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ON THE ASKEY-WILSON AND ROGERS 
POLYNOMIALS 

MOURAD E. H. ISMAIL AND DENNIS STANTON 

1. Introduction. The g-shifted factorial (a)n or (a; q)n is 

n 

(a)n = (a; q)n: = I T (1 - aqj~x)9 n = oo, 0, 1, 2, . . . , 

and an empty product is interpreted as 1. Recently, Askey and Wilson [6] 
introduced the polynomials 

/ i n t u rx (q~n, abcdqn~\ az, a/z \ 
(1.1) pn(x;a9b9 €,<!) = &[ a b a c a d ; q 9 q } 9 

where 

(1.2) z = x - Vx2 - 1 

and 

0.3) r+A\--\^q,x)=l{f:--{li"^. 
\ bX9...9br ) n=0 ( b x ) n . . . ( b r ) n (q)n 

We shall refer to these polynomials as the Askey-Wilson polynomials or 
the orthogonal 4<f>3 polynomials. They generalize the 6 — j symbols and 
are the most general classical orthogonal polynomials, [2]. The only 
difficult step in proving their orthogonality is the evaluation of the 
Askey-Wilson integral 

(1.4) / = I (a, b9 c, d) 

_ (g)oo fv A (cos 20, \)d0  
2T7 J ° h (cos 0, a)h(cos 0, b)h (cos 0, c)/z(cos 0, J ) ' 

where 

(1.5) /Kcos 6, y) = ( Y A O ( Y ^ ' V 
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1026 M. E. H. ISMAIL AND D. STANTON 

Askey and Wilson [6] used contour integration and a clever elliptic 
function argument to evaluate the integral / . 

In view of the importance of the orthogonal 403 polynomials, it is 
desirable to find as many simple evaluations of the integral / as possible. 
Askey [3] used functional equations to evaluate / . Rahman [15] gave an 
elementary evaluation of the Askey-Wilson integral. Ismail, Stanton and 
Viennot [12] gave a combinatorial evaluation of the integral / . We give a 
new evaluation in Section 2. Our proof uses properties of the continuous 
g-Hermite polynomials {Hn(x\q) } 

oo n 

(1.6) 2 Hn(x\q)— = l/h(x, t), 
«=0 (q)„ 

where h(x, t) is as in (1.5). We also evaluate a contour integral related to 
(1.4). 

The continuous g-Hermite polynomials, as well as the continuous 
g-ultraspherical polynomials {Cfl(x; jS\q) } 

oo 

(1.7) 2 Cn(x; P\q)t" = h(x, &)/h(x, t\ 
w = 0 

were introduced by L. J. Rogers in his memoirs on expansions of certain 
infinite products [18], [19], [20]. Rogers solved the connection coefficient 
problem and computed the coefficients in the linearization of a product of 
two continuous #-ultraspherical polynomials as a sum. He proved 

mAn 

( C„(x\ P\q)Cm(x; P\q) = 2 a(k, m, n)Cm + n_2k(x\ fr\q), 
I k=o 

0-8) J n ^ 
< a(k, m, n) 

(q)m + n-2k(0)m-k(li)n-k(^k(li
2)m + n-k(l - Pqm + "-lk) 

{ (fi2)m + n-2k(q)m-k(g)„-k(q)k(ft^l)m + „-kO - P) 
In particular 

mAn , . , -. 

(1.9) H„(x\q)Hm(x\q) = 2 WmWn H {x\q)t 

*=o iq)m-k(q)n-k(q)k 

holds since 

(1.10) Hn(x\q) = (q)„C„(x; 0\q). 

Rogers used his results to prove the Rogers-Ramanujan identities. He 
realized that {Cn{x\ fi\q) } generalize the ultraspherical polynomials but 
did not investigate their orthogonality. Szegô [23] found the weight 
function of {Hn(x\q) } in 1926. He proved 
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ASKEY-WILSON AND ROGERS POLYNOMIALS 1027 

L 1 1 > llRn (1.11) J 0 fl^cos 0\q)Hm(cos 6\q)h(cos 20, \)d0 = 2m{q)n8mn/(q)00. 

The weight function of {Cn{x\ fi\q) } was not found till the late seventies, 
[4], [5], [6]. The orthogonality relation of {C„(x; fi\q) } is 

/
* /zfcos 20 1Ï 
o u) ^ / ? c« ( c o s ^ ^ ) c ^ c o s »; P\iW = «A,,*> 

Vi. it) h (cos 20, P) 

an = 2*((i1)n((ï)l0/[(\ - WXqUfàooMoo]. 

The purpose of this paper is to investigate the implications of Rogers' 
formulas (1.8) and (1.9) and study the Hn

9s and Q's in some detail. In 
Section 2 we give an evaluation of the Askey-Wilson integral that uses 
(1.9) and Szegô's orthogonality relation (1.11). The idea is to observe that 
the integrand in / is the product of four generating functions of 
continuous g-Hermite polynomials times their weight function. The 
integral is then evaluated via repeated applications of (1.9). This led us to 
consider the integral 

(1.13) J? = ef(a,b,c,d) 

(4)oo(/?2)oo 

2^(^)oo(^)oo 

fw h(cos 0, /3a)h(cos 0, pb)h(cos 0, (lc)h(cos 0, /3d) 

J ° /*(cos 0, a)h(cos 0, b)h(cos 0, c)h(cos 0, d) 

/i(cos2fl, 1) 

A (cos 20, P) 

When /? = 0 the integral ^(a, b, c, d) reduces to the Askey-Wilson integral 
I(a, b c, d). In Section 3 we prove that / i s a positive symmetric 
Hilbert-Schmidt kernel in cos 0 and cos \p when 

a = d exp(2z#), b = c exp(2n//). 

We also prove that the eigenfunctions are {C„(cos 0; fi\q) } and determine 
the corresponding eigenvalues. We also find a Poisson-type kernel for the 
continuous g-ultraspherical polynomials using Rogers' linearization for
mula (1.8). This also leads to a positive symmetric Hilbert-Schmidt kernel 
whose eigenfunctions are {Cn(x; ft\q) } and eigenvalues can be found 
explicitly. 

In Section 4 we study the integral 

n ^A^ rs A ^)OO [« hjcos 20, \)h(cos 0, sp)d0 
(1.14) Kir, s, t): = / n . 

2m J ° /z(cos 0, r)h(cos 0, t)h(cos 0, s) 
This is a variation on the Askey-Wilson integral (1.4) when one of the h's 
in the denominator is moved to the numerator. It turns out that 
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1028 M. E. H. ISMAIL AND D. STANTON 

(1.15) K(r,s,t)= (flUflfloo 2J
rs'f,q,A 

when —1 < /? < 1, |r|, M, |/| e [0, 1). This is a Mellin-Barnes type 
integral representation for a 2^x. The integral AT(r, s, /) can be evaluated in 
certain special cases. This integral representation is due to Nassrallah and 
Rahman [15] but our proof seems to be new. 

Mehler's formula (or the Poisson kernel) for the Hermite polynomials 
is 

- i»mm 
1/2 (1 - f)~UL exp 

xyt - (x2 + y2)t/2\ 

[17, p. 198]. Kibble [13] obtained a multivariate extension of Mehler's 
formula (1.16). Carlitz [8] rediscovered a special case of Kibble's result. 
Carlitz's work led Slepian [22] to derive the full Kibble formula in
dependently. This formula is now known as the "Kibble-Slepian 
formula". Louck [14] used the boson theory to derive the Kibble-
Slepian formula. Foata [10] found a very interesting combinatorial proof 
of the same formula. 

Two special cases of the Kibble-Slepian formula are 

(1.17) 2 Hm+n(a)HJb)Hn(c)-f- = (1 - 4x2 - 4y2yV2 

m,n=o m In! 

4a2(x2 + y2) + 4a(bx + cy) - 4(bx + cy)2} X M "l- ' i* - 4/ 
and 

(1.18) 2 Hm + n+p(a)Hm(b)Hn(c)Hp(d)-f— 
m,n,p = 0 ml flip I 

In [5] Askey and Ismail raised the question of extending the 
Kibble-Slepian formula to the continuous ^-Hermite polynomials. In 
Section 5 we obtain g-analogues of (1.17) and (1.18) and outline a way to 
evaluate more general sums. 

2. The evaluation of the Askey-Wilson integral. The generating function 
(1.6) is 

oo 

(2.1) 2 Hn(cos0\q)t"/(q)n = \/{(tëe)0O{te-'e)0O). 
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ASKEY-WILSON AND ROGERS POLYNOMIALS 1029 

The Poisson kernel of {Hn(x\q) } follows from 

(2.2) 2 Hn(cos 0\q)Hn(cos <j>\q) 

n = 0 (q)n 

(^)oo 

/*(cos(0 + <f>), t)h(cos(0 - <£),/)' 

a #-analogue of Mehler's formula (1.16). Our evaluation of / uses the 
^-binomial theorem 

oo 

(2.3) 2 (A)//(?)B = (A/UWoo. 
n = 0 

The generating function (2.1) and the case X = 0 of (2.3) lead to the 
explicit formula, [5] 

(2.4) //„(cos % ) = 2 ^ — . 
k=o (q)k(q)n-k 

Since it is not well known that (2.2) and (1.9) are equivalent we first show 
that they are. 

PROPOSITION 2.5. The q-Mehler's formula (2.2) is equivalent to the 
linearization formula (1.9). 

Proof. We prove that (1.9) implies (2.2). The steps are reversible. 
Multiply (1.9) by smtn/{q)m(q)n, replace x by cos 0 and sum on m, n ^ 0. 
From (2.1) we obtain 

l °° k + mfk + n 
(2.6) = 2 Hm + n(cos0\q). 

h(cos 0, s)h(cos 0, t) k,m,n=o (q)m(q)n(q)k 

The k-sum is évaluable by (2.3) to l / ^ / ) ^ . Next, replace / by te~1<p, s by 
te1^ and n by / — m. Then (2.4) implies that the right side of (2.6) is 

1 y //;(cos ^^/ / / (cos <f>|#) / 

(' )oo i=o (q)i 

which implies the g-Mehler's formula (2.2). 

We now give our evaluation of the Askey-Wilson integral (1.4). 

PROPOSITION 2.7. When \a\ < 1, \b\ < 1, \c\ < 1, \d\ < 1, the integral I is 
given by 

(abcd)^ 
(2.8) I(a, b, c, d) = 

(ab )00(«c )00(aJ)00(/?c y W U c ^ 
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1030 M. E. H. ISMAIL AND D. STANTON 

Proof. Since the integrand in / involves the product of four continuous 
g-Hermite generating functions, we must find 

(2.9) f(j, l,m,n) 

= ^ / o HAcos %)#/(cos e\q)Hm(cos 0\q) 

X ff„(cos eiqXe218)^-2'6)^. 

Then 

j,i,m,n=o (q)j(q)i(q)m(q)n 

The linearization formula (1.9) implies that the integral of the product of 
three continuous g-Hermite polynomials times their weight function is 
évaluable. We iterate (1.9) to obtain 

(2.11) H^xlqWJxlqW^xlq) 

^ (<l)l(q)m(4)n(<l)m + n-2kHl + 2j(x\q) 

kj (q)m-k(q)n-k(q)k(q)i-j(q)m+n-2k-j(q)j ' 
Clearly (2.11) and (1.11) imply 

/ ( / , m, n, I + m + n — 2p) 

= 2 m + n — 2p 

k (q)m-k(q)n-k(q)k(q)p-k(q)i-p±k(q) 

and (2.10) and (2.9) give 

(2.12) / = 

V (q)m + nab C d 

j,k,l,m,n = 0 (q)m(q)n(q)k(q)(l+m + n-j)/2(qXl+j-m-n)/2(q)(j + m + n-I)/2 

The /c-sum is évaluable to l / ^ c ) ^ , by the g-binomial theorem (2.3). If we 
replace (/, n, j) by (a, /?, y) where 

a = (l + m + n - j)/2, fi = (I + j - m - n)/2, 

y = (j + rn + n — 1)12, 

so that a + ft = I, /? + y = y, a + y = m + n; the /?-sum contributes 
\/{ad)00, hence 

1 V W)« + Ya b C d 

( * O o o M ) o o «,Y,m = 0 (^)m(<?)« + y - m ( ^ ) « ( ^ ) 
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We now replace a + y by p to get 

(2.13) / = 

( ^ U ^ ) o o />=o te^L-o (q)a(q)p-a J L = o (q)m(q)p-m> 

If a = axe~l\ d = axe
[\ b = V ~ ' * c - V * then (2.4) and (2.13) 

yield 

(2.14) 7 = 2 
( f l ^ ^ c o s % ) / / (cos 4>\q) 

P=O {q)p{bc)00{ad)00 

Finally, we obtain the evaluation (2.8) from (2.14) and the g-Mehler 
formula (2.2). This completes the proof. 

We now discuss the cases when the conditions \a\ < 1, \b\ < 1, \c\ < 1 
or \d\ < 1 are violated. In order to do that we first transform the integral 
defining I(a9 b9 c, d) to a contour integral. Since the integrand in I is an 
even function of 0 we obtain 

(2.15) I(a9 b, c, d) 

(q)oo f (z^iz-^z-'dz 
J\z\ = \(c Am J^~l(az)^(a/z)^(bz)^(b/z)^(cz)(^(c/z)00(dz)00(d/z)00 

valid for 

max( \a\9 \b\, \c\, \d\) < 1. 

We now analytically continue the above integral as a function of a. As a 
function of z the integrand in (2.15) has singularities at z = 0, XqJ', X~ lq~J, 
j = 0, 1,. . . , X = a9 b9 c or d. Let 

(2 16) [A = { V : A = °> û ' 6 ' c ' J ' ^ = 0, 1, 2 , . . . }, 
{X~lq~J:\ = a9 b, c9 d,j = 0, 1, 2, . . . }. 

Now assume that a is allowed to vary in 

{a: \a\ < q~k
9 a * q~JJ = 0, 1, . . . , Jfc - 1} 

but b9 c and d are still restricted to 

max(|Z>|, |c|, \d\) < 1. 

Choose a contour C containing the set A in its interior and B in its exterior 
and define 

(2.17) I{(a9b9c9d) 

i to)*, /" (^ur^-'i 
4m •'C (az)00(a/z)00(fe)00(/?/2)00(cz)00(c/z)00(Jz)00(J/z)00' 
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1032 M. E. H. ISMAIL AND D. STANTON 

Clearly, Ix is an analytic continuation of / . The restrictions |ô| < 1, 
\c\ < 1, \d\ < 1 can be similarly removed. Thus, the following proposition 
follows from Proposition 2.7 and analytic continuation of the right-hand 
side of (2.8). This analytic continuation is possible as long as ab, ac, ad, be, 
bd or cd is not of the form q~J,j = 0, 1, 2, . . . . 

PROPOSITION 2.18. Assume that thepairwiseproducts of {a, b, c, d) do not 
belong to the set {qJ:j = 0, — 1, — 2, . . . }. Then 

(2.19) <*>°° f _ ^ U z - y - ' A  
2m Jc {az)J,a/z)JJbz)JJ)/z)J,cz)J^c/z)J^dz)J,d/z)00 

= Ijabcd)^  

(ab )00(ûfc Xa^JJbc ^(bd^cd)^ 

where the contour C is the unit circle with suitable deformations to contain 
the set A in its interior and the set B in its exterior. 

Proposition 2.18 is Theorem 2.1 in [6] but our approach is new. The 
relationship (2.19) can be used to prove the orthogonality relation of 
the 403 orthogonal polynomials when the parameters a, b, c, d are no 
longer restricted to belong to (— 1, 1). The corresponding measure in this 
case has finitely many discrete masses in addition to the absolutely 
continuous component. For details, see [6]. 

3. The kernel ^(a, b, c, d). The explicit formula 

(3.1) C„(cos 0; H\q) = £ &'<&*-'j*-»* 
k=o {q)k(q)n-k 

follows from the generating function (1.7), [5]. The main result of this 
section is 

PROPOSITION 3.2. The kernel f{a, b, c, d) is given by 

(3.3) S(pe>*, ae®, ae'14', pe"'*) 

" V iq)n(fi )n-{pafC„(cos 4>; /%)C„(cos *; ft\q). 
»-oG8)„+1(j8)„ 

when \p\ < 1, \o\ < 1, - 1 < p < 1. 

Proof The proof is very similar to our evaluation of the Askey-Wilson 
integral / ; see Proposition 2.7. We first iterate the linearization formula 
(1.8) to get 

https://doi.org/10.4153/CJM-1988-041-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-041-0


ASKEY-WILSON AND ROGERS POLYNOMIALS 1033 

q(x; /3\q)Cm(x; 0\q)Cn(x; p\q) 

= V (^ )m + n - 2k(P)m ~ k(P)n ~ k(P)k (P)m + n~k 

kj (P )m + n-2k((l)m-k(Cl)n-k((ï)k(fi)m + n+\-k 

. (^™ + n + l-2k-2j(P)l-j(P)m + n-2k-j(P)j(P )l+m + n-2k-j 

(P )l+m + n-2k-2j((l)l-j((l)m + n-2k-j((])j(fi)l + m + n-2k-j+\ 

• (1 - /fcT+"-2*)(l - fiq<+m + n-2k-*)Cl+m+n^v(x; ft\q). 

This, (1.7) and the orthogonality relation (1.12) give 

Aa, b, c, d) - - ( y * % ° / ; 1 C/(cos 0 ; /%) 

• Cm(cos 0; j8|?)Ç,(cos 0; J%) 

F In(cos 20; /?)J A (cos 20; p)\ 
. <•/?-» .(K\.tR1nm + n-lk\.(R1\ (q)m+n-Mm-kW«-kWkUiiqm+n-2k)kWt 

MM* ^)k{q)m-M)n~0)m+n-2k{P<im+n+' _ 2 \ ( 0 ) P + . 

(P)l-JWm+„-2k-PDj(Pqp)/Svn<?d'> 

where / + m + w = p + 2/: + 2/. In the above sum we also have the 
restrictions m ^ k, n ^ k, I ^ j , m + n — 2k ^ j91 + m + n ^ 2k + 2j. 
Now replace m, n and / by m + k, n + k and / + j respectively, then 
replace j by / + m 4- n — p to obtain 

/ ( a , è, c, J ) 

. {"'l + m + n-p i-p m + k n + k p i + m + n 

In the above sum / ^ /? so we now replace pby p + / and let m + n = M. 
This leads to 

(3.4) f(a9 b, c, d) 

= 2 , — —— 2 . b C 2^J M + 1 ,^ , /?C 

P=O (q)p(q)M-p \P<1 > 
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The 2<J>i's are the / and &-sums. This and (3.1) prove (3.3). 

COROLLARY 3.5. When \p\, \a\, |/S| e (0, 1) we have 

(3.6) / ( p e * oë*, ae~^, pe~"t') 

(y8)L(p2)oo(«2)oo 

• 2 {q)n{)l PqH) (poT^cos <J>; P\q)Cn(cos *; P\q) 
«=o (fi )„ 

Proof. We apply the Heine transformation 

sin\ J. la>b \ (aX)oo(b)oo . (x, c/b , \ 
(3-7) 2*J ; q, x = 24>i ; ? , 6 

^ C ' O)oo(0oo l aX j 

to the 2<f>i's in (3.3). After some simplification we obtain (3.6). 

We now investigate the properties of ̂  viewed as a weighted L kernel 
on a square, [25]. We first consider the case |/?| < 1. Clearly 

(3.8) / * Jf(pelf>, oJ+, ae'% pe',ê)Cn(cos 6; p\q)w^cos 6)d0 

= A„C„(cos <$>; fi\q), 

where 

" (i-/9ou?w«)„ w ,+' ' W+l ' 
and w^(cos 0) is the weight function 

Observe the \n > 0 when p, a e (0, 1), - 1 < £ < 1. The Weierstrass 
approximation theorem guarantees the completeness of {C,2(cos 0\ fi\q) } 
in the space 

L\ [0, TT], M^(COS 0)d0). 

Therefore, the kernel 

f(pel6, ael<t>, oe~1*, pe~W) 

will be positive on [0, TT] X [0, 77] if and only if 

/ o / o S^*' a ^ ' ae~^ Pe~~W)Cn(™* 0> P\<l)Cm(cos <f>; P\q) 

- vvg(cos 0)wp(œs 4>)d0d<j) ~ 0 
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for all m, n. The above double integral is obviously a positive multiple of 
Xn8mn, hence is non-negative. 

Recall that when 0 < q < 1, the continuous g-ultraspherical 
polynomials are orthogonal with respect to a positive measure if and 
only if - 1 < P < 1 or 1 < /3 < q~]/2, [4], so the only case left is the 
case 1 < ft < q~l/2. In this case, the continuous g-ultraspherical 
polynomials are orthogonal with respect to the measure 

rx ,m AU Ï h{cos 20' ! ) r i in dx 
(3.10) dtyx) = — — — X [ - l , 1]-

h(cosM,fi" Vl ~ x2 

+ ^'fH^W* ~ Q + 8(x + i) }dx, 
(tf)oo(£ )oo 

where 

/ ^ / ( * ) # ( * ) , q~V2> P> 1, 

(3.11) x = cos0, | = ^(Vy8 + 1/VJB), P > 1, 

[4]. The definition o f / w h e n 1 < fi < q~vl is 

(3.12) f = f(a,b,c,d) 

. (<7)oo(l2)oo 

2irG8Ui8)o 

with 

, Q 1 Q , , , m /z(cos fl, j8g)/i(cos 0, (ib)h(cos 0, Mhjcos 0, fid) 
(3.13) y (cos U) = . 

h (cos 0, a)h (cos 0, b)h (cos 0, c)/z(cos 0, J) 
In other words, the term 

^ ^ ^ [/(I)+/(-£)] 
^ \P)oo 

should be added to the right side of (1.13). Here again, , /wil l be positive if 
and only if Xn > 0. It is clear from (3.9) that X0 > 0. For n > 0 the Heine 
transformation (3.7) enables us to express Xn as a positive multiple of 

which implies the positivity of Xn. 

PROPOSITION 3.14. Let the function ^(a, b, c, d) be defined by (1.13) when 
e ( - 1 , 1) and be given by (3.12) when q~x/1 > /? > 1. Set 

r= l,i/jB €= ( - 1 , l ) , r : = Vfi if 1 < £ < <T1/2, 

tf«d 

https://doi.org/10.4153/CJM-1988-041-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-041-0


1036 M. E. H. ISMAIL AND D. STANTON 

a: = -(r + 1/r). 
2 

Then for q e (0, 1), p, o e (0, r) the kernel 

A?é\ oJ*, ce-'*, pe-'e) 

is positive when x = cos 6, y = cos <f>, x, y e [ — 0 ,0 ] . 77re eigenvalues 
of # are the \n's of (3.9) and the corresponding eigenfunctions are 
{C„{x- P\q) }. 

Proof We need only to show tha t , / has no eigenvalues other than the 
\w 's of (3.9). But this follows from the completeness of {Cn(x; fi\q) } in 
the corresponding L2 space, [25], 

PROPOSITION 3.15. Both Proposition 3.2 and Corollary 3.5 hold when 
P G (1, q~xn) provided that/is given by (3.12) and |p|, \o\ G (0, r). 

The key to the results obtained so far in this section has been the 
linearization formula (1.8). If we multiply (1.8) by smtn and sum over m 
and n then replace s by pe~l* and t by pe1^ we obtain the Poisson type 
kernel 

( / W ^ * > U / ? P ^ 

= 2 T ^ V Q ( c o s 0; P\q)Cn(cos <l>; j B ^ f „+* ; 9 , p2 . 
«=0 (£)„ \pq I 

This identity is also in [7]. Now let K(cos 8, cos <f>) denote the left 
hand side of (3.17). The kernel K(x, y) can be shown to be positive on 
[ — a, a] X [ — a, a] when 0 < p < r. This also leads to an integral 
equation satisfied by the continuous g-ultraspherical polynomials. 

4. An integral representation. Recall that 

(4.1) Cn(x; 0\q) = Hn(x\q)/(q)n. 

Rogers solved the connection coefficient problem for the continuous 
g-ultraspherical polynomials. He proved 

[ V ] l*(Tl~ ' )*(?)„-

*=o (q)k(fiq)„-k(\ - J8) 

(3.16) 

(4-2) c.or. *) - 'f fa''l|"-y'\-^; »». 

which implies 

(4.3) C„(x; y\q) = 2 " A , , W"~kHn_2k(x\q), 
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in the limiting case /? -» 0. The integral K(r, s, t) has the power series 
expansion 

K(r, s,t) = (^ 2 Km^pr
msV, 

^ m,n,p 

f"HJços6\q) gp(cos 0\q) 

It is now clear that evaluating Km is equivalent to finding the coeffi
cients in the linearization of Hm(x\q)Cn(x; P\q) in terms of the continuous 
g-Hermite polynomials since (e2'e)co(e~2'e)00 is the weight function of the 
Hn's. So, we multiply (4.3) by Hm(x\q)/(q)m then use (1.9) to linearize 
the product 

Hm(x\q)Hn_2k(x\q) 

as a sum. The result is 

—— Cn(x; 0\q) 

^^P)kqk»-^2(P)n_kHm + n -2k-2l(x\q)^ 

kj (Q)k(<l)m-M)M)n-lk-j 

This and the orthogonality relation (1.11) imply 

(<?)oo^ y (-P)kqk<k-l)/2(P)n-k ^ 

2TT m'n* kJ (q)k(q)j(q)m-j(q)n-j-2k 

and the sum is over k,j^0 such that 

j + k = (m + n - p)/2J + 2k S n. 

We replace n by n + 2k then let 

m + p — n = 2a, m + « — p = 2y, « -f p — m = 2ô. 

Therefore ra = a + y, « = y + 5, /? = a + S and we obtain 

oo (—R\knk^k~^/2(R\ 

k,a,y,8 = 0 (q)k(l)a(<l)y(<l)8 

The sum over a is l/(r/)00, see (2.3). The above sum becomes 

K(r9s,t)= 2 ^ - 2 ^ ^ - 2 ^ ( 4 
M = O (q)k(q)ô(rt)oo Y = O (<?)Y 
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The y sum is (firsqk + ^/(rs)^, by (2.3). We now set m = k + S, 
hence 

0 (4)m(™)oo('"Ooo k=0 (q)k{q)m-kt
k 

The k sum is 

(4~my>k,„mi 

k=0 (q)k 

which, in view of (2.3), sums to {fis/t)m. Thus, we have 

( ^ ) o o ' "i=o (q)m(/3rs)m 

This proves Proposition 4.4 which was obtained first by Nassrallah and 
Rahman [15]. 

PROPOSITION 4.4. A basic hyper geometric function has the Mellin-Barnes 
type integral representation 

\ Prs I (rsp)^ 

0 < M, \s\, \t\ < 1, where K(r, s9 t) is defined in (1.14). 

Observe that K(ry s, t) is symmetric in r, t but the 2<f>l in (4.5) is not a 
symmetric function of r and *. The application of Heine transformation 
(3.7) yields the following symmetric form of (4.6) 

1rs, st. \ (^)oo(rt)ooCyQoo 

holding for \r\, \s\, \t\, |j8| e [0, 1). This is (1.15). 
We now consider special cases of (1.15) when the 2<t>\ c a n t>e 

evaluated. 

PROPOSITION 4.6. When ft = —q/s2 we have 

(4.7) K(r, s, -r) = ^ f ^ i ^ f ' ^ ^ * M < 1, 0 < k | < 1. 

Proof. When r = — *,/? = —q/s2 the 2<t>\ appearing in (1.15) is actually 
a j(J)0 base g2. Here we need to impose the restriction \s\ > \fq since 
|j8| < 1. Therefore, 

, 1rs, -rs 2\ * [ r2s2
 2 , 2 

2*i^ _q ; ^ - Q / S j = \<t>o[ ; Q > -q/s 
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{~qr\ q1)^ 

S' 
?; q , 
A ^ /oo 

and the integral K(r, s, — r) is 

(~q\ q)co(-q/s2\ q)oo(-qr2; q2)^ 
(™\ )̂oo(~ ;̂ q)oo(-r2\ q)oo(-q^2\ q2)^ 

which can be simplified to the right hand side of (4.7). The restriction 
\s\ > V# c a n be removed by analytic continuation. This completes the 
proof. 

Finally, we consider the special case t = r\[q, fis2 = \fq-

PROPOSITION 4.8. When t = r\[q, fis2 = y # the integral K(r, s, t) is 
given by 

(4 9) Kjr s rVa) - ( ^ « ^ + ^ ' ^ ^ ~ (4.9) K(r,s,ry/q) (qU4/s. ^2^ + (_qU4/s; qU2}J 

\r2q\ < 1, 0 < M < 1. 

Proof. The 2<t>\ on the right hand side of (1.15) gives 

1rs, rsy/q ~2 A V (r/s> " v ^ n „-2«„n/2 

= , « D ( _ ^ _ ; V 5 . * - V / 4 ) 

+ .*D(_^!_; V5.-*"V /4), 
when | / | > q. Formula (4.9) follows from the g-binomial theorem. 
Analytic continuation allows us to weaken the assumption \s \ > q to 
\s\ > 0. 

In Propositions 4.6 and 4.7 we could have used (4.5) and avoided the 
analytic continuation. 

5. Multilinear formulas. In this section, we shall give ^-analogues of the 
multilinear Mehler formulas. For convenience, we consider the poly
nomials 

(5.1) hn(x\q): = 2 
k=0 

-x" 
-k 

which are related to Hn (x\q) via 
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inBh -2i0\ (5.2) Hn(œs 0\q) = em\(e~zw\qy 

The multilinear formulas are (5.14) and (5.15). 
The key observation is that the polynomials hn(a\q) are the moments for 

the Al-Salam-Carhtz [1] polynomials 

(5.3) / : xnd^a(x) = hn(a\q) 

where the step function \pa(x) has jumps 

(5.4) <tya{qK) = 
(<*)oo(i)k(<i/a)t 

-, <tya{aqK) = 
(^^)OQ(q)k(aq)k 

for a < 0 and 0 < q < 1. (We have replaced the normalization constant C 
in [1] and [9] by 1 — a, as in [11].) The orthogonal polynomials Ua

n{x) for 
d\pa(x) have the generating function 

oovt*«-/oo (5.5) 2 1 * 0 - 1 - - <%<?> \xt\ < 1, 
n = 0 

and the orthogonality relation 
/*oo 

(5-6) J ^ Ua
n(x)Ua

m{x)d^a{x) = ( - f l ) V ( " " , ) / 2 ( 9 ) A m -

The analogue of the Askey-Wilson integral for {I/^(JC) } is 

f°° A ^°o(atj)0 
J - o o . , 

(5.7) £ ( / „ t2, t3, t4) 
>j=\ (xtj)o 

-<fya(x). 

We now evaluate (5.7) in two different ways. From the definition (5.4) it is 
clear that 

(5.8) E(tl9 t29 t39 t4) 

|n(^)oo)/(fl)o 
4 

tX9 t2, t3, t4u 

?/û, 0, 0 

+ [{n(^}/(i/a4^'^o!'r/4^-* 
If a < 0 and |?,| < min(l, -\/a), then (5.5) and (5.3) imply that 

(5.9) E(tx, t2, t3, t4) 

oo 4 

2 *Wl+W2+n3+n4(fli?) n ^(^y)oo(^)oo/^v 
«1,n2,»3,«4 = 0 y '=l 

If we let m = Wj 4- n2, n = n3 + n4 and then use (5.1), we obtain the 
trilinear formula 
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f 2 ' 4 (5.10) 2 hm+n(a\q)hm{tx/t2\q)hn{t3/tA\q), , , , 

- A ( V » 2 : O,'O'4; «•#<•>» n <._,)„} 

+ A ( - - ^ - S «,)/{<i/-)„ n(-A 
An appropriate change of variables (see (5.2) ) will make the left side of 
(5.10) a ^-analogue of the left side of (1.17). 

One may ask if it is reasonable for the sum of two 4<J>3 's to replace the 
exponential function in (1.17). We now show that the special case of (5.10) 
which corresponds to Mehler's formula (2.2) does indeed work. If we put 
tx = 0 and then t2 = 0 (5.10) becomes 

oo n 

(5.11) 2 h„(a\9)hH(t3/t4\q)-{-

= 2*i('j/a4; 9, qy{ (flU'aU'^»} 

+ 2*i(a/3â/'4; 9, q\{ ( l / a U a ^ U ^ o o ) 

for a < 0 and \t\ < min(l, —\/a). According to (2.2), this sum of 2<J>i's is 
a quotient of infinite products. A three-term relation for 2<f>i's due to Sears 
[21, Eq. (4.1) ] implies that this sum is 

( ^ ^ 3 ^ 4 ) 0 0 ( ^ ^ ^ 3 ^ ) 0 0 ( ^ 3 ^ 4 ) 0 0 . (t3, at3m q \ 

( ^ 4 ) 0 0 ( ^ ^ 4 ) 0 0 ( ^ / ^ ^ 4 ) 0 0 ( ^ 4 ) 0 0 ( ^ 3 ) 0 0 ( ^ 3 ) 0 0 2 w W ' at3t4! 

Then the g-analogue of Gauss's theorem for a 2<t>\ implies that (5.11) is 

OO fi / \ 

(5.12) 2 hn(a\Q)K(h/tA\q)i\ - . , , , ^ T <t^> 
n = 0 (q)n («^4)00(^4)00(^3)00(^^3)00 

which is equivalent to (2.2). (A combinatorial proof of (5.12) appears in 
[12].) Similarly, Sears [21, Eq. (4.2) ] implies that the right side of (5.10) is 
a sum of three 4^3's. However, we have been unable to show that as q —> 1 
the right side of (1.17) results. 

The argument for the trilinear formula (5.10) works for any number of 
factors (not just four) in (5.7). Put 

(5.i3) H(tx, ...,tk,a) = k*k-(qJi 0; ; ; [\ 0; ?, *)/{(«)«> n (',•)«,} 
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***-' (2 o,'.v at,o> q> <?)/{(i/a)°° n (^)oo}-
Then we find 

(5.14) 2 hmi + _+m(a\q)hm(tx/t2\q) • • • KXhk-\'hk\l) I I 

k tn-}> 
m, + . . . + mk 

m^...,mk 

= H(t{, . . . , t2h a) 

i (q)n 

and 

(5.15) 2 i wi\ + . . . + mk + n 
ml,...,nk 

k 

KXhk-\^2kk)H 
l2- . «2A+1 

^ =1 (?)„. (?)« 

We caution that (5.14) and (5.15) hold for a < 0 and \tt\ < min(l, - l/a)9 

not as formal power series (as (2.2) does). A combinatorial proof of a 
formal power series q-analogue to (1.17) is given in [12]. 

Finally, we mention the ^-analogue of 

oo n 

(5-16) 2 Hn+k(x)- = exp(2xf - t2)Hk(x - 0 , 
n=0 n\ 

which Carlitz used for his derivation of the multilinear formulas. It is 

(5.17) 2 *„+*(*)— = — - — 2 {q)kX (0r 
n = 0 (q)n (*0oo(0oo 7 = 0 (q)j(q)k-j 

Equation (5.17) is equivalent to Mehler's formula (2.2). This can be seen 
by multiplying (5.17) by ull+k/(q)k and summing on k. 

Appendix. Because of the interest in Mehler's formula, we shall indicate 
how to verify that, as q —» 1, the right side of (2.2) approaches the right 
side of (1.16). 

We start with 

(Al) lim Hn(y/T=~ïxn\q)/(\ - q)nl1 = 2~n,1Hn{xl^T). 
<r>\ 

For cos 6 = y/\ — qx/2 and cos <j> = \/\ — qy/2 in (2.2), as q —> 1 
the left side of (2.2) approaches the left side of (1.16). The right side of 
R of (2.2) becomes (after the addition formula for cos(0 -h <j>) and 
cos(0 - <j)) ) 
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(A2) R = (;2U?
2; q2)J JJ 

n=0 
1 + 

1 - 2t2q2n + tAqAn\ 

where 

(A3) b„ = -tqn{\ - q)xy + tlql\\ - q){xl + yl) 

Since 

Pq3n(l - q)xy. 

02U?2; q2)J = (h; «Vc 2 ; q2)^ 
the ^-binomial theorem (2.3) implies 

(A4) l i m ^ Ô ç » (1 - ^ - 1 / 2 

which is the first factor of (1.16). 
For the exponential factor, note that 

(A5) log MI 1 + 
•« = 0 

i "> *2 „ 2n _i A An 

\ — 2t q -r t q 

«=0 \ — It q -Y t q 

Thus, we must find the limit of three terms: 

(A6) ixy(\ - q) 2 
— ~ 1 0 / 2 2« I 4 4« 

w=o \ — It q + t q 
Ty 

oo 2« 

(A7) - / V + / x i - <?) 2 . 2 A , /V„ 
«=0 \ — It q -T t q 

= r, 

and 

(A8) ^ ( 1 - <z) 2 
,3n 

,2 2w i ,4„4« ~~ ^ V 
„=o 1 - 2/V" + *V 

Each of these three items is a g-integral (see [2] ), so if q —> 1 

( A 6 ) ' 7 ' 1 - > t t ^0 1 _ 2 / 2 J ( 2 + ^ 4 

(A7)' T2-^ -t\x2 +y2) f0 
xdx 

1 - 2 / V + t4x4 
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Clearly 

T2 = -t\x2 + y2)/2{\ - t1) and Tx + T3 = xyt/{\ - t1) 

are the arguments of the exponential function in (1.16). 
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