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CALCULUS RULES FOR COMBINATIONS OF
ELLIPSOIDS A N D APPLICATIONS

ALBERTO SEEGER

We derive formulas for the Minkowski sum, the convex hull, the intersection, and
the inverse sum of a finite family of ellipsoids. We show how these formulas can be
used to obtain inner and outer ellipsoidal approximations of a convex polytope.

1. INTRODUCTION

There is a one-to-one correspondence between the set Pn of symmetric positive
semidefinite n x n matrices, and the set of ellipsoids in Rn which are bounded and
centered at the origin. One can consider, for instance, the correspondence

4 6 P . H - . E{A) := {z € Rn: {z, x) < [(*, Ax)]1'2 for all * 6 R"} ,

where (.,.) stands for the usual inner product in Rn. The set E(A) is referred to as
the ellipsoid associated with A € Pn. Note that this set is bounded because its support
function

x e Rn •—» a[x ; E{A)] := sup (z,x) = [(

is finite. The ellipsoid E(A) is centered at 0 € Rn, but it may not contain 0 in its
interior. Since there are matrices in Pn which are singular, the possibility of having
flat ellipsoids is not excluded.

Combinations of two or more ellipsoids appear quite often in applications. For
instance, Hiriart-Urruty and Seeger [1, Corollary 6.2] obtained the bounds

f) E(y2fi(x)) C */(*) C co[ U J5(VV<(*))]
<€/(*) ie/(«)

for the second-order subdifferential &* f{x) of a convex function / of the type

(Each fi : Rn —> R is assumed to be convex and twice differentiable at x 6 Rn, and
I(x) = {» : f(x) = fi(x)} denotes the set of indices which are active at ~x.) As a
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2 A. Seeger [2]

second example we mention that Kurzhanski and Valyi [2] were concerned with a state
estimation problem for dynamic systems under uncertainty, and they needed to estimate
the intersection and the Minkowski sum of a finite number of ellipsoids. Unfortunately,
the estimates announced in [2] were given without proof.

The purpose of this note is to derive, in a unified way, formulas for the Minkowski
sum, the convex hull, the intersection, and the inverse sum of a finite family of ellipsoids.

For convenience we recall first some basic definitions and results. Let {A%,..., Ap}
be a finite collection of matrices in Pn • The series sum of the A'ta is the ordinary sum
Ai + h Ap 6 Pn- The parallel sum of the A^a is the matrix AtD... UAr 6 P»
defined by
(1.1)

x) = +inf {(x1,A1xl) + -- + (xp,Arxp)} for all x G R" .( [ J ] ) > i + B = K { ( ) ( p r p ) }

If the A^s are nonsingular, then it is possible to write the following pair of dual formulas:

For a detailed discussion on the parallel addition of matrices, see for instance Mazure
[3, 4] and references therein. The following result is taken from Seeger [6, Theorem
8.1].

LEMMA 1 . 1 . Let { Ai ,...,AP} be a finite collection of matrices in Pn. Then

+ • • • + Ap) =

E(A1n...OAp)=
A6A

wiere A stands for the elementary simplex in Rp :

A : = { A = ( A 1 , . . . , A P ) G R " : A t + • + A P = 1 and A ^ O / o r a J I t = l , . . . , p } .

The formulas given in Lemma 1.1 are crucial for the understanding of the theorems

stated in the next section. For the sake of completeness in our exposition we need to

record also the following result:

LEMMA 1 . 2 . Let {Ax,..., Ap} be a finite collection of matrices in Pn. Then
the following equality is true

(1.2) E(A1n...UAp)= f|
B\ ,--,Bp

B1+-+Bp=/n
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[3] Combination of ellipsoids 3

Here / „ denotes the nxn identity matrix, and Bf,..., Bp are t i e transposes of the

nx n matrices B\,..., Bp, respectively.

PROOF: Let x € R" be arbitrary. If Xi -\ \-xp = x, then

{x,[Ai\3...n A,]*) < (*i,i4i*i) + • •• + {xP,Apxp) .

If one chooses xi = Bjx, with B\ H \- Bp= In, then one gets

(x, [AiD... D Ap)x) ^ (x, [B1A1B?+-+ BpApB^)x),
and thus

(1.3) E(A! D . . . D A , ) C E(B1A1Bf + ••• + BpApBj) .

This proves of course the inclusion E(Ai O...O Ap) C K, where K is the set on
the right hand side of (1.2). If the A\a are nonsingular, then one can show that the
infimumin (1.1) is attained at

xi=Ar1(A1D...DAp)x for all i = l,...,p.

This implies that the inclusion (1.3) becomes an equality when

Bf = ATl(Ai D . . . D A , ) for all i = l , . . . , p .

Summarising, formula (1.2) holds if the A\s are nonsingular. To cover the singular
case one can use a continuity argument: one applies formula (1.2) to the collection
of nonsingular matrices {A\ + eln,... ,Ap + cln} , where e > 0 is understood as a
perturbation parameter. One gets in this way

E((A1+eIn)D...D(Ap + «/„))

f | EijB^Ay + eIn)B? + ••• + BP(AP + eIn)Bj) .
Bj ,...,BP

Bi+-+ Bp=In

Taking into account that

E ( B 1 ( A 1 + e I n ) B * + ••• + B P { A P + d n ) B j ) D E { B 1 A 1 B j + • • • + B p A p B j ) ,

one obtains E({Ai + e/n)D... n{Ap + eln)) D K .

It suffices now to let e > 0 tend to zero in order to get the reverse inclusion
E( Ai D... D Ap) D K, and the proof is complete. D
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2. CALCULUS RULES FOR COMBINATIONS OF BOUNDED ELLIPSOIDS

Let {Ai,...,Ap} be a finite collection of matrices in Pn. Our first rule concerns
the convex hull of the ellipsoids E(Ai),..., E{Ap).

THEOREM 2 . 1 . (Calculus rule for the convex hull). Tie following equality is
true:

(2.1) co [U E(Ai)\ = (J E{aUi + • • • + apAp).
L»=l J a€A

PROOF: Let K be the set on the right hand side of (2.1). According to Lemma
1.1 one can write

Q6A ASA

Taking into account that

E(aiAi) = y/bTi E(Ai) for all t = 1, . . . ,p ,

one gets K = (J {v^Tv/ST^i) + •• • +

The coefficients aja and AJs play the same role in the above union, so that one
can impose on them the additional constraint

a,- = A; for all i = l , . . . , p .

One gets in this way

(2.2) K = | J {a1£(^1) + • • • + apE{Ap)} .

But this is precisely the convex hull of the sets E(A\),... ,E(Ap) (see Rockafellar

[5, p.80]). D

REMARK 2.1. The convex hull of the ellipsoids E(Ai),.. .,E(AP) admits the alterna-

tive formula

r * ]
U E(Ai) = ( J EicnAi + ••• + apAp) ,

L»=l J a£A+
(2.3) co

a6A+

where C stands for the closure of the set C C Rn, and

A + : = {A = (A 1 , . . . ,A p )eR I > : Ai + •• +Ay = 1 , A,-> 0 for all * = l , . . . , p } .
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Formula (2.3) follows from Theorem 2.1 and the fact that the mapping A € A i—>
E(XiAi -\ 1- APi4p) is continuous with respect to the Hausdorff distance.

The next rule refers to the operation called inverse addition (see Rockafellar [5,
p.21]). Recall that the inverse sum of the ellipsoids E(Ai),..., E(AP) is the set

(2.4) E(A1) ® • • • ® E{AP) := (J {alE{A1)n • • • fl apE(Ap)} .
aEA

THEOREM 2 . 2 . (Calculus rule for the inverse sum). Tie following formula holds:

(2.5) E(Ar) ® • • • ® E{AP) = (J E{a1AlU... UapAp).

PROOF: The proof of equality (2.5) follows the same steps as in the previous
theorem. This time one has to apply, of course, the second formula appearing in Lemma

l.i. D

REMARK 2.2. If a, = 0 for some t e { 1 , . . . , p } , then the parallel sum aiAiD... UapAp

reduces to the zero matrix, and consequently

E(a1A1D...napAp) = {0}.

This means that the union in (2.5) remains unchanged if one replaces A by the smaller
set A + . Thus, one can also write

(2.6) E(A!) ® • • • » £ ( A p ) = | J E(a1A1a...DapAp).
a€A+

We continue now with a rule for estimating the Minkowski sum of the ellipsoids
E(AX),..., E(AP).

THEOREM 2 . 3 . (Calculus rule for the Minkowski sum). One has the formula

(2.7) E{Al) + -- + E(Ap)= f | E ( j - A 1 + .-+±-

PROOF: Suppose first that the matrices A\,...,AP are non-singular. If one applies
Theorem 2.2 to the collection {-4f 1 , . . . , A'1}, one gets

E(A^) ® • • • ® E{A-X) = | J E(aiA^n.
a6A

or equivalently,
1)= (J E(alAZlD

C.6A+
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Now we compute the polar of each set appearing in the above equality. Recall that the
polar C of a set C C Rn is given by

C° :={z 6 R n :(z,x) < 1 f o r aU x&C}.

Applying standard rules for computing polar sets, one gets for the left hand side

[E(AT>) ® • • • <g> E{A?)]° = [E(A^)}° + ••• + [E{A?)}° = E(A1) + • • • + E(AP),

and for the right hand side

E(aiAT1n...napA;1)\ = f| [£(aiAr
1D...Da,A;1)r

€A+ J a6A+

= fl E([a1A:1n...napA;1]-1)
a£A+

= n/(^+-+^)-
Summarising, we have proven that equality (2.7) holds when the matrices Ai,..., Ap

are nonsingular. Consider now the singular case. Let K be the set on the right hand
side of (2.7). According to Lemma 1.1 one can write

Since

for all a £ A + , one has the trivial inclusion K D E(A\) + (- E(Ap) . To prove the

reverse inclusion, we apply formula (2.7) to the nonsingular matrices {Ax +eln, • • •, Ap+
eln}. In this way one gets

E(AX + « / » ) + ••• + E(AP + eln) = C\ E(—(At + eln) + • • • + — (A, + eln)) .
a€A+ r /

But, for all a £ A + , one has

E[—(Ai + eln) + ••• + —{Ap + eln)) D Ei—A^ + ••• + —Ap) .
\ a i ap J V**! ap J

Hence E(AX + eln) + ••• + E{AP + eln) D K.
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To get the desired inclusion, it suffices now to let the parameter e > 0 tend to sero. D

Formula (2.7) has been announced in a slightly different form by Kurzhanski and

Valyi [2, Lemma 4.1]. These authors gave without proof the following result:

(2.8) E{auAi) + •••+ E(aj,;Ap) = f] E{ai + • • • + a,,; A(ir)) ,

where A(ir) := (wi H + irp) ( —Ai -\ 1 Ap 1 .

The notation E(a; A) stands for the ellipsoid associated with A E Pn which is bounded
and centered at o G Rn, that is,

E(a; A) := {z E Rn : (*, x) < (a, x) + [{«, Ax)]1/2 for all x G R n } = a + E(A).

A simple exercise shows that formulas (2.7) and (2.8) are equivalent.

We state finally a rule for estimating the intersection of the ellipsoids E(Ai),...,
E{AP).

THEOREM 2 . 4 . (Calculus rule for the intersection). The following formula holds:

(2.9) E{Ai)n--nE(Ap)= Pi E(—AID...D—AP\ .

PROOF: This theorem can be proven in the same way as the previous one. We
consider first the case in which the matrices A\,..., Ap are nonsingular. Theorem 2.1
applied to the collection {A^1,...,A~l} yields

- U E^)\ = U
or equivalently,

€A+

Now we use the technique of computing the corresponding polar sets. One has on the
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right hand side

|co [ y ^K"1)]} =Q {E(A7i)}° =
» = 1

and on the left hand side

U
a€A+ J <*6A+

= n
agA+

= f| sf—A,n...D —

Finally, we consider the singular case. Let K be the set on the right hand side of (2.9).
Lemma 1.1 yields

One then has the trivial inclusion K D E(A\) D • • • D E(AP) . To prove the reverse
inclusion, we apply formula (2.9) to the collection {Ai + eIn,...,Ap + e/n} . In this
way one gets

E(Ai + eln) D • • • D E(AP + eln) = f] E (— (Ax + eIn)D... D—(Ap + eln)) .
-€A+ V Q l "' J

But, for all a € A+, one has

E(—(A1 + ein)n...n—(A, + £/„)) DE(—A1n...n—Ap) .

Hence E(Ai + eln) D • •• n E(AP + cln) D K

It suffices now to let e > 0 tend to zero. U

Kurzhanski and Valyi [2, Lemma 4.2] gave a different estimate for the intersection
of a finite family of ellipsoids. Their formula reads as follows:
(2.10)

f)E(ai;Ai)= f|
»=1 Bi,...,Bp

-+Bp=/n
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If the ellipsoids are centered at the origin, then (2.10) takes the form

(2.11) f ] E(Ai) = f | {EiBrAtB?) + •••
»=1 Bl , - ,B P

Bl+-+Bp=In

Let us prove briefly that the complicated expression appearing on the right hand side
of (2.11) reduces to the simpler estimate given in Theorem 2.4. If one applies Theorem
2.3 to the collection {BiA^Bf,...,BpApBj}, one obtains

f]E(Ai)= f| f) E(±-

or equivalently

x BP a€A+
B j + - + B p = / B

n
»=1 a6A+ Bt Bp

Bi+-+B p =/»

It suffices now to apply Lemma 1.2 to obtain the formula given in Theorem 2.4.

3. APPLICATION: ELLIPSOIDAL BOUNDS FOR A CONVEX POLYTOPE

Theorems 2.1. and 2.3 can be used to construct inner and outer ellipsoidal approx-
imations of a convex polytope which admits the representation

L(R) := {Lx-.xeR} .

Here L : R n —» Rn is a linear mapping and R stands for the bounded rectangular
box

R= [01,61] x ••• x [on,6n] , with Oj ^ 6; for all t = l , . . . , n .

For notational convenience, L is identified with the corresponding matrix relative
to the canonical basis { e i , . . . , en} of R n , and vectors of Rn are written in the column
form. The rectangular box R admits the expression R = CR + DR , where

corresponds to its centre, and

DR:=[-di,di]x- • • x [ - 4 t , r f n ] , with di := (bi - Oi)/2 for all i = l , . . . , n ,

is a translation of R centered at the origin. The next proposition is a consequence of
the fact that DR can be written as a Minkowski sum of ellipsoids. To see this, observe
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that the closed segment joining an arbitrary vector v 6 R" and its opposite —v is a
flat ellipsoid. Indeed, it is the ellipsoid associated with the rank one matrix vvT, that
is,

co{v, -v} = E(vvT) for all v G Rn .

Thus DR = co{d ie i , -d ie i } H h co{dnen,-d«en}

can be written in the form

(3.1) DR = Eifaef) + ••• + E{?nenel) .

To underline the number of ellipsoids involved in the representation of DR , we use the

notat ion

A + : = { A = ( A 1 , . . . , A n ) e R n : A i + - + A n = l and A< > 0 for all * = l , . . . , n } .

PROPOSITION 3 . 1 . (Outer ellipsoidal approximation). Let ii = Lei denote

the i*h column of L. Then, for each A E A +, one has the upper bound

(3.2) L(R)

If L is invertible, one has more precisely

(3.3) L(R) = LcR + f l E(^Ll

PROOF: Theorem 2.3 applied to the Minkowski sum (3.1) yields

D«= n *>(£<
From this and the equality L(R) = LCR + L(DR) , one deduces that

(3.4) L(R) C LCR + fl L
 ^ ( T ^

 + "'" + xt
A€An

To prove the inclusion (3.2), it suffices now to apply the general formula

L(E(A)) = E(LALT) for all AePn.

K L is invertible, then the inclusion (3.4) becomes an equality.
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[11] Combination of ellipsoids 11

To obtain an inner ellipsoidal approximation of L(R), we write this time

(3.5) DR = co[\J{E{vvT) : v is a vertex of DR}]

as a convex hull of ellipsoids. The 2 n vertices of DR are vectors of the form

(±d1,...,±dn)T. Since E(vvT) = E((-v)(-v)T\ , it suffices to take only half of them

in the representation (3.5) (for instance, all the vertices with the sign + preceding the
first component d\). Theorem 2.1 yields in this case:

PROPOSITION 3 . 2 . (Inner ellipsoidal approximation). Let {vi,...,vp} be a
collection of p = 2 n - 1 vertices of DR. Suppose this collection does not contain two
opposite vertices. Denote the elementary simplex in Rp by Ap, and set ut- := Lvt for
aUi = l p.

Then L(R) = LcR+ \J E^uiuf + ••• + Ap«puJ)
A€Ap

In particular, for each A € Api one has the inner bound

LcR + E(Xiu1u[ + ••• + Ap«,,uJ) C L(R) .

= co\\JE(vivT)\ .

PROOF: Start by applying Theorem 2.1 to the convex hull

p

U
L«=i

The remaining part of the proof is similar to that of Proposition 3.1. The sole difference
is that this time L has to be permuted with a union symbol (instead of an intersection).
This is always possible, even if L is not invertible. D
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