trial function

The small difference between K low
1 and K low

2 indicates that the simple vertical structure
assumed in (4.17) is already close to optimal for no-slip boundary conditions.
Comparison of P(Z) and T(z) with Z2eZ/2 and ZeZ/2 confirms this expectation (not
shown). This motivates a third trial function in which we use the vertical structure in
(4.17) but admit general structure in x

ψ3 =µ
−3/2Z2eαZ Q(x) and θ3 =µ

−1/2ZeαZ J(x). (4.32a,b)

Evaluating the z-integrals in (4.3), the functional is

E[v3, θ3] =
2b?

µ2h(1+ 2α)4
[
(2+ α)QJτx + 3JQxτ

]
+

3ξ
8αh

[
Q2 +

2
3(αµ)

−2Q2
x + (αµ)

−4Q2
xx

]
+

η

8αh

[
J2 + (αµ)−2J2

x

]
, (4.33)
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x

-0.2
-0.1

0
0.1
0.2

J

0 1 2 3 4 5 6 7

FIGURE 3. Lowest no-slip eigenfunction of the third trial function in (4.32); αµ = 200
and α= 1/2 and the solution uses 1024 points on the interval (0, 2π). The magnitude of
the eigenfunction is arbitrary. The function τ = cos kx is also shown; the rapidly oscillatory
eigenfunction is exponentially small away from the maxima of cos2 kx.

where the overbar denotes an x-average. Setting the variational derivatives with respect
to J and Q to zero produces the Euler–Lagrange equations. Again one can show that
ξ = η so that the Euler–Lagrange equations are

(αµ)−2Jxx − J =
Λ

µ
[3Qxτ + (2+ α)Qτx], (4.34)

(αµ)−4Qxxxx −
2
3
(αµ)−2Qxx +Q=

Λ

3µ
[3(Jτ)x − (2+ α)Jτx], (4.35)

where the eigenvalue is

Λ
def
=

8α2b?
(1+ 2α)4ηµ

=
8α2

(1+ 2α)4K low
3
. (4.36)

4.4.1. The numerical solution
We solve the eigenvalue problem (4.34) and (4.35) with no-slip boundary conditions

and τ = cos kx using a Fourier collocation method. As αµ increases, the lowest
eigenvalue approaches a constant value. Figure 3 shows the lowest eigenfunction
J for αµ = 200 and α = 1/2, associated with the eigenvalue Λ = 1.25609. Again
α = 1/2 is optimal and the lower-bound constant from (4.36) is 1/(8Λ), or

K low
3; 400 = 0.099515. (4.37)

Here Λ=1.25609 is obtained by numerical solution of (4.34) and (4.35) with µ=400.
In (4.46) we use the WKB approximation to obtain the µ→∞ limit of K low

3 , which
is within 0.5 % of the estimate in (4.37). In other words, µ= 400 is effectively ∞.

The recherché eigenfunction at µ = 400 is shown in figure 3: the eigenfunction
is concentrated in regions of width ∼µ−1/2 centred on kx = 0 and kx = π, and
has rapid oscillations with wavelength scaling as µ−1

� µ−1/2. Over the rest of
the range, the eigenfunction is exponentially small. As µ → ∞ the amplitude of
the increasingly concentrated eigenfunction must be also be increased in order to
maintain the normalization. In the limit the oscillations become increasingly violent,
even as the eigenvalue Λ tends to a limiting value, Λ∞. Ultimately the pathological
eigenfunction is loaded only at the points kx= 0 and kx=π where cos2 kx= 1. This
peculiar limiting structure is also characteristic of the WKB solution of (4.11) and
(4.12) (and for those partial differential equations it seems impossible to obtain a
numerical solution with µ sufficiently large to glimpse the limit).
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FIGURE 4. Bicubic (4.44), with cos2 X = 1, as a function of q2 for Λ= 1.2, Λ=Λ∗ =
1.25073 and Λ= 1.3. There are progressively 1, 2 and 3 real roots of the bicubic.

4.4.2. The WKB solution
With τ = cos kx and µ → ∞ we can attack (4.34) and (4.35) using the WKB

approximation. We make some preliminary simplifications by introducing

X def
= kx and ε

def
=

k
µα

. (4.38a,b)

Then (4.34) and (4.35) become

ε2JXX − J = εΛ [3QX cos X − (2+ α)Q sin X], (4.39)
ε4QXXXX −

2
3ε

2QXX +Q= 1
3εΛ[3(J cos X)X + (2+ α)J sin X]. (4.40)

The WKB ansatz is

J = cos
(

E
ε

)
J̃ and Q= sin

(
E
ε

)
Q̃, (4.41a,b)

where E(X) denotes the eikonal function. Substituting (4.41) into (4.39) and (4.40),
and retaining only the leading-order terms, one obtains a 2× 2 set of linear equations

(q2
+ 1) J̃ + 3Λ∞ cos Xq Q̃= 0, (4.42)

Λ∞ cos Xq J̃ + (q4
+

2
3 q2
+ 1) Q̃= 0, (4.43)

where the local wavenumber is q def
= EX and Λ∞ is the µ→ ∞ limiting value of

Λ(µ). The condition for a nontrivial solution (J̃, Q̃) of (4.42) and (4.43) is that the
determinant is zero, or

3q6
+ 5q4

+ (5− 9Λ2
∞

cos2 X)q2
+ 3= 0. (4.44)

In principle, q(X) is determined by solving this bicubic equation. Fortunately, however,
the numerical solution has taught us that Λ∞ is obtained by requiring that (4.44) has a
double root where cos2 X= 1. For Λ<Λ∞, (4.44) has two pure imaginary roots and
four other complex roots: see figure 4. Now any root q with a non-zero imaginary
part produces exponential growth of the WKB solution in (4.41). It is not possible
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to construct a solution of the form (4.41) that decays away from x = 0 and x = π
if all six roots have non-zero imaginary parts. But in figure 4(b), where Λ = Λ∞,
there is a double root of the bicubic, yielding four purely real roots for q. These
four oscillatory solutions can, in principle, be superposed to construct WKB solutions
with the appropriate behaviour. We do not attempt this difficult construction: the main
point is that the µ→∞ eigenfunction is increasingly concentrated in small regions
surrounding the points where cos2 X=1 and Λ∞ is determined by requiring that (4.44)
has a double root for q2 at those same points.

Thus, with cos2 X 7→ 1 in (4.44), we set the discriminant of the bicubic equation to
zero, and so obtain

8748Λ6
∞
− 12555Λ4

∞
− 1440Λ2

∞
− 512= 0, (4.45)

with real solutions Λ∞=±1.25073. To maximize K low
3 we again take α=1/2 in (4.36)

and thus the lower-bound constant produced by the third trial function is

E[v3, θ3] ∼ 0.099942︸ ︷︷ ︸
def
=Klow

3

b?
µ
. (4.46)

K low
3 is larger than K low

1 and K low
2 in (4.26) and (4.31) by approximately 30 %, and is

smaller than the upper-bound constant 0.3458 in (4.2) by a factor of 3.5.

4.5. Solution of the Euler–Lagrange equations in the limit µ→∞
Guided by the WKB solution in the previous section, we stop playing with trial
functions and now aim to solve the full Euler–Lagrange equations in (4.11) and
(4.12) in the limit µ→∞. The WKB ansatz is

ψ =µ−3/2 sin[µE(x)]Ψ (x, Z), θ =µ−1/2 cos[µE(x)]Θ(x, Z), (4.47a,b)

where Z def
=µ(z− h) is the boundary layer coordinate. The eikonal function E depends

only on x, and therefore, for example,

ψx =µ
−1/2q cos(µE) Ψ +µ−3/2 sin(µE) Ψx and ψz =µ

−1/2 sin(µE) ΨZ, (4.48a,b)

where q def
= Ex; the local wavenumber of the WKB solution is µq. Substituting into the

Euler–Lagrange equations (4.11) and (4.12), and retaining only the dominant terms,
we obtain

ΘZZ − q2Θ =−λτqeZΨ , (4.49)
ΨZZZZ − 2q2ΨZZ + q4Ψ =+λτqeZΘ, (4.50)

where the eigenvalue is λ def
= b?/(ηµ).

The x-dependence in (4.49) and (4.50) is parametric through the function τ(x) and
in principle we can solve the system at each value of x to determine q(x). But the
eigenvalue λ cannot depend on x and must be obtained using an approach analogous
to that in the discussion surrounding (4.42) through to (4.46).

To illustrate this solution we solve (4.49) and (4.50) by shooting from Z = 0 with
appropriate boundary conditions (either no-slip or no-stress) and requiring that Ψ ,
Ψ ′ and Θ decay as Z→−∞. This numerical solution produces a relation between
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FIGURE 5. The eigenvalue λ(q)τ obtained by solving (4.49) and (4.50). Solid: no-slip;
dashed: no-stress.

τ(x)λ(q) and q: see figure 5. The counterpart to the double root condition used to
obtain (4.45) is the condition dq/dλ = ∞: this requirement puts us at the nose of
the curves in figure 5. With no-slip boundary conditions, the nose in figure 5 is at
λτ = 9.70404 and q= 0.4040. Setting τ 7→ 1, and noting that K = λ−1, we have

Kno slip
= 0.10305. (4.51)

No-stress boundary conditions put the nose at λτ = 5.0808 and q = 0.1969, and
therefore

Kno stress
= 0.19682. (4.52)

These K values, when substituted into CNu defined in (3.19), result in (3.22).

4.6. The three-dimensional variational problem
The results in (4.51) and (4.52) are obtained by considering the two-dimensional
variational problem. In this section we show that in the limit µ→∞, consideration
of the three-dimensional (3-D) variational problem does not alter (4.51) and (4.52).
The 3-D problem in (4.4) through to (4.6) can also be solved using the WKB ansatz,
which in this case is

(u, v,w, θ, φ)=µ−1/2(U, V, iW, iΘ, ib?Φ)eiµ(E+my). (4.53)

Variables denoted by capitals, U, V , etc., are functions of x and Z =µ(z− h). Again
the eikonal function E depends only on x. The ‘spanwise’ or y-wavenumber is µm
where m is a constant; the factor of µ is included so that the y-wavenumber has the
same scaling as the x-wavenumber q(x)=Ex. To improve the appearance of subsequent
equations, the definition of Φ in (4.53) includes a factor of b?. Substituting into (4.4)
through to (4.6), and retaining only the leading-order terms, one finds

−λqΦ = (∂2
Z − q2

−m2)U, (4.54)
−λmΦ = (∂2

Z − q2
−m2)V, (4.55)

λτeZ W = (∂2
Z − q2

−m2)Θ, (4.56)
λτeZ Θ +ΦZ = (∂

2
Z − q2

−m2)W, (4.57)
qU +mV +WZ = 0, (4.58)
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where λ def
= b?/(µη) is the eigenvalue and τ(x) is the non-dimensional function

introduced in (3.6).
Now we observe that there is a transformation that isotropizes (4.54) through to

(4.58) in the (x, y)-plane: introducing

q̃ def
=

√
q2 +m2 and Ũ def

=
qU +mV√

q2 +m2
(4.59a,b)

we see that (4.54) through to (4.58) is equivalent to the previously solved two-
dimensional problem with an incompressible velocity field corresponding to (Ũ, W).
Thus the construction in figure 5 applies, except that the ordinate is now q̃.

Thus the µ → ∞ solution of the η-variational problem is not unique: any
wavevector (q, m) in the (x, y) plane, with q̃ determined via figure 5, produces
a solution of the variational problem with the K values in (4.51) and (4.52). This
includes the special flow with q = Ex = 0 i.e. a flow in the (y, z)-plane, with no
velocity along the x-axis.

We have checked this conclusion by constructing a trial function analogous to
(ψ1, θ1) in (4.17), except that trial stream function ψ is a function of (y, z). Provided
that the spanwise wavenumber is ∼µ – as assumed in (4.53) – this flow in the
(y, z)-plane achieves the scaling η∼µ−1.

In terms of horizontal convection this conclusion is, perhaps, puzzling: a flow with
u = 0 cannot produce enhanced horizontal transport of buoyancy in the x-direction.
But in considering this puzzle one falls into the trap of ascribing too much physical
significance to the solutions of the variational problem. Hypothetical solutions of the
Boussinesq equations that achieve the Nu∼ Ra1/3 scaling might share some structural
properties with the variational solution without having the degeneracy of the 3-D
variational solutions.

5. Discussion and conclusion
The inequalities developed in appendix A show that as µ → ∞ the variational

constant η in (4.1) is less than the comparison-function boundary-layer thickness, µ−1.
But this asymptotic inequality, η.µ−1, does not eliminate the possibility that η scales
with a higher power of µ. For example, η ∼ µ−2 is consistent with η . µ−1; the
exponent −2 reduces the exponent in the Nusselt number bound (1.1) from 1/3 to 1/5.
The main achievement of this paper is to eliminate that possibility: we show that the
asymptotic inequality η.µ−1 of appendix A is sharp in the sense that η∼µ−1. We do
this by: (i) exhibiting trial functions that achieve η∼µ−1, and (ii) solving the Euler–
Lagrange equations in the limit µ→∞. Both approaches show that incompressible
flows that achieve η ∼ µ−1 do so by oscillating rapidly in the horizontal directions
with wavelength ∼µ−1.

The solution of the η-variational problem reduces the constant CNu in (1.1) by
approximately a factor of two from the result of SKB. For example, with the
sinusoidal surface buoyancy in (2.4), and no-slip boundary conditions, our C no slip

Nu in
(3.22) is smaller by a factor of 2.5 than the CSKB

Nu in (3.20). Siggers et al. (2004)
discussed the physical significance of their bound by using ballpark oceanographic
numbers and comparing their bound with the planetary-scale ocean heat flux,
estimated by Munk & Wunsch (1998) to be of order 2× 1015 W. The upper bound
is greater by a factor of approximately 103 and SKB speculate ‘an improvement of
the prefactor . . . might lead to a more telling result’. Thus it is disappointing that
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the arduous solution of the variational problem in § 4 produces an underwhelming
improvement in the bound. The structure of flows that achieve the bound is rather
surprising. As anticipated by SKB and Winters & Young (2009) these flows have a
boundary-layer thickness scaling as µ−1

∼ (νκ/b?)1/3. The additional feature resulting
from the analysis in § 4 is that the boundary-layer stream function must also develop
rolls with a horizontal wavelength ∼(νκ/b?)1/3: the optimal flow is boundary-layered
in z and rapidly oscillatory in x with the same length scale (νκ/b?)1/3 in both
directions. Although the optimal solution has the singular structure indicated in
figure 3, the scaling in (1.1) can also achieved by less pathological flows, such as
the trial function in (4.17).

We are not aware of any numerical or laboratory studies of HC that come close
to achieving the ultimate HC scaling Nu ∼ Ra1/3. Instead, as emphasized by Gayen,
Griffiths & Hughes (2014), all evidence is consistent with the scaling Nu∼Ra1/5, first
obtained by Rossby (1965) with the assumption of a visco-diffusive boundary layer.
At high Ra the numerical solutions in Gayen et al. (2014) show the development of
turbulent three-dimensional flow in the boundary layer and clear violation of the visco-
diffusive balance assumed by Rossby. The onset of boundary-layer turbulence does
produce an enhancement in buoyancy transport. Yet with further increase in Ra, the
turbulent solutions return to the Nu∼Ra1/5 scaling, though with a constant CNu larger
than that in the visco-diffusive Rossby regime.

Of course the Ra’s accessed by the direct numerical simulations of Gayen
et al. (2014) are at most 6 × 1011: further regime changes may occur at higher
Ra. But the tenacity of Nu ∼ Ra1/5, apparently even in the turbulence regime,
suggests that a new approach to bounding HC Nusselt number is required. Recent
progress on Rayleigh–Bénard bounds suggests approaches that might also work for
HC. For example, Whitehead & Doering (2011) show that for two-dimensional
Rayleigh–Bénard convection, with no-stress boundary conditions, Nu is bounded from
above by Ra5/12, which is a significant improvement on well known Ra1/2-bounds
(see also Wen et al. (2015)). Another possibility is that instead of merely using a
projection of the buoyancy equation onto a comparison function – the identity in
(3.8) – better bounds might be achieved by constructing optimal flows that satisfy
the buoyancy equation and transport buoyancy along the wall i.e. the HC analogue
of the optimal wall-to-wall flows of Hassanzadeh, Chini & Doering (2014).
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Appendix A. An upper bound on η

In this appendix we reprise arguments made by SKB and so find an upper bound
on η defined in (4.1). The main difference from SKB is that we use the cosh µz
comparison function defined in (3.4), whereas SKB employed a piecewise linear
comparison function.

For the comparison function in (3.4)

(|cx|, |cz|)6 (k, µ) b?C(z), (A 1)

where C(z) def
= cosh µz/ cosh µh and k is the inverse of the horizontal length scale in

bs(x). The numerator of (4.1) is

|〈θv · ∇c〉|6 |〈θυcx〉| + |〈θωcz〉|, (A 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

85
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.850


Horizontal convection 883 A41-19

where υ is the x-component of v and ω is the z-component. Using (A 1)

|〈θv · ∇c〉| 6 kb?〈|θ ||υ|C〉 +µb?〈|θ ||ω|C〉, (A 3)

6 kb?
√
〈θ 2C〉〈υ2C〉 +µb?

√
〈θ 2C〉〈ω2C〉. (A 4)

With µ→∞ we can drop the first term on the right-hand side of (A 4) and obtain

|〈θv · ∇c〉|.µb?
√
〈θ 2C〉〈ω2C〉, (A 5)

where . denotes an inequality valid in the asymptotic limit µ→∞.
Now introduce two functionals

T [θ ] def
= 〈θ 2C〉/〈|θz|

2
〉 and W[ω] def

= 〈ω2C〉/〈ω2
z 〉. (A 6a,b)

The admissible functions in T [θ ] satisfy the same boundary conditions as a:
θ(x, y, h) = 0 and θz(x, y, 0) = 0. Admissible functions in W[ω] satisfy the same
boundary conditions as w: ω(x, y, 0)=ω(x, y, h)= 0.

We find the maximum values of T and W using variational calculus. For T , the
Euler–Lagrange equation is

θzz + λT eµ(z−h)θ = 0, (A 7)

where we have used the hµ→ ∞ approximation C ≈ exp[µ(z − h)]; the smallest
eigenvalue λT in (A 7) is

λT = 1/Tmax. (A 8)

The differential equation in (A 7) is solved in terms of Bessel functions

θ =Y0

(
2
√
λT
µ

)
J0

(
2
√
λT
µ

eµ(z−h)/2
)
− J0

(
2
√
λT
µ

)
Y0

(
2
√
λT
µ

eµ(z−h)/2
)
. (A 9)

This construction satisfies the boundary condition at z = h. The eigenvalue λT is
obtained by applying the boundary condition θz = 0 at z = 0. With hµ→∞, the
asymptotic solution of this eigencondition is

2
√
λT /µ≈ j0,1, (A 10)

where j0,1 = 2.4048 · · · is the first zero of the Bessel function J0. Thus, with (A 8),
we obtain Tmax in (A 11).

The variational problem for W[ω] differs from that of T [θ ] only because the
bottom boundary condition is ω= 0 (rather than θz= 0). The Euler–Lagrange equation
is the same as (A 7) and the solution again proceeds using Bessel functions. As
hµ→∞ the different bottom boundary conditions have a negligible effect on the
eigenvalues and thus the solution of both variational problems is

Tmax and Wmax ∼

(
2

j0,1µ

)2

, as µh→∞. (A 11)

Using (A 11) to upper bound the terms within the square root on the right of (A 5)
we find

|〈θv · ∇c〉| .
4b?

j2
0,1µ

√
〈ω2

z 〉〈|θz|
2〉, (A 12)
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6
2b?

j2
0,1µ

√
〈|∇v|2〉〈|∇θ |2〉. (A 13)

In passing from (A 12) to (A 13) we have used the inequality 4〈ω2
z 〉 6 〈|∇v|2〉 from

Doering & Constantin (1996). With η defined in (4.1) we have

η.
2

j2
0,1︸︷︷︸

=0.3458

b?
µ
. (A 14)

It turns out that (A 14) leads to a slightly tighter upper bound than the corresponding
result of SKB – see the discussion surrounding (3.20) and (3.21). Thus the cosh µz
comparison function is slightly superior to the piecewise linear comparison function
of SKB.
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