J. Austral. Math. Soc. 73 (2002), 127-153

SOME CLASSES OF PSEUDO-BL ALGEBRAS GEORGE GEORGESCU and LAURENȚIU LEUȘTEAN

(Received 7 August 2000; revised 22 August 2001)

Communicated by B. A. Davey

Abstract

Pseudo-BL algebras are noncommutative generalizations of BL-algebras and they include pseudo-MV algebras, a class of structures that are categorically equivalent to *l*-groups with strong unit. In this paper we characterize directly indecomposable pseudo-BL algebras and we define and study different classes of these structures: local, good, perfect, peculiar, and (strongly) bipartite pseudo-BL algebras.

2000 Mathematics subject classification: primary 06F99, 08A72.

Introduction

BL-algebras are the algebraic structures for Hájek's Basic Logic [14]. The main example of a BL-algebra is the interval [0, 1] endowed with the structure induced by a t-norm. MV-algebras, Gödel algebras and product algebras are the most known classes of BL-algebras. Recent investigations are concerned with noncommutative generalizations for these structures.

In [4, 13], pseudo-BL algebras were defined as noncommutative generalizations of BL-algebras. The main source of examples of pseudo-BL algebras is *l*-group theory. In order to recapture some of the properties of pseudo-BL algebras a notion of pseudo-*t*-norm was introduced in [10]. For the interval [0, 1], this notion induces more general algebras named weak pseudo-BL algebras.

Pseudo-MV algebras were introduced as a noncommutative generalization of MValgebras (see [11, 12]). Dvurecenskij proved in [9] that the category of pseudo-MV algebras is equivalent to the category of l-groups with strong unit. This theorem extends the fundamental result established by Mundici for the commutative case [16].

In [2], Belluce, Di Nola and Lettieri studied local MV-algebras, structures having a unique maximal ideal. An important class of local MV-algebras are perfect MValgebras, which are MV-algebras generated by their radical. The category of perfect

© 2002 Australian Mathematical Society 1446-7887/2000 \$A2.00 + 0.00

MV-algebras is equivalent to the category of abelian *l*-groups [6]. All these results were extended in [15] to pseudo-MV algebras. Following [2], in [19] local BL-algebras were defined and classified.

Bipartite MV-algebras, defined in [7], are another important class of MV-algebras. Bipartite BL-algebras and strongly bipartite BL-algebras were defined in [17]. In [8] bipartite BL-algebras were classified and it was proved that the variety generated by perfect BL-algebras is exactly the variety of strongly bipartite BL-algebras. All these results are parallel to the ones already existing for MV-algebras (see [1, 7]).

In this paper we shall extend some of these results to pseudo-BL algebras. By [5], the congruences of a pseudo-BL algebra are in a bijective correspondence with the normal filters. Then, there are two possibilities to define a concept of *local* pseudo-BL algebra. The first one is to define a local pseudo-BL algebra as being a pseudo-BL algebra with a unique ultrafilter. This paper deals with this approach. Another way is to consider structures having a unique maximal normal filter. For the second case, we obtain the notion of *normal local* pseudo-BL algebra. The investigation of normal local pseudo-BL algebra seems to be a difficult problem, since we do not have a characterization of the normal filter generated by a set of elements.

The paper is divided into four sections. In the first section we recall some facts concerning pseudo-BL algebras and pseudo-MV algebras and we prove some properties used in the sequel. Following [3], we characterize directly indecomposable pseudo-BL algebras. In Section 2 we define and study local pseudo-BL algebras. Many of the results from local MV-algebras [2] and local BL-algebras [19] are extended to local pseudo-BL algebras. In the next section we study good pseudo-BL algebras, an important class of pseudo-BL algebras. We associate with any good pseudo-BL algebra a pseudo-MV algebra in a natural way. In Section 4 we investigate some classes of local pseudo-BL algebras, namely perfect, locally finite and peculiar pseudo-BL algebras. We give a classification of local pseudo-BL algebras are exactly locally finite MV-algebras. In the last section of the paper, following [17] we study (strongly) bipartite pseudo-BL algebras.

1. Definitions and first properties

A pseudo-BL algebra ([4, 13]) is an algebra $\mathbf{A} = (A, \land, \lor, \odot, \rightsquigarrow, \rightarrow, 0, 1)$ with five binary operations $\land, \lor, \odot, \rightsquigarrow, \rightarrow$ and two constants 0, 1 such that:

- (A1) $(A, \land, \lor, 0, 1)$ is a bounded lattice;
- (A2) $(A, \odot, 1)$ is a monoid;
- (A3) $a \odot b \le c$ if and only if $a \le b \rightsquigarrow c$ if and only if $b \le a \rightarrow c$;
- (A4) $a \wedge b = (a \rightsquigarrow b) \odot a = a \odot (a \rightarrow b);$
- (A5) $(a \rightsquigarrow b) \lor (b \rightsquigarrow a) = (a \rightarrow b) \lor (b \rightarrow a) = 1.$

In the sequel, we shall agree that the operations \wedge, \vee, \odot have priority towards the operations \rightsquigarrow , \rightarrow . Sometimes, we shall put parenthesis even if this is not necessary.

It is proved in [4] that commutative pseudo-BL algebras are BL-algebras. For details on BL-algebras see [14, 18]. A pseudo-BL algebra A is nontrivial if and only if $0 \neq 1$. For any pseudo-BL algebra A, the reduct $L(A) = (A, \land, \lor, 0, 1)$ is a bounded distributive lattice. A pseudo-BL chain is a linear pseudo-BL algebra, that is a pseudo-BL algebra such that its lattice order is total.

For any $a \in A$, we define $a^{\sim} = a \rightsquigarrow 0$ and $a^{-} = a \rightarrow 0$. We shall write a^{\approx} instead of $(a^{-})^{-}$ and a^{-} instead of $(a^{-})^{-}$. We denote the set of natural numbers by ω . We define $a^0 = 1$ and $a^n = a^{n-1} \odot a$ for $n \in \omega - \{0\}$. The order of $a \in A$, in symbols ord(a), is the smallest $n \in \omega$ such that $a^n = 0$. If no such n exists, then $\operatorname{ord}(a) = \infty$.

The following properties hold in any pseudo-BL algebra A and will be used in the sequel. See [4] for details.

(1) $(a \odot b) \rightsquigarrow c = a \rightsquigarrow (b \rightsquigarrow c);$ (2) $(b \odot a) \rightarrow c = a \rightarrow (b \rightarrow c);$ (3) a < b if and only if $a \rightsquigarrow b = 1$ if and only if $a \rightarrow b = 1$; (4) $a \leq b$ implies $a \odot c \leq b \odot c$ and $c \odot a \leq c \odot b$; (5) $a \odot b \leq a, b;$ (6) $a \odot b \leq a \wedge b$; (7) $a \odot b = 0$ if and only if $a \le b^{\sim}$ if and only if $b \le a^{-}$; (8) $a \odot 0 = 0 \odot a = 0;$ (9) $a^{\sim} \odot a = a \odot a^{-} = 0;$ (10) $1 \rightsquigarrow a = 1 \rightarrow a = a;$ (11) $a^{\sim} = 1$ if and only if $a^{-} = 1$ if and only if a = 0; (12) $1^{\sim} = 1^{-} = 0;$ (13) $a \leq b$ implies $b^{\sim} \leq a^{\sim}$ and $b^{-} \leq a^{-}$; (14) $a \le a^{-}$ and $a \le a^{-}$; (15) $a \rightsquigarrow b \leq b^{\sim} \rightarrow a^{\sim} \text{ and } a \rightarrow b \leq b^{-} \rightsquigarrow a^{-};$ (16) $a^{--} = a^{-}$ and $a^{--} = a^{-}$; (17) $(a \odot b)^{\sim} = a \rightsquigarrow b^{\sim} \text{ and } (a \odot b)^{-} = b \rightarrow a^{-};$ (18) $(a \lor b)^{\sim} = a^{\sim} \land b^{\sim}$ and $(a \lor b)^{-} = a^{-} \land b^{-}$; (19) $(a \wedge b)^{\sim} = a^{\sim} \vee b^{\sim}$ and $(a \wedge b)^{-} = a^{-} \vee b^{-}$; (20) $a \odot (b \lor c) = (a \odot b) \lor (a \odot c);$ (21) $(b \lor c) \odot a = (b \odot a) \lor (c \odot a);$ (22) $a \lor (b \land c) = (a \lor b) \land (a \lor c).$ Let A be a pseudo-BL algebra. According to [4], a *filter* of A is a nonempty subset F

of A such that for all $a, b \in A$,

- (i) if $a, b \in F$, then $a \odot b \in F$;
- (ii) if $a \in F$ and $a \leq b$, then $b \in F$.

By (6), it is obvious that any filter of A is also a filter of the lattice L(A). A filter F of A is *proper* if $F \neq A$. A proper filter P of A is *prime* if for all $a, b \in A, a \lor b \in P$ implies $a \in P$ or $b \in P$. We shall denote by Spec(A) the set of prime filters of the pseudo-BL algebra A.

A proper filter U of A is an *ultrafilter* (or a *maximal filter*) if it is not contained in any other proper filter. We shall denote by $\mathcal{M}(A)$ the intersection of all ultrafilters of A. Obviously, $\mathcal{M}(A)$ is a proper filter of A.

We recall some properties of filters that will be used in the sequel.

PROPOSITION 1.1 ([4, Theorem 3.25]). Let F be a filter of the pseudo-BL algebra A and let S be a \lor -closed subset of A (that is, if a, b \in S, then a \lor b \in S) such that $F \cap S = \emptyset$. Then there exists a prime filter P of A such that $F \subseteq P$ and $P \cap S = \emptyset$.

PROPOSITION 1.2. Any proper filter of A can be extended to a prime filter.

PROOF. Apply [4, Corollary 3.26].

PROPOSITION 1.3 ([4, Corollary 3.32]). Any ultrafilter of A is a prime filter of A.

PROPOSITION 1.4 ([4, Remark 3.33]). Any proper filter of A can be extended to an ultrafilter.

PROPOSITION 1.5. Let A be a pseudo-BL algebra. The following are equivalent:

(i) A is a pseudo-BL chain;

(ii) any proper filter of A is prime.

LEMMA 1.6. If A is a pseudo-BL algebra, then the sets $A_0^{\sim} = \{a \in A \mid a^{\sim} = 0\}$ and $A_0^{\sim} = \{a \in A \mid a^{\sim} = 0\}$ are proper filters of A.

PROOF. Let us prove that A_0^{\sim} is a proper filter of **A**. By (12), $1 \in A_0^{\sim}$. Let $a, b \in A_0^{\sim}$, that is, $a^{\sim} = b^{\sim} = 0$. By (17), we get that $(a \odot b)^{\sim} = a \rightsquigarrow b^{\sim} = a \rightsquigarrow 0 = a^{\sim} = 0$, hence $a \odot b \in A_0^{\sim}$. Let $a \in A_0^{\sim}$ and $b \in A$ such that $a \leq b$. Then $a^{\sim} = 0$ and, by (13), $b^{\sim} \leq a^{\sim}$, so $b^{\sim} = 0$, that is, $b \in A_0^{\sim}$. Thus, A_0^{\sim} is a filter of **A**. Since, by (11), $0^{\sim} = 1$, it follows that $0 \notin A_0^{\sim}$, hence A_0^{\sim} is proper. Similarly we can show that A_0^{\sim} is a proper filter of **A**.

Let $X \subseteq A$. The filter of A generated by X will be denoted by $\langle X \rangle$. We have that $\langle \emptyset \rangle = \{1\}$ and $\langle X \rangle = \{a \in A \mid x_1 \odot \cdots \odot x_n \le a \text{ for some } n \in \omega - \{0\}$ and some $x_1, \ldots, x_n \in X\}$ if $\emptyset \neq X \subseteq A$. For any $a \in A$, $\langle a \rangle$ denotes the principal filter of A generated by $\{a\}$. Then, $\langle a \rangle = \{b \in A \mid a^n \le b \text{ for some } n \in \omega - \{0\}\}$.

LEMMA 1.7. Let $a, b \in A$. Then

- (i) $\langle a \rangle$ is proper if and only if $\operatorname{ord}(a) = \infty$;
- (ii) if $a \le b$ and $\operatorname{ord}(b) < \infty$, then $\operatorname{ord}(a) < \infty$;
- (iii) if $a \le b$ and $\operatorname{ord}(a) = \infty$, then $\operatorname{ord}(b) = \infty$.

PROOF. (i) $\langle a \rangle$ is proper if and only if $0 \notin \langle a \rangle$ if and only if $a^n \neq 0$ for all $n \in \omega - \{0\}$ if and only if $\operatorname{ord}(a) = \infty$.

(ii), (iii) Applying (4), $a \le b$ implies $a^n \le b^n$ for all $n \in \omega$.

A filter H of A is called *normal* ([5]) if for every $a, b \in A$ we have the equivalence:

(N)
$$a \rightsquigarrow b \in H$$
 if and only if $a \rightarrow b \in H$.

It is easy to see that {1} and A are normal filters of the pseudo-BL algebra A. We remark that if A is a BL-algebra, then $\rightarrow = \rightarrow$, so the notions of filter and normal filter coincide.

For a filter F of A and $a \in A$, let us denote $a \odot F = \{a \odot x \mid x \in F\}$ and $F \odot a = \{x \odot a \mid x \in F\}$.

PROPOSITION 1.8 ([5]). Let H be a a filter of A. The following are equivalent:

- (i) *H* is a normal filter;
- (ii) $a \odot H = H \odot a$ for any $a \in A$.

With any normal filter H of A we can associate a congruence relation \equiv_H on A by defining $a \equiv_H b$ if and only if $(a \rightsquigarrow b) \odot (b \rightsquigarrow a) \in H$ if and only if $(a \rightarrow b) \odot (b \rightarrow a) \in H$.

In [5] it is proved that the map $H \mapsto \equiv_H$ is an isomorphism between the lattice of normal filters of A and the lattice of congruences of A. If we denote by A/H the quotient set A/\equiv_H , then A/H becomes a pseudo-BL algebra A/H with the natural operations induced from those of A.

PROPOSITION 1.9 ([5]). Let H be a normal filter of A. Then A/H is a pseudo-BL chain if and only if H is a prime filter of A.

The following lemma is implicitly contained in [5].

LEMMA 1.10. Let H be a normal filter of A and $a, b \in A$. Then

(i) a/H = 1/H if and only if $a \in H$;

- (ii) a/H = 0/H if and only if $a^{\sim} \in H$ if and only if $a^{-} \in H$;
- (iii) $a/H \leq b/H$ if and only if $a \rightsquigarrow b \in H$ if and only if $a \rightarrow b \in H$.

PROOF. (i) a/H = 1/H if and only if $(a \rightarrow 1) \odot (1 \rightarrow a) \in H$ if and only if $1 \odot (1 \rightarrow a) \in H$ if and only if $a \in H$, since $a \rightarrow 1 = 1$ and $1 \rightarrow a = a$, by (3) and (10).

(ii) a/H = 0/H if and only if $(a \rightsquigarrow 0) \odot (0 \rightsquigarrow a) \in H$ if and only if $a^{\sim} \odot 1 \in H$ if and only if $a^{\sim} \in H$. Applying ((N)), $a^{\sim} \in H$ if and only if $a \rightsquigarrow 0 \in H$ if and only if $a \rightarrow 0 \in H$ if and only if $a^{-} \in H$.

(iii) By (3) and (i), $a/H \le b/H$ if and only if $a/H \rightsquigarrow b/H = 1/H$ if and only if $(a \rightsquigarrow b)/H = 1/H$ if and only if $a \rightsquigarrow b \in H$. By (N), we have that $a \rightsquigarrow b \in H$ if and only if $a \rightarrow b \in H$.

If $h : \mathbf{A} \to \mathbf{B}$ is a homomorphism of pseudo-BL algebras, then the *kernel* of h is the set Ker $(h) = \{a \in A \mid h(a) = 1\}$. For any normal filter H of \mathbf{A} , let us denote by $[]_H$ the natural homomorphism from \mathbf{A} onto \mathbf{A}/H , defined by $[]_H(a) = a/H$ for any $a \in A$. Then $H = \text{Ker}([]_H)$. The following propositions are easily obtained.

PROPOSITION 1.11. Let $h : \mathbf{A} \to \mathbf{B}$ be a homomorphism of pseudo-BL algebras. Then the following properties hold:

(i) for any (normal) filter G of **B**, the set $h^{-1}(G) =_{def} \{a \in A \mid h(a) \in G\}$ is a (normal) filter of **A**. Thus, in particular Ker(h) is a normal filter of **A**.

(ii) h is injective if and only if $\text{Ker}(h) = \{1\}$.

PROPOSITION 1.12. Let \mathbf{A} be a pseudo-BL algebra and H be a normal filter of \mathbf{A} .

(i) The map $F \stackrel{\alpha}{\mapsto} []_{H}(F)$ is an inclusion-preserving bijective correspondence between the filters of **A** containing H and the filters of **A**/H. The inverse map is also inclusion-preserving.

(ii) F is a proper filter of A containing H if and only if $[]_{H}(F)$ is a proper filter of A/H. Hence, there is a bijection between the proper filters of A containing H and the proper filters of A/H.

(iii) There is a bijection between the ultrafilters of A containing H and the ultrafilters of A/H.

Let A be a pseudo-BL algebra and F be a filter of A. We shall use the following notation:

 $F_{\sim}^{*} = \{a \in A \mid a \le x^{\sim} \text{ for some } x \in F\} \text{ and } F_{-}^{*} = \{a \in A \mid a \le x^{-} \text{ for some } x \in F\}.$

REMARK 1.13. Let A be a pseudo-BL algebra. Then

(i) $F_{\sim}^* = \{a \in A \mid a \odot x = 0 \text{ for some } x \in F\};$

(i') $F_{-}^{*} = \{a \in A \mid x \odot a = 0 \text{ for some } x \in F\};$

(ii) $F^*_{\sim} = \{a \in A \mid a^- \in F\};$ (ii') $F_{-}^{*} = \{a \in A \mid a^{\sim} \in F\}.$

PROOF. (i), (i') Apply (7).

(ii) Let $a \in A$. If $a \le x^{\sim}$ for some $x \in F$ then, by (13) and (14), we get that $x \leq x^{--} \leq a^{--}$. Since F is a filter, it follows that $a^{-} \in F$. Conversely, suppose that $a^- \in F$. Then, $a \leq (a^-)^{\sim}$, hence $a \in F_{\sim}^*$.

```
(ii') Similar to (ii).
```

For any pseudo-BL algebra A, B(A) denotes the Boolean algebra of all complemented elements in L(A). Hence, B(A) = B(L(A)).

PROPOSITION 1.14 ([5]). Let A be a pseudo-BL algebra and $e \in A$. The following are equivalent:

- (i) $e \in B(A)$;
- (ii) $e \odot e = e$ and $e = e^{-} = e^{-}$;
- (iii) $e \odot e = e$ and $e^{\sim} \rightsquigarrow e = e$;
- (iii') $e \odot e = e$ and $e^- \rightarrow e = e$;
- (iv) $e \lor e^{\sim} = 1$:
- (iv') $e \lor e^- = 1$.

LEMMA 1.15 ([5]). Let A be a pseudo-BL algebra and $e \in B(A)$. Then

- (i) $\langle e \rangle = \{a \in A \mid e \leq a\};$
- (ii) $e \odot a = e \land a$ for any $a \in A$;
- (iii) $e \lor (a \odot b) = (e \lor a) \odot (e \lor b)$ for any $a, b \in A$;
- (iv) $e^{\sim} = e^{-}$ is the complement of e.

A pseudo-BL algebra A is called *directly indecomposable* if and only if A is nontrivial and whenever $\mathbf{A} \cong \mathbf{A}_1 \times \mathbf{A}_2$ then either \mathbf{A}_1 or \mathbf{A}_2 is trivial. In the sequel, in a similar manner as in [3, Chapter 6.4], we shall give a characterization of directly indecomposable pseudo-BL algebras. Let A be a pseudo-BL algebra. For each $x \in A$, let the functions $\rightsquigarrow_x : A \times A \to A, \rightarrow_x : A \times A \to A$ and $h_x : A \to A$ be defined by $a \rightsquigarrow_x b = x \lor (a \rightsquigarrow b), a \rightarrow_x b = x \lor (a \rightarrow b), and h_x(a) = x \lor a.$

PROPOSITION 1.16. Let A be a pseudo-BL algebra and $e \in B(A)$. Then

- (i) $\langle \mathbf{e} \rangle = (\langle e \rangle, \land, \lor, \odot, \rightsquigarrow_e, \rightarrow_e, e, 1)$ is a pseudo-BL algebra;
- (ii) $h_e(A) = \langle e \rangle$;
- (iii) h_e is a homomorphism of pseudo-BL algebras from A onto $\langle \mathbf{e} \rangle$;
- (iv) Ker $(h_e) = \langle e^- \rangle$;
- (v) $\langle \mathbf{e} \rangle$ is nontrivial if and only if $e \neq 1$;
- (vi) (e) is a subalgebra of A if and only if e = 0 if and only if $\langle e \rangle = A$;

(vii) $B(\langle e \rangle) = \langle e \rangle \cap B(A)$.

PROOF. (i) By Lemma 1.15 (i), we have that $\langle e \rangle = \{a \in A \mid e \leq a\}$. Let us verify the axioms from the definition of a pseudo-BL algebra.

(A1) It follows immediately that $(\langle e \rangle, \land, \lor, e, 1)$ is a bounded lattice.

(A2) Since $\langle e \rangle$ is a filter of A, $\langle e \rangle$ is \odot -closed and, obviously, $(\langle e \rangle, \odot, 1)$ is a monoid.

(A3) Let $a, b, c \ge e$. If $a \odot b \le c$, then $a \le b \rightsquigarrow c \le e \lor (b \rightsquigarrow c) = b \rightsquigarrow_e c$ and $b \le a \rightarrow c \le e \lor (a \rightarrow c) = a \rightarrow_e c$.

Conversely, let us suppose that $a \le b \rightsquigarrow_e c$, that is, $a \le e \lor (b \rightsquigarrow c)$. Applying (4), (21), Lemma 1.15 (ii) and (A4), we get that $a \odot b \le [e \lor (b \rightsquigarrow c)] \odot b = (e \odot b) \lor [(b \rightsquigarrow c) \odot b] = (e \land b) \lor (b \land c) = e \lor (b \land c) = b \land c \le c$.

Now, let us suppose that $b \le a \to_e c$, so $b \le e \lor (a \to c)$. Then, by (4), (20), Lemma 1.15 (ii) and (A4), $a \odot b \le a \odot [e \lor (a \to c)] = (a \odot e) \lor [a \odot (a \to c)] = (a \land e) \lor (a \land c) = e \lor (a \land c) = a \land c \le c$.

(A4) Let $a, b \ge e$. We have that $(a \rightsquigarrow_e b) \odot a = [e \lor (a \rightsquigarrow b)] \odot a = (e \odot a) \lor [(a \rightsquigarrow b) \odot a] = (e \land a) \lor (a \land b) = e \lor (a \land b) = a \land b$ and, similarly, $a \odot (a \rightarrow_e b) = a \odot [e \lor (a \rightarrow b)] = (a \odot e) \lor [a \odot (a \rightarrow b)] = (a \land e) \lor (a \land b) = a \land b$.

(A5) Let $a, b \in A$. By (A5), we get that $(a \rightsquigarrow_e b) \lor (b \rightsquigarrow_e a) = e \lor (a \rightsquigarrow b) \lor e \lor (b \rightsquigarrow a) = e \lor 1 = 1$ and, similarly, $(a \rightarrow_e b) \lor (b \rightarrow_e a) = e \lor (a \rightarrow b) \lor e \lor (b \rightarrow a) = e \lor 1 = 1$. Hence, $(\langle e \rangle, \land, \lor, \odot, \rightsquigarrow_e, \rightarrow_e, e, 1)$ is a pseudo-BL algebra.

(ii) For any $a \in \langle e \rangle$, we have that $h_e(a) = e \lor a = a$. Hence, $\langle e \rangle \subseteq h_e(A)$. The other inclusion is obvious.

(iii) Let $a, b \in A$. It follows immediately that $h_e(a \rightsquigarrow b) = e \lor (a \rightsquigarrow b) = a \rightsquigarrow_e b$, $h_e(a \rightarrow b) = e \lor (a \rightarrow b) = a \rightarrow_e b$, $h_e(0) = 0 \lor e = e$, $h_e(1) = e \lor 1 = 1$, $h_e(a \lor b) = e \lor (a \lor b) = h_e(a) \lor h_e(b)$. By (22), $h_e(a \land b) = e \lor (a \land b) =$ $(e \lor a) \land (e \lor b) = h_e(a) \land h_e(b)$. Applying Lemma 1.15 (iii), we also get that $h_e(a \odot b) = e \lor (a \odot b) = (e \lor a) \odot (e \lor b) = h_e(a) \odot h_e(b)$.

(iv) If $a \in \text{Ker}(h_e)$, then $h_e(a) = a \lor e = 1$, so $e^- = e^- \land (a \lor e) = (e^- \land a) \lor 0 = e^- \land a$. It follows that $a \ge e^-$, hence $a \in \langle e^- \rangle$. Conversely, if $a \ge e^-$, we get that $h_e(a) = e \lor a \ge e \lor e^- = 1$, hence $h_e(a) = 1$, that is, $a \in \text{Ker}(h_e)$.

(v), (vi) They are obvious.

(vii) Let $a \in \langle e \rangle$, that is, $e \leq a$. If $a \in B(\langle e \rangle)$, then there is $b \geq e$ such that $a \wedge b = e$ and $a \vee b = 1$. Taking $c = b \wedge e^{\sim}$, we get that $a \wedge c = 0$ and $a \vee c = a \vee (b \wedge e^{\sim}) = (a \vee b) \wedge (a \vee e^{\sim}) = 1 \wedge (a \vee e^{\sim}) = a \vee e^{\sim} \geq e \vee e^{\sim} = 1$, by (22) and Lemma 1.15 (iv). Conversely, suppose that $a \in B(A)$, hence there is $b \in A$ such that $a \vee b = 1$ and $a \wedge b = 0$. Let $c = e \vee b$. Then $c \geq e$ and $a \vee c = 1$, $a \wedge c = a \wedge (e \vee b) = (a \wedge e) \vee (a \wedge b) = e \vee 0 = e$.

[8]

PROPOSITION 1.17. Let $\{\mathbf{A}_i\}_{i \in I}$ be a nonempty family of pseudo-BL algebras and let $\mathbf{P} = \prod_{i \in I} \mathbf{A}_i$. Then there exists a set $\{\delta_i \mid i \in I\} \subseteq B(P)$ satisfying the following conditions:

- (i) $\wedge_{i \in I} \delta_i = 0;$
- (ii) $\delta_i \vee \delta_i = 1$, whenever $i \neq j$;
- (iii) each \mathbf{A}_i is isomorphic to $\langle \boldsymbol{\delta}_i \rangle$.

PROOF. Similar to the proof of [3, Lemma 6.4.4].

PROPOSITION 1.18. Let A be a pseudo-BL algebra and $e_1, \ldots, e_n \in B(A), n \ge 2$, such that

(i) $e_1 \wedge \cdots \wedge e_n = 0$; and

(ii) $e_i \vee e_j = 1$ for $i \neq j$, i, j = 1, ..., n.

Then $\mathbf{A} \cong \langle \mathbf{e}_1 \rangle \times \cdots \times \langle \mathbf{e}_n \rangle$.

PROOF. Similar to the proof of [3, Lemma 6.4.5].

PROPOSITION 1.19. A pseudo-BL algebra A is directly indecomposable if and only $if B(A) = \{0, 1\}.$

PROOF. Similar to the proof of [3, Theorem 6.4.7].

It follows immediately that

PROPOSITION 1.20. Any pseudo-BL chain is directly indecomposable.

PROOF. Let A be a pseudo-BL chain and $e \in B(A)$. By Proposition 1.14, we get that $e \vee e^{\sim} = 1$. But $e \leq e^{\sim}$ or $e^{\sim} \leq e$, hence e = 1 or $e^{\sim} = 1$. By (11), it follows that $e \in \{0, 1\}$.

In the sequel we shall recall some facts about pseudo-MV algebras, which are noncommutative generalizations of MV-algebras (see [11, 12]). A pseudo-MV algebra is an algebra $(A, \oplus, \bar{}, \sim, 0, 1)$ with one binary operation \oplus , two unary operations $\bar{}, \sim$ and two constants 0, 1 such that:

- (i) $(A, \oplus, 0)$ is a monoid;
- (ii) $a \oplus 1 = 1 \oplus a = a$;
- (iii) $1^{\sim} = 1^{-} = 0;$
- (iv) $(a^- \oplus b^-)^{\sim} = (a^{\sim} \oplus b^{\sim})^-;$
- (v) $a \oplus (a^{\sim} \odot b) = b \oplus (b^{\sim} \odot a) = (a \odot b^{-}) \oplus b = (b \odot a^{-}) \oplus a;$
- (vi) $a \odot (a^- \oplus b) = (a \oplus b^{\sim}) \odot b;$
- (vii) $a^{-\sim} = a$,

where $a \odot b \stackrel{\text{def}}{=} (b^- \oplus a^-)^{\sim}$. Let A be a pseudo-MV algebra. On A one can define an order relation ' \leq ' by

$$a \le b$$
 if and only if $a^- \oplus b = 1$ if and only if $b \oplus a^{\sim} = 1$.

PROPOSITION 1.21 ([11, Proposition 1.13]). Let A be a pseudo-MV algebra. Then (A, \leq) is a lattice in which for all $a, b \in A$,

$$a \lor b = a \oplus (a^{\sim} \odot b) = b \oplus (b^{\sim} \odot a) = (a \odot b^{-}) \oplus b = (b \odot a^{-}) \oplus a \quad and$$
$$a \land b = (a \oplus b^{\sim}) \odot b = (b \oplus a^{\sim}) \odot a = a \odot (a^{-} \oplus b) = b \odot (b^{-} \oplus a).$$

For any $a \in A$, we define 0a = 0 and $na = (n - 1)a \oplus a$ for $n \in \omega - \{0\}$. The MV-order of $a \in A$, in symbols MV-ord(a), is the smallest $n \in \omega$ such that na = 1. If no such n exists, then MV-ord(a) = ∞ .

LEMMA 1.22 ([15, Lemma 14]). Let A be a pseudo-MV algebra. For any $a \in A$, MV-ord $(a^{-}) = MV$ -ord (a^{-}) .

We shall denote by D(A) the set $\{a \in A \mid MV \text{-}ord(a) = \infty\}$. A pseudo-MV algebra **A** is *locally finite* if for all $a \in A$, $a \neq 0$ implies MV-ord $(a) < \infty$. According to [15], a pseudo-MV algebra **A** is *strong* if for all $a \in A$, $a^- = a^-$. According to [11], an *ideal* of **A** is is a nonempty subset I of A such that for all $a, b \in A$,

- (i) if $a, b \in I$, then $a \oplus b \in I$;
- (ii) if $b \in I$ and $a \leq b$, then $a \in I$.

An ideal I is proper if $I \neq A$. A proper ideal of A is called a *maximal ideal* if it is not contained in any other proper ideal. An ideal H of a pseudo-MV algebra A is called *normal* (see [12]) if for all $a, b \in A, a^{\sim} \odot b \in H$ if and only if $b \odot a^{-} \in H$.

LEMMA 1.23 ([12, Lemma 3.2]). Let H be a normal ideal of A and $a \in A$. Then $a \in H$ if and only if $a^{=} \in H$ if and only if $a^{\approx} \in H$.

PROPOSITION 1.24 ([4, Corollary 2.34]). A pseudo-BL algebra A is a pseudo-MV algebra if and only if $a^{--} = a^{--} = a$ for all $a \in A$.

Following [2], in [15] local pseudo-MV algebras were defined and some classes of local pseudo-MV algebras were studied. Thus, a pseudo-MV algebra is *local* if and only if it has a unique maximal ideal and a local pseudo-MV algebra is:

- *perfect* if for any $a \in A$, MV-ord $(a) < \infty$ if and only if MV-ord $(a^{-}) = \infty$;

- singular if there exist $a, b \in A$ such that MV-ord $(a) < \infty$, MV-ord $(b) < \infty$ and MV-ord $(a \odot b) = \infty$.

By Lemma 1.22, it follows that a local pseudo-MV algebra A is perfect if and only if for any $a \in A$, MV-ord $(a) < \infty$ if and only if MV-ord $(a^{\sim}) = \infty$

PROPOSITION 1.25 ([15]). Every local pseudo-MV algebra is either perfect or singular. There is no local pseudo-MV algebra which is both perfect and singular.

PROPOSITION 1.26 ([15]). Every locally finite pseudo-MV algebra different from $\{0, 1\}$ is singular.

2. Local pseudo-BL algebras

Local rings play an important role in ring theory. On the other hand, the study of local objects became a standard problem for other classes of structures (MV-algebras [2], BL-algebras [19], pseudo-MV algebras [15]). In this section we shall study local pseudo-BL algebras.

A pseudo-BL algebra is called *local* if and only if it has a unique ultrafilter.

LEMMA 2.1. Let A be a local pseudo-BL algebra. Then

- (i) any proper filter of A is included in the unique ultrafilter of A;
- (ii) A_0^{\sim} , A_0^{-} are included in the unique ultrafilter of **A**.

PROOF. (i) Apply Proposition 1.4 and the fact that A has a unique ultrafilter.(ii) Apply Lemma 1.6 and (i).

In the sequel, we shall use the following notation:

 $D(A) = \{a \in A \mid \operatorname{ord}(a) = \infty\}$ and $D(A)^* = \{a \in A \mid \operatorname{ord}(a) < \infty\}.$

Obviously, $D(A) \cap D(A)^* = \emptyset$ and $D(A) \cup D(A)^* = A$.

PROPOSITION 2.2. Let **A** be a pseudo-BL algebra. The following are equivalent:

- (i) D(A) is a filter of A;
- (ii) D(A) is a proper filter of A;
- (iii) A is local;
- (iv) D(A) is the unique ultrafilter of A;
- (v) for all $a, b \in A$, $\operatorname{ord}(a \odot b) < \infty$ implies $\operatorname{ord}(a) < \infty$ or $\operatorname{ord}(b) < \infty$.

PROOF. (i) if and only if (ii). We have that ord(0) = 1, hence $0 \notin D(A)$.

[11]

(i) implies (v). Let $a, b \in A$ such that $\operatorname{ord}(a \odot b) < \infty$, so $a \odot b \notin D(A)$. Since D(A) is a filter of A, we get that $a \notin D(A)$ or $b \notin D(A)$. Hence, $\operatorname{ord}(a) < \infty$ or $\operatorname{ord}(b) < \infty$.

(v) implies (i). Since $1 \in D(A)$, we have that D(A) is nonempty. Let $a, b \in D(A)$, that is $\operatorname{ord}(a) = \operatorname{ord}(b) = \infty$. It follows that $\operatorname{ord}(a \odot b) = \infty$, that is $a \odot b \in D(A)$. If $a \leq b$ and $a \in D(A)$, then $a^n > 0$ for all $n \in \omega$. Since $a^n \leq b^n$, we have that $b^n > 0$ for all $n \in \omega$. That is, $\operatorname{ord}(b) = \infty$, hence $b \in D(A)$. Thus, we have proved that D(A) is a filter of A.

(iv) implies (iii). It is immediate.

(iii) implies (iv). Let U be the unique ultrafilter of A. Applying Lemma 2.1 (i) and Lemma 1.7 (i), we get that $a \in U$ if and only if $\langle a \rangle \subseteq U$ if and only if $\langle a \rangle$ is proper if and only if ord $(a) = \infty$ if and only if $a \in D(A)$. Hence, U = D(A).

(iv) implies (i). It is obvious.

(i) implies (iv). Since $0 \notin D(A)$, we have that D(A) is proper. Let F be a proper filter of A. If $a \in F$, then $\langle a \rangle \subseteq F$, so $\langle a \rangle$ is a proper filter of A. Applying Lemma 1.7 (i), it follows that $\operatorname{ord}(a) = \infty$, hence $a \in D(A)$. Thus, we have got that any proper filter F of A is included in D(A). From this fact it follows that D(A) is the unique ultrafilter of A.

COROLLARY 2.3. Let A be a local pseudo-BL algebra. Then

- (i) for any $a \in A$, $\operatorname{ord}(a) < \infty$ or $(\operatorname{ord}(a^{\sim}) < \infty$ and $\operatorname{ord}(a^{-}) < \infty$);
- (ii) $D(A)^*_{\sim} \subseteq D(A)^*$ and $D(A)^*_{-} \subseteq D(A)^*$;
- (iii) $D(A) \cap D(A)^*_{\sim} = D(A) \cap D(A)^*_{-} = \emptyset$.

PROOF. (i) Let $a \in A$. By (9), we have that $a^{\sim} \odot a = a \odot a^{-} = 0$, so $\operatorname{ord}(a^{\sim} \odot a) = \operatorname{ord}(a \odot a^{-}) = \operatorname{ord}(0) = 1 < \infty$. Apply now Proposition 2.2 (v) to get (i).

(ii) Let $a \in D(A)^*_{\sim}$, so there is $x \in D(A)$ such that $a \le x^{\sim}$. Since $\operatorname{ord}(x) = \infty$, applying (i), we get that $\operatorname{ord}(x^{\sim}) < \infty$. Applying now Lemma 1.7(ii), we get that $\operatorname{ord}(a) < \infty$. Hence, $a \in D(A)^*$. We obtain similarly that $D(A)^*_{-} \subseteq D(A)^*$.

(iii) Apply (ii) and the fact that $D(A) \cap D(A)^* = \emptyset$.

PROPOSITION 2.4. Any pseudo-BL chain is a local pseudo-BL algebra.

PROOF. Let A be a pseudo-BL chain. We apply Proposition 2.2 (v) to obtain that A is local. Let $a, b \in A$ such that $\operatorname{ord}(a \odot b) < \infty$. Since A is a chain, we have that $a \leq b$ or $b \leq a$. Suppose that $a \leq b$. Then $a \odot a \leq a \odot b$, so, by Lemma 1.7 (ii), we get that $\operatorname{ord}(a \odot a) < \infty$, hence $\operatorname{ord}(a) < \infty$. Similarly, from $b \leq a$ it follows that that $\operatorname{ord}(b) < \infty$.

A proper normal filter P of a pseudo-BL algebra A is called *primary* if for all

 $a, b \in A$,

 $((a \odot b)^n)^{\sim} \in P$ for some $n \in \omega$ implies $(a^m)^{\sim} \in P$ or $(b^m)^{\sim} \in P$ for some $m \in \omega$.

Applying the definition of a normal filter, we get that a proper normal filter P of A is primary if and only if for all $a, b \in A$, $((a \odot b)^n)^- \in P$ for some $n \in \omega$ implies $(a^m)^- \in P$ or $(b^m)^- \in P$ for some $m \in \omega$.

REMARK 2.5. Suppose that A is a BL-algebra and let P be a proper filter of A. The following are equivalent:

(i) P is primary;

(ii) for all $a, b \in A$, $(a \odot b)^- \in P$ implies $(a^m)^- \in P$ or $(b^m)^- \in P$ for some $m \in \omega$.

PROOF. (i) implies (ii). It follows immediately from the definition of a primary filter.

(ii) implies (i). Let $a, b \in A$ such that $((a \odot b)^n)^- \in P$ for some $n \in \omega$. Since \odot is commutative, we get that $((a \odot b)^n)^- = (a^n \odot b^n)^- \in P$. Applying now (ii), it follows that there is $p \in \omega$ such that $(a^{np})^- \in P$ or $(b^{np})^- \in P$. Hence, letting m = np, we have that $(a^m)^- \in P$ or $(b^m)^- \in P$.

Hence, in the case that A is a BL-algebra, the notion of primary filter defined here coincides with the notion of primary filter defined in [19].

PROPOSITION 2.6. Let A be a pseudo-BL algebra and P be a proper normal filter of A. The following are equivalent:

- (i) A/P is a local pseudo-BL algebra;
- (ii) *P* is a primary filter of **A**.

PROOF. Applying Proposition 2.2 (v) and Lemma 1.10 (ii), we have that A/P is local if and only if for all $a, b \in A$, $\operatorname{ord}(a/P \odot b/P) < \infty$ implies $\operatorname{ord}(a/P) < \infty$ or $\operatorname{ord}(b/P) < \infty$ if and only if for all $a, b \in A$, $(a/P \odot b/P)^n = 0/P$ for some $n \in \omega$ implies $(a/P)^m = 0/P$ or $(b/P)^m = 0/P$ for some $m \in \omega$ if and only if for all $a, b \in A, ((a \odot b)^n)/P = 0/P$ for some $n \in \omega$ implies $a^m/P = 0/P$ or $b^m/P = 0/P$ for some $m \in \omega$ if and only if for all $a, b \in A, ((a \odot b)^n)^{\sim} \in P$ for some $n \in \omega$ implies $(a^m)^{\sim} \in P$ or $(b^m)^{\sim} \in P$ for some $m \in \omega$ if and only if P is primary. \Box

PROPOSITION 2.7. Any prime normal filter of a pseudo-BL algebra A is primary.

PROOF. Let P be a prime normal filter of A. Applying Proposition 1.9, we get that A/P is a pseudo-BL chain, hence A/P is local, by Proposition 2.4. Apply now Proposition 2.6 to get that P is primary.

PROPOSITION 2.8. Let A be a pseudo-BL algebra. A proper normal filter of A is primary if and only if it is contained in a unique ultrafilter of A.

PROOF. Let H be a proper normal filter of A. By Proposition 2.6, H is primary if and only if A/H is a local algebra if and only if A/H has a unique ultrafilter. Applying Proposition 1.12 (iii), there is a bijection between the set of ultrafilters of A/H and the set of ultrafilters of A that contain H. Hence, H is primary if and only if there is a unique ultrafilter of A that contains H.

PROPOSITION 2.9. Let A be a pseudo-BL algebra. The following are equivalent:

- (i) A is local;
- (ii) any proper normal filter of A is primary;
- (iii) $\{1\}$ is a primary filter of **A**.

PROOF. (i) implies (ii). Let H be a proper normal filter of A. Since A is local, by Lemma 2.1 (i) and Proposition 2.2 (iv) it follows that D(A) is the unique ultrafilter of A containing H. Applying Proposition 2.8, we get that H is primary.

(ii) implies (iii). Apply the fact that $\{1\}$ is a proper normal filter of A.

(iii) implies (i). Since {1} is a primary filter of A, by Proposition 2.6, we get that $A/{1}$ is local. But $A \cong A/{1}$, hence A is local.

PROPOSITION 2.10. Any local pseudo-BL algebra is directly indecomposable.

PROOF. Let A be a local pseudo-BL algebra. We shall prove that $B(A) = \{0, 1\}$ and then apply Proposition 1.19. Let $e \in B(A)$. Applying Corollary 2.3 (i), we get that $\operatorname{ord}(e) < \infty$ or $\operatorname{ord}(e^{\sim}) < \infty$, that is, there is $n \in \omega - \{0\}$ such that $e^n = 0$ or $(e^{\sim})^n = 0$. But $e^n = e$ and $(e^{\sim})^n = e^{\sim}$, by Proposition 1.14 (ii) and the fact that e^{\sim} is the complement of e, so $e, e^{\sim} \in B(A)$. It follows that e = 0 or $e^{\sim} = 0$. By Proposition 1.14 (ii) and (11), from $e^{\sim} = 0$ we get that $e = (e^{\sim})^{-} = 0^{-} = 1$. That is, $e \in \{0, 1\}$. Hence, $B(A) = \{0, 1\}$.

3. Good pseudo-BL algebras

A good pseudo-BL algebra is a pseudo-BL algebra A satisfying the following identity

 $a^{\sim -} = a^{-\sim}.$

Pseudo-MV algebras are particular cases of good pseudo-BL algebras. In [5] it is proved that any pseudo-product algebra is also a good pseudo-BL algebra. A *strong*

pseudo-BL algebra is a pseudo-BL algebra A such that $a^{\sim} = a^{-}$ for all $a \in A$. Obviously, every strong pseudo-BL algebra is a good pseudo-BL algebra.

In the sequel, if not otherwise specified, A is a good pseudo-BL algebra. Let us consider the subset $M(A) = \{a \in A \mid a^{--} = a^{--} = a\}$.

LEMMA 3.1. Let A be a good pseudo-BL algebra. Then

(i) $0, 1 \in M(A);$

(ii) $a^{\sim}, a^{-} \in M(A)$ for all $a \in A$;

(iii) if $a, b \in M(A)$, then $a \rightsquigarrow b = b^{\sim} \rightarrow a^{\sim}$ and $a \rightarrow b = b^{\sim} \rightsquigarrow a^{\sim}$;

(iv) if $a, b \in M(A)$, then $(a^{\sim} \odot b^{\sim})^{-} = (a^{-} \odot b^{-})^{\sim} = a^{-} \rightsquigarrow b = b^{\sim} \rightarrow a$.

PROOF. (i) Apply (11) and (12).

(ii) Let $a \in A$. Applying (*) for a^{\sim} and a^{-} and (16), we have that $(a^{\sim})^{\sim -} = (a^{\sim})^{-\sim} = a^{\sim}$ and $(a^{-})^{-\sim} = (a^{-})^{\sim -} = a^{-}$. It follows that $a^{\sim}, a^{-} \in M(A)$. (iii), (iv) See [4, Lemma 2.31].

For any $a, b \in A$, let us define $a \oplus b \stackrel{\text{def}}{=} (b^{\sim} \odot a^{\sim})^{-}$.

LEMMA 3.2. Let A be a good pseudo-BL algebra. Then

(i) $a \oplus b \in M(A)$ for any $a, b \in A$;

(ii) if $a, b \in M(A)$, then $a \oplus b = (b^{\sim} \odot a^{\sim})^{-} = (b^{-} \odot a^{-})^{\sim} = b^{-} \rightsquigarrow a = a^{\sim} \rightarrow b$;

(iii) if $a, b \in M(A)$, then $a \oplus b^- = a^- \to b^-$, $a \oplus b^- = b \rightsquigarrow a$, $a^- \oplus b = a \to b$ and $a^- \oplus b = b^- \rightsquigarrow a^-$;

(iv) if $a, b \in M(A)$, then $a^{\sim} \oplus b^{\sim} = (b \odot a)^{\sim}$ and $a^{-} \oplus b^{-} = (b \odot a)^{-}$.

PROOF. (i) Apply Lemma 3.1 (ii).

(ii) Apply Lemma 3.1 (iv).

(iii) Apply (ii).

(iv) By (iii), (1) and (2), we have that $a^{\sim} \oplus b^{\sim} = b \rightsquigarrow a^{\sim} = b \rightsquigarrow (a \rightsquigarrow 0) = (b \odot a) \rightsquigarrow 0 = (b \odot a)^{\sim}$ and $a^{-} \oplus b^{-} = a \rightarrow b^{-} = a \rightarrow (b \rightarrow 0) = (b \odot a) \rightarrow 0 = (b \odot a)^{-}$.

The following proposition extends a result from [19].

PROPOSITION 3.3. Let A be a good pseudo-BL algebra. The structure $\mathbf{M}(\mathbf{A}) = (M(A), \oplus, \bar{}, \bar{}, 0, 1)$ is a pseudo-MV algebra. The order on A agrees with the one of $\mathbf{M}(\mathbf{A})$, defined by $a \leq_{M(A)} b$ if and only if $a^- \oplus b = 1$.

PROOF. By Lemma 3.1 and Lemma 3.2, it follows that the operations \oplus , \neg , \sim are well defined on M(A) and that $0, 1 \in M(A)$. Let us denote by $\bigcirc_{M(A)}$ the product on M(A). Hence, for all $a, b \in M(A)$, we have that $a \bigcirc_{M(A)} b = (b^- \oplus a^-)^{\sim} =$

 $(b^{\sim} \oplus a^{\sim})^{-} \in M(A)$. We shall verify the axioms from the definition of a pseudo-MV algebra. In the proof we use Lemma 3.1 and Lemma 3.2. Let $a, b, c \in M(A)$.

(i) We have that $(a \oplus b) \oplus c = (b^{\sim} \odot a^{\sim})^{-} \oplus (c^{\sim})^{-} = (c^{\sim} \odot (b^{\sim} \odot a^{\sim}))^{-} = ((c^{\sim} \odot b^{\sim}) \odot a^{\sim})^{-} = (a^{\sim})^{-} \oplus (c^{\sim} \odot b^{\sim})^{-} = a \oplus (b \oplus c)$. We also get that $a \oplus 0 = (0^{\sim} \odot a^{\sim})^{-} = (1 \odot a^{\sim})^{-} = a^{\sim -} = a$. Similarly, $0 \oplus a = a$. Hence $(M(A), \oplus, 0)$ is a monoid.

(ii) By (8), (11) and (12), $a \oplus 1 = (1^{\sim} \odot a^{\sim})^{-} = (0 \odot a^{\sim})^{-} = 0^{-} = 1$. We obtain $1 \oplus a = 1$ similarly.

(iii) Apply (12).

(iv) By (*), $(a^- \oplus b^-)^{\sim} = (b \odot a)^{-\sim} = (b \odot a)^{\sim -} = (a^{\sim} \oplus b^{\sim})^{-}$.

(v) We have to prove that $a \oplus (a^{\sim} \odot_{M(A)} b) = b \oplus (b^{\sim} \odot_{M(A)} a) = (a \odot_{M(A)} b^{-}) \oplus b = (b \odot_{M(A)} a^{-}) \oplus a$. Applying (18) and (A4), we get that

$$a \oplus (a^{\sim} \odot_{\mathcal{M}(A)} b) = a \oplus (b^{-} \oplus a)^{\sim} = (a^{-})^{\sim} \oplus (b^{-} \oplus a)^{\sim}$$
$$= ((b^{-} \oplus a) \odot a^{-})^{\sim} = ((b \to a) \odot a^{-})^{\sim}$$
$$= ((a^{-} \rightsquigarrow b^{-}) \odot a^{-})^{\sim} = (a^{-} \land b^{-})^{\sim}$$
$$= a^{-\sim} \lor b^{-\sim} = a \lor b$$

and

$$(b \odot_{M(A)} a^{-}) \oplus a = (a \oplus b^{\sim})^{-} \oplus a = (a \oplus b^{\sim})^{-} \oplus (a^{\sim})^{-}$$
$$= (a^{\sim} \odot (a \oplus b^{\sim}))^{-} = (a^{\sim} \odot (b \rightsquigarrow a))^{-}$$
$$= (a^{\sim} \odot (a^{\sim} \to b^{\sim}))^{-} = (a^{\sim} \wedge b^{\sim})^{-}$$
$$= a^{\sim-} \vee b^{\sim-} = a \vee b.$$

Similarly we get $b \oplus (b^{\sim} \odot_{M(A)} a) = (a \odot_{M(A)} b^{-}) \oplus b = b \lor a = a \lor b$.

(vi)

$$a \odot_{M(A)} (a^{-} \oplus b) = a \odot_{M(A)} (a \to b) = ((a \to b)^{-} \oplus a^{-})^{\sim}$$

$$= (a \odot (a \to b))^{-\sim} = (a \land b)^{-\sim} = (b \land a)^{-\sim}$$

$$= ((b \rightsquigarrow a) \odot b)^{-\sim} = (b^{-} \oplus (b \rightsquigarrow a)^{-})^{\sim}$$

$$= (b \rightsquigarrow a) \odot_{M(A)} b = (a \oplus b^{\sim}) \odot_{M(A)} b.$$

(vii) It follows from the definition of M(A).

Hence, $\mathbf{M}(\mathbf{A})$ is a pseudo-MV algebra. By Lemma 3.2 (iii), we have that for all $a, b \in \mathcal{M}(\mathbf{A}), a \leq_{\mathcal{M}(\mathbf{A})} b$ if and only if $b \oplus a^{\sim} = 1$ if and only if $a \rightsquigarrow b = 1$ if and only if $a \leq b$.

As a consequence of this proposition we obtain [4, Corollary 2.34]:

COROLLARY 3.4. A pseudo-BL algebra A is a pseudo-MV algebra if and only if $a^{\sim -} = a^{-\sim} = a$ for all $a \in A$.

REMARK 3.5. Let A be a good pseudo-BL algebra. For any $a, b \in M(A)$,

$$a \odot_{\mathcal{M}(A)} b = (b^{\sim} \oplus a^{\sim})^{-} = (b^{-} \oplus a^{-})^{\sim} = (a \odot b)^{\sim -} = (a \odot b)^{-\sim}.$$

PROOF. Apply the definitions of \oplus and $\bigcirc_{M(A)}$.

Since, $a, b \in M(A)$ does not imply $a \odot b \in M(A)$, it follows that, generally, $(a \odot b)^{-\sim} \neq a \odot b$. Hence, the product on the pseudo-MV algebra M(A) does not coincide with the product on the pseudo-BL algebra A. In the case of BL-algebras, the product is the same (see [19]).

PROPOSITION 3.6. Let A be a good pseudo-BL algebra. Then A is a strong pseudo-BL algebra if and only if M(A) is a strong pseudo-MV algebra.

PROOF. If $a^{\sim} = a^{-}$ for all $a \in A$, then $a^{\sim} = a^{-}$ for all $a \in M(A)$. Conversely, suppose that $a^{\sim} = a^{-}$ for all $a \in M(A)$. Let $a \in A$. By (16) and (*), $a^{\sim} = a^{\sim-\sim} = (a^{\sim-})^{\sim} = (a^{\sim-})^{\sim}$. But, by Lemma 3.1 (ii), we have that $a^{-\sim} \in M(A)$, so $(a^{-\sim})^{\sim} = (a^{-\sim})^{-} = a^{-}$, by (16). Thus, for all $a \in A$, we have that $a^{\sim} = a^{-}$. \Box

Let A be a good pseudo-BL algebra. Since, by Lemma 3.1 (ii), a^- , $a^- \in M(A)$ for any $a \in A$, we can define the maps $\varphi_1 : A \to M(A)$ by $\varphi_1(a) = a^-$ for any $a \in A$, and $\varphi_2 : A \to M(A)$ by $\varphi_2(a) = a^-$ for any $a \in A$.

LEMMA 3.7. Let A be a good pseudo-BL algebra. The following properties hold for all $a, b \in A$:

- (i) φ_1, φ_2 are onto;
- (ii) $\varphi_1(a \lor b) = \varphi_1(a) \land \varphi_1(b) \text{ and } \varphi_2(a \lor b) = \varphi_2(a) \land \varphi_2(b);$
- (iii) $\varphi_1(a \wedge b) = \varphi_1(a) \vee \varphi_1(b)$ and $\varphi_2(a \wedge b) = \varphi_2(a) \vee \varphi_2(b)$;
- (iv) $\varphi_1(a) \leq \varphi_1(b)$ if and only if $\varphi_2(a) \leq \varphi_2(b)$;
- (v) $a \leq b$ implies $\varphi_1(a) \geq \varphi_1(b)$ and $\varphi_2(a) \geq \varphi_2(b)$;
- (vi) $\varphi_1(a) = 1$ if and only if $\varphi_2(a) = 1$ if and only if a = 0;
- (vii) $\varphi_1(1) = \varphi_2(1) = 0;$
- (viii) $\varphi_1(a) = 0$ if and only if $\varphi_2(a) = 0$;
 - (ix) $\varphi_1(a \odot b) = \varphi_1(b) \oplus \varphi_1(a)$ and $\varphi_2(a \odot b) = \varphi_2(b) \oplus \varphi_2(a)$;

(x) for any $n \in \omega$, $\varphi_1(a^n) = n\varphi_1(a)$ and $\varphi_2(a^n) = n\varphi_2(a)$.

PROOF. (i) Let $a \in M(A)$. Then $a = a^{-\sim} = \varphi_1(a^{-})$ and $a = a^{-\sim} = \varphi_2(a^{-})$.

- (ii) Apply (18).
- (iii) Apply (19).

(iv) Suppose that $\varphi_1(a) \leq \varphi_1(b)$, that is, $a^{\sim} \leq b^{\sim}$. Applying (13) and (16), it follows that $b^{-\sim} = b^{\sim-} \leq a^{\sim-} = a^{-\sim}$, so $a^- = a^{-\sim-} \leq b^{-\sim-} = b^-$. Hence, $\varphi_2(a) \leq \varphi_2(b)$. We prove similarly that $\varphi_2(a) \leq \varphi_2(b)$ implies $\varphi_1(a) \leq \varphi_1(b)$.

- (v) Apply (13).
- (vi) Apply (11).
- (vii) Apply (12).

(viii) Suppose that $a^{\sim} = 0$, so $a^{\sim} = a^{\sim} = 1$, hence, $a^{-} = a^{-\sim} = 0$. We get similarly that $a^{-} = 0$ implies $a^{\sim} = 0$.

(ix) Apply Lemma 3.2 (iv).

(x) By induction on *n*. For n = 0, we have that $a^0 = 1$, so $\varphi_1(1) = 0$ and $0\varphi_1(a) = 0$. Suppose that $\varphi_1(a^n) = n\varphi_1(a)$. By (ix), it follows that $\varphi_1(a^{n+1}) = \varphi_1(a^n \odot a) = \varphi_1(a) \oplus \varphi_1(a^n) = \varphi_1(a) \oplus n\varphi_1(a) = (n+1)\varphi_1(a)$. Similarly for φ_2 . \Box

LEMMA 3.8. Let A be a nontrivial good pseudo-BL algebra. Then

- (i) $A_0^- = A_0^{\sim} \stackrel{\text{not}}{=} A_0;$
- (ii) if $a \in A_0$, then $\operatorname{ord}(a) = \infty$;
- (iii) for any $a \in A$, $\operatorname{ord}(a) = \operatorname{MV-ord}(\varphi_1(a)) = \operatorname{MV-ord}(\varphi_2(a))$;
- (iv) for any $a \in A$, $\operatorname{ord}(a^{\sim}) = \operatorname{ord}(a^{-})$;

(v) $\varphi_1(D(A)) = \varphi_2(D(A)) = D(M(A))$ and $\varphi_1^{-1}(D(M(A))) = \varphi_2^{-1}(D(M(A))) = D(A)$.

PROOF. (i) Apply Lemma 3.7 (viii).

(ii) Suppose that there is $n \in \omega$ such that $a^n = 0$. Then, applying Lemma 3.7 (vi) and (x), we get that $\varphi_1(a^n) = \varphi_1(0) = 1$ and $\varphi_1(a^n) = n\varphi_1(a) = na^{\sim} = n0 = 0$. We get that 0 = 1, a contradiction. Hence, $a^n \neq 0$ for all $n \in \omega$, so $\operatorname{ord}(a) = \infty$.

(iii) Let $a \in A$ and $n \in \omega$. By Lemma 3.7 (vi), we have that $a^n = 0$ if and only if $\varphi_1(a^n) = 1$ if and only if $n\varphi_1(a) = 1$. Hence, $ord(a) = MV-ord(\varphi_1(a))$. Similarly for φ_2 .

(iv) Let $a \in A$. Applying (i) and (*), we get that $\operatorname{ord}(a^{\sim}) = \operatorname{MV-ord}(\varphi_2(a^{\sim})) = \operatorname{MV-ord}(a^{\sim-}) = \operatorname{MV-ord}(a^{-\sim}) = \operatorname{MV-ord}(\varphi_1(a^{-})) = \operatorname{ord}(a^{-}).$

(v) Apply (iii) and the fact that φ_1, φ_2 are onto.

LEMMA 3.9. Let A be a good pseudo-BL algebra. Suppose that I is an ideal of M(A) and F is a filter of A. Then

- (i) $\varphi_1^{-1}(I), \varphi_2^{-1}(I)$ are filters of A;
- (ii) $\varphi_1(F), \varphi_2(F)$ are ideals of M(A);
- (iii) $F \subseteq \varphi_1^{-1}(\varphi_1(F))$ and $F \subseteq \varphi_2^{-1}(\varphi_2(F))$;
- (iv) $I = \varphi_1(\varphi_1^{-1}(I))$ and $I = \varphi_2(\varphi_2^{-1}(I));$
- (v) I is proper if and only if $\varphi_1^{-1}(I)$ is proper if and only if $\varphi_2^{-1}(I)$ is proper;
- (vi) F is proper if and only if $\varphi_1(F)$ is proper if and only if $\varphi_2(F)$ is proper;
- (vii) if F is an ultrafilter of A, then $F = \varphi_1^{-1}(\varphi_1(F))$ and $F = \varphi_2^{-1}(\varphi_2(F))$;
- (viii) if I is a maximal ideal of M(A), then $\varphi_1^{-1}(I)$, $\varphi_2^{-1}(I)$ are ultrafilters of A;
 - (ix) if F is an ultrafilter of A, then $\varphi_1(F)$, $\varphi_2(F)$ are maximal ideals of M(A).

PROOF. (i) Let us prove that $\varphi_1^{-1}(I)$ is a filter of **A**. Since $\varphi_1(1) = 0 \in I$, we have $1 \in \varphi_1^{-1}(I)$. Let $a_1, a_2 \in \varphi_1^{-1}(I)$. It follows that $\varphi_1(a_1), \varphi_1(a_2) \in I$, so $\varphi_1(a_1 \odot a_2) = \varphi_1(a_2) \oplus \varphi_1(a_1) \in I$. Hence, $a_1 \odot a_2 \in \varphi_1^{-1}(I)$. Let $a_1 \in \varphi_1^{-1}(I)$, $a_2 \in A$ be such that $a_1 \leq a_2$. By Lemma 3.7 (v), we get $\varphi_1(a_2) \leq \varphi_1(a_1) \in I$, so $\varphi_1(a_2) \in I$, that is, $a_2 \in \varphi_1^{-1}(I)$. Thus, we have proved that $\varphi_1^{-1}(I)$ is a filter of **A**. We get similarly that $\varphi_2^{-1}(I)$ is a filter of **A**.

(ii) Let us prove that $\varphi_1(F)$ is an ideal of $\mathbf{M}(\mathbf{A})$. We have that $0 = \varphi_1(1) \in \varphi_1(F)$. Let $b_1, b_2 \in \varphi_1(F)$. That is, there are $a_1, a_2 \in F$ such that $b_1 = \varphi_1(a_1)$ and $b_2 = \varphi_1(a_2)$. We have $a_2 \odot a_1 \in F$ and $b_1 \oplus b_2 = \varphi_1(a_2 \odot a_1) \in \varphi_1(F)$. Let $b_1, b_2 \in \mathbf{M}(\mathbf{A})$ be such that $b_1 \leq b_2$ and $b_2 \in \varphi_1(F)$. It follows that $b_2 = \varphi_1(a_2)$ with $a_2 \in F$ and, since φ_1 is onto, there is $a \in A$ such that $\varphi_1(a) = b_1$. Let $a_1 = a \lor a_2$. Then $a_2 \leq a_1$ and $a_2 \in F$, so $a_1 \in F$ and $\varphi_1(a_1) = \varphi_1(a) \land \varphi_1(a_2) = b_1 \land b_2 = b_1$, by Lemma 3.7 (iii). Hence, $b_1 \in \varphi_1(F)$. We obtain in the same manner that $\varphi_2(F)$ is an ideal of $\mathbf{M}(\mathbf{A})$.

(iii) It is obvious.

(iv) It follows from the fact that φ_1 and φ_2 are onto.

(v) *I* is not proper if and only if $1 \in I$ if and only if $\varphi_1(0) \in I$ if and only if $0 \in \varphi_1^{-1}(I)$ if and only if $\varphi_1^{-1}(I)$ is not proper.

(vi) If $0 \in F$, then $1 = \varphi_1(0) \in \varphi_1(F)$. Suppose that $1 \in \varphi_1(F)$. Then, there is $a \in F$ such that $\varphi_1(a) = 1$. Applying Lemma 3.7 (vi), we get that a = 0, hence $0 \in F$.

(vii) Suppose that F is an ultrafilter of A. Then, by (v) and (vi), $\varphi_1^{-1}(\varphi_1(F))$ is a proper filter of A and, by (iii), $F \subseteq \varphi_1^{-1}(\varphi_1(F))$. Since F is ultrafilter, we get that $F = \varphi_1^{-1}(\varphi_1(F))$.

(viii) Suppose that $\varphi_1^{-1}(I) \subseteq F$, where F is a proper filter of A. It follows that $I = \varphi_1(\varphi_1^{-1}(I)) \subseteq \varphi_1(F)$. Since $\varphi_1(F)$ is proper, we get that $I = \varphi_1(F)$, so $\varphi_1^{-1}(I) = \varphi_1^{-1}(\varphi_1(F)) \supseteq F$. Hence, $\varphi_1^{-1}(I) = F$.

(ix) Suppose that $\varphi_1(F) \subseteq I$, where *I* is a proper ideal of **M**(**A**). It follows that $F = \varphi_1^{-1}(\varphi(F)) \subseteq \varphi_1^{-1}(I)$. Since $\varphi_1^{-1}(I)$ is proper, we get that $F = \varphi_1^{-1}(I)$, so $\varphi_1(F) = \varphi_1(\varphi_1^{-1}(I)) = I$.

The next result is a consequence of the above proposition.

PROPOSITION 3.10. The maps φ_1 , φ_2 are bijections between the set of ultrafilters of **A** and the set of maximal ideals of **M**(**A**).

COROLLARY 3.11. Let A be a good pseudo-BL algebra. Then A is local if and only if M(A) is local.

We remark that if A is a BL-algebra, then $\varphi_1 = \varphi_2$ and the results obtained above extend some results from [19, 8].

PROPOSITION 3.12. Let A be a good pseudo-BL algebra. Suppose that I is an ideal of M(A) and F is a filter of A. Then

- (i) if F is normal in A, then $\varphi_1(F) = \varphi_2(F) \stackrel{\text{not}}{=} \varphi(F)$;
- (ii) if F is normal in A, then $\varphi(F)$ is normal in M(A);
- (iii) if I is normal in M(A), then $\varphi_1^{-1}(I) = \varphi_2^{-1}(I)$.

PROOF. (i) Let $b \in \varphi_1(F)$, that is, $b = \varphi_1(a)$ with $a \in F$. By (14), we have that $a \leq a^{\sim -}$, so $a^{\sim -} \in F$, hence $a^{\approx} \in F$, since F is a normal filter of \mathbf{A} . Since $b \in M(A)$, we also get that $b = b^{\sim -} = a^{\approx -} = \varphi_2(a^{\approx})$, hence $b \in \varphi_2(F)$. Thus, $\varphi_1(F) \subseteq \varphi_2(F)$. The other inclusion is proved similarly.

(ii) Let $b, c \in M(A)$. By Lemma 3.2 (iii), we have $b^{\sim} \odot_{M(A)} c = (c^{-} \oplus b)^{\sim} = (c \to b)^{\sim}$ and $c \odot_{M(A)} b^{-} = (b \oplus c^{\sim})^{-} = (c \to b)^{-}$. Suppose that $b^{\sim} \odot_{M(A)} c \in \varphi(F)$, so there is $a \in F$ such that $(c \to b)^{\sim} = a^{\sim}$. But $c \to b = c^{-} \oplus b \in M(A)$, hence $c \to b = (c \to b)^{\sim -} = a^{\sim -} \ge a$, by (14). Since $a \in F$ and F is a filter, we get that $c \to b \in F$. But F is normal, hence $c \to b \in F$. We obtain that $c \odot_{M(A)} b^{-} = (c \to b)^{-} \in \varphi(F)$. We get similarly that $c \odot_{M(A)} b^{-} \in \varphi(F)$ implies $b^{\sim} \odot_{M(A)} c \in \varphi(F)$.

(iii) Let $a \in \varphi_1^{-1}(I)$, so $a^{\sim} \in I$. Since *I* is normal, from $a^{\sim} \in I$ and Lemma 1.23 we get that $a^{\sim =} \in I$. But, by (*) and (16), $a^{\sim =} = a^{-\sim -} = a^{-} = \varphi_2(a)$. We have got that $\varphi_2(a) \in I$, that is $a \in \varphi_2^{-1}(I)$. We prove similarly that $a \in \varphi_2^{-1}(I)$ implies $a \in \varphi_1^{-1}(I)$.

4. Some classes of local pseudo-BL algebras

Perfect pseudo-BL algebras A pseudo-BL algebra A is called *perfect* if

- (i) A is a local good pseudo-BL algebra, and
- (ii) for any $a \in A$, $\operatorname{ord}(a) < \infty$ if and only if $\operatorname{ord}(a^{\sim}) = \infty$.

PROPOSITION 4.1. Let A be a good pseudo-BL algebra. Then A is perfect if and only if M(A) is perfect.

PROOF. We have that A is local if and only if M(A) is local, by Corollary 3.11. In the sequel, we shall apply repeatedly Proposition 3.8 (iii). Suppose that A is perfect and let $a \in M(A)$, so $a = a^{-}$. We get that MV-ord $(a) < \infty$ if and only if MV-ord $(a^{-}) < \infty$ if and only if $ord(a^{-}) < \infty$ if and only if $ord(a) = \infty$ if and only if MV-ord $(a^{-}) = \infty$. Hence, M(A) is perfect. Conversely, suppose that M(A) is perfect and let $a \in A$. Then, by Lemma 3.1 (i), $a^{-} \in M(A)$. It follows that $ord(a) < \infty$ if and only if MV-ord $(a^{-}) < \infty$ if and only if MV-ord $(a^{\approx}) = \infty$ if and only if $ord(a^{-}) = \infty$. Hence, A is perfect. PROPOSITION 4.2. Let A be a local good pseudo-BL algebra. The following are equivalent:

- (i) A is perfect;
- (ii) for any $a \in A$, $\operatorname{ord}(a) < \infty$ implies $\operatorname{ord}(a^{\sim}) = \infty$;
- (ii') for any $a \in A$, $\operatorname{ord}(a) < \infty$ implies $\operatorname{ord}(a^{-}) = \infty$;
- (iii) $D(A)^*_{\sim} = D(A)^*;$
- (iii') $D(A)_{-}^{*} = D(A)^{*}$.

PROOF. (i) if and only if (ii). Let $a \in A$. Since A is local, by Corollary 2.3, we have that $\operatorname{ord}(a) = \infty$ implies $\operatorname{ord}(a^{\sim}) < \infty$, hence $\operatorname{ord}(a^{\sim}) = \infty$ implies $\operatorname{ord}(a) < \infty$. It follows that A is perfect if and only if $(\operatorname{ord}(a) < \infty$ implies $\operatorname{ord}(a^{\sim}) = \infty$).

(ii) if and only if (ii'). Apply Lemma 3.8 (iv).

(ii') implies (iii). Since A is local, $D(A)^*_{\sim} \subseteq D(A)^*$, by Corollary 2.3 (ii). Let us prove the converse inclusion. Let $a \in A$ be such that $\operatorname{ord}(a) < \infty$. From (ii') we get that $\operatorname{ord}(a^-) = \infty$, so $a^- \in D(A)$ and, by (14), $a \leq a^{-\sim}$. Hence, $a \in D(A)^*_{\sim}$.

(iii) implies (ii'). Suppose that $D(A)^*_{\sim} = D(A)^*$ and let $a \in A$ with $\operatorname{ord}(a) < \infty$, that is, $a \in D(A)^*$. It follows that there is $x \in D(A)$ such that $a \le x^{\sim}$, so $x^{\sim -} \le a^{-}$, by (13). Since $x \le x^{\sim -}$ and $\operatorname{ord}(x) = \infty$, applying Lemma 1.7 (iii), we get that $\operatorname{ord}(x^{\sim -}) = \infty$. Applying again Lemma 1.7 (iii), from $x^{\sim -} \le a^{-}$ it follows that $\operatorname{ord}(a^{-}) = \infty$.

(ii) if and only if (iii'). It is similar to '(ii') if and only (iii)'.

A primary filter P of a pseudo-BL algebra A is called *perfect* if for all $a \in A$, $(a^n)^{\sim} \in P$ for some $n \in \omega$ implies $((a^{\sim})^m)^{\sim} \notin P$ for all $m \in \omega$.

LEMMA 4.3. Let A be a pseudo-BL algebra and P be a perfect filter of A. Then for all $a \in A$, $(a^n)^{\sim} \in P$ for some $n \in \omega$ if and only if $((a^{\sim})^m)^{\sim} \notin P$ for all $m \in \omega$.

PROOF. Let $a \in A$ such that $((a^{\sim})^m)^{\sim} \notin P$ for all $m \in \omega$. We have to prove that $(a^n)^{\sim} \in P$ for some $n \in \omega$. By (9), $a^{\sim} \odot a = 0$, hence $((a^{\sim} \odot a)^n)^{\sim} = 0^{\sim} = 1 \in P$ for all $n \in \omega$. Apply now the fact that P is primary and the hypothesis to get that $(a^n)^{\sim} \in P$ for some $n \in \omega$.

PROPOSITION 4.4. Let \mathbf{A} be a good pseudo-BL algebra and P be a proper normal filter of \mathbf{A} . The following are equivalent:

- (i) A/P is a perfect pseudo-BL algebra;
- (ii) *P* is a perfect filter of A;

(iii) P is primary and for all $a \in A$, $(a^n)^- \in P$ for some $n \in \omega$ implies $((a^-)^m)^- \notin P$ for all $m \in \omega$.

[22]

PROOF. Since good pseudo-BL algebras form a variety, it follows that A/P is a good pseudo-BL algebra. By Proposition 2.6, we have that A/P is local if and only if P is primary. Let $a \in A$. Applying Lemma 1.10, we get that $\operatorname{ord}(a/P) < \infty$ if and only if $(a/P)^n = 0/P$ for some $n \in \omega$ if and only if $(a^n)^- \in P$ for some $n \in \omega$, that $\operatorname{ord}((a/P)^-) = \infty$ if and only if $((a^n)^-)^- \notin P$ for some $n \in \omega$ if and only if $((a/P)^-)^m \neq 0/P$ for all $m \in \omega$ if and only if $((a/P)^-)^m \neq 0/P$ for all $m \in \omega$. Apply now Proposition 4.2 (ii) and (iii) to get that (i) if and only if (ii).

PROPOSITION 4.5. Let A be a BL-algebra and P be a proper filter of A. The following are equivalent:

(i) *P* is a perfect filter of A;

(ii) for all $a \in A$, $(a^n)^- \in P$ for some $n \in \omega$ if and only if $((a^-)^m)^- \notin P$ for all $m \in \omega$.

PROOF. (i) implies (ii). Apply Lemma 4.3.

(ii) implies (i). We shall prove that A/P is local and apply Proposition 2.6 to get that P is a primary filter. Let $a \in A$ and suppose that $\operatorname{ord}(a^-/P) = \infty$. As in the proof of Proposition 4.4, we get $((a^-)^m)^- \notin P$ for all $m \in \omega$. Applying (i), it follows that $(a^n)^- \in P$ for some $n \in \omega$, that is, $\operatorname{ord}(a/P) < \infty$. Thus, we have proved that for all $a \in A$, $\operatorname{ord}(a/P) < \infty$ or $\operatorname{ord}(a^-/P) < \infty$. Apply now [19, Proposition 1] to obtain that A/P is local.

Hence, in the case that A is a BL-algebra, the notion of perfect filter defined above coincides with the notion of perfect filter defined in [19].

PROPOSITION 4.6. Let A be a good pseudo-BL algebra. The following are equivalent:

- (i) A is perfect;
- (ii) any proper normal filter of A is perfect;
- (iii) {1} is a perfect filter of A.

PROOF. (i) implies (ii). Let F be a proper normal filter of A. Since A is local, by Proposition 2.9 it follows that F is primary. Let $a \in A$ such that $(a^n)^{\sim} \in F$ for some $n \in \omega$. Suppose that $((a^{\sim})^k)^{\sim} \in F$ for some $k \in \omega$. We get that $\langle (a^n)^{\sim} \rangle$, $\langle ((a^{\sim})^k)^{\sim} \rangle \subseteq$ F and, since F is proper, it follows that $\langle (a^n)^{\sim} \rangle$ and $\langle ((a^{\sim})^k)^{\sim} \rangle$ are also proper filters of A. Applying Lemma 1.7 (i), we get that $\operatorname{ord}((a^n)^{\sim}) = \operatorname{ord}(((a^{\sim})^k)^{\sim}) = \infty$. Since A is perfect, we obtain that $\operatorname{ord}(a^n) < \infty$ and $\operatorname{ord}((a^{\sim})^k) < \infty$, hence, $\operatorname{ord}(a) < \infty$ and $\operatorname{ord}(a^{\sim}) < \infty$, a contradiction with the fact that A is perfect. Thus, $(a^n)^{\sim} \in F$ for some $n \in \omega$ implies $((a^{\sim})^m)^{\sim} \notin F$ for all $m \in \omega$. (ii) implies (iii). It is obvious, since $\{1\}$ is a proper normal filter of A.

(iii) implies (i). Since {1} is a perfect filter of A, applying Proposition 4.4, we get that $A/\{1\}$ is perfect. But $A \cong A/\{1\}$, hence A is perfect.

Locally finite pseudo-BL algebras According to [5], a pseudo-BL algebra A is *locally finite* if for any $a \in A$, $a \neq 1$ implies $\operatorname{ord}(a) < \infty$.

PROPOSITION 4.7. Let A be a pseudo-BL algebra. The following are equivalent:

- (i) **A** is locally finite;
- (ii) {1} is the unique proper filter of A.

PROOF. Applying Lemma 1.7 (i), it follows that A is locally finite if and only if for every $a \in A$, if $a \neq 1$ then $\langle a \rangle = A$ if and only if {1} is the unique proper filter of A.

PROPOSITION 4.8. Every locally finite pseudo-BL algebra A is a local pseudo-BL algebra.

PROOF. We have that $D(A) = \{1\}$, hence D(A) is a filter of A. Apply Proposition 2.2 to get that A is local.

In [5] it is proved that locally finite pseudo-BL algebras are locally finite MValgebras. We shall give a simpler proof of this fact.

PROPOSITION 4.9. Let A be a locally finite pseudo-BL algebra. Then for all $a \in A$, $a^{\sim -} = a^{-\sim} = a$. Hence, A = M(A).

PROOF. If a = 0, then it follows immediately that $0^{--} = 0^{--} = 0$. Suppose that $a \neq 0$. Let us prove that $a^{--} = a$. By (14), we have that $a \leq a^{--}$. Suppose that $a^{--} \neq a$, hence $a^{--} \rightarrow a \neq 1$. Since A is locally finite, it follows that $ord(a^{--} \rightarrow a) < \infty$, hence $(a^{--} \rightarrow a)^n = 0$ for some $n \in \omega - \{0\}$. By (16), (2), (A4) and (14), we get

$$(a^{-\sim} \to a) \to a^{-} = (a^{-\sim} \to a) \to a^{-\sim-} = (a^{-\sim} \to a) \to (a^{-\sim} \to 0)$$
$$= a^{-\sim} \odot (a^{-\sim} \to a) \to 0 = (a \land a^{-\sim}) \to 0 = a \to 0 = a^{-}.$$

Applying repeatedly this procedure, it follows that $(a^{-\sim} \rightarrow a)^n \rightarrow a^- = a^-$, hence $a^- = 0 \rightarrow a^- = 1$, so, by (11), a = 0. We have got a contradiction, since $a \neq 0$. Hence, $a^{-\sim} = a$. We prove similarly that $a^{-\sim} = a$. COROLLARY 4.10 ([5]). Every locally finite pseudo-BL algebra A is a locally finite MV-algebra.

PROOF. Applying Proposition 4.9 and Proposition 1.24, we get that A is a pseudo-MV algebra. Let $a \in A$, $a \neq 0$, so $a^{\sim} \neq 1$, by (11). By Proposition 3.8 (i), we obtain that MV-ord(a) = MV-ord($a^{\sim -}$) = ord(a^{\sim}) < ∞ . Thus, we have proved that A is a locally finite pseudo-MV algebra. Apply now [15, Proposition 39] to get that A is a locally-finite MV-algebra.

Peculiar pseudo-BL algebras A pseudo-BL algebra A is called *peculiar* if

- (i) A is a local good pseudo-BL algebra;
- (ii) there is $a \in A \{1\}$ such that $ord(a) = \infty$;
- (iii) there is $a \in A$ such that $ord(a) < \infty$ and $ord(a^{\sim}) < \infty$.

Let us denote by \mathscr{PF} the class of perfect pseudo-BL algebras, by \mathscr{LF} the class of locally finite pseudo-BL algebras and by \mathscr{PC} the class of peculiar pseudo-BL algebras. The following proposition is similar to [2, Theorem 5.1].

PROPOSITION 4.11. Let A be a local good pseudo-BL algebra different from $L_2 = \{0, 1\}$. Then exactly one of the following holds:

- (i) $\mathbf{A} \in \mathscr{PF}$;
- (ii) $\mathbf{A} \in \mathscr{LF}$;
- (iii) $\mathbf{A} \in \mathscr{PC}$.

PROOF. By the definitions, if $A \notin \mathscr{PF} \cup \mathscr{LF}$, then $A \in \mathscr{PC}$. Hence, one of (i), (ii) or (iii) holds. It is easy to see that $\mathscr{PC} \cap \mathscr{LF} = \mathscr{PC} \cap \mathscr{PF} = \emptyset$. Let us prove that $\mathscr{PF} \cap \mathscr{LF} = \{L_2\}$. Obviously, L_2 is perfect and locally finite. Now, let $A \neq L_2$ be a locally finite pseudo-BL algebra. Since $A \neq \{0, 1\}$, there is $a \in A$ such that $a \neq 0$ and $a \neq 1$. From $a \neq 0$ and (11) we get that $a^{\sim} \neq 1$. Applying now the fact that A is locally finite, it follows that $\operatorname{ord}(a) < \infty$ and $\operatorname{ord}(a^{\sim}) < \infty$. Hence, A is not perfect. That is, exactly one of (i), (ii), (iii) holds.

PROPOSITION 4.12. Let A be a locally good pseudo-BL algebra such that $A \neq M(A)$. Then A is a peculiar pseudo-BL algebra if and only if $M(A) \neq L_2$ is a singular pseudo-MV algebra.

PROOF. Suppose that A is peculiar. Then A is not perfect, hence, by Proposition 4.1, M(A) is not a perfect pseudo-MV algebra. Since L_2 is a perfect pseudo-MV algebra, it follows that $M(A) \neq L_2$. Applying Proposition 1.25, we also get that M(A) is singular. Conversely, suppose that $M(A) \neq L_2$ and that M(A) is a singular pseudo-MV algebra. Since $A \neq M(A)$, by Proposition 4.9 we get that A is not locally

finite. We also have that M(A) is not perfect, hence A is not perfect. Applying Proposition 4.11, we get that A is peculiar.

5. Bipartite pseudo-BL algebras

In this section, we shall define (strongly) bipartite pseudo-BL algebra and we shall prove some properties of them, following [17, 8].

A pseudo-BL algebra A is called *bipartite* if $U \cup U_{\sim}^* = U \cup U_{-}^* = A$ for some ultrafilter U of A. A is called *strongly bipartite* if $U \cup U_{\sim}^* = U \cup U_{-}^* = A$ for any ultrafilter U of A. Obviously, any strongly bipartite pseudo-BL algebra is bipartite.

A filter F of A is called *Boolean* if for all $a \in A$, $a \lor a^{\sim} \in F$ and $a \lor a^{-} \in F$. It is obvious that if $F \subseteq G$ are two filters of A and F is Boolean, then G is also Boolean.

PROPOSITION 5.1. Let A be a pseudo-BL algebra and F be a filter of A. The following are equivalent:

- (i) F is a Boolean ultrafilter of A;
- (ii) F is a Boolean prime filter of A;
- (iii) F is proper and for all $a \in A$, $a \in F$ or $(a^{\sim} \in F$ and $a^{-} \in F)$.

PROOF. (i) implies (ii). It is obvious, since, by Proposition 1.3, any ultrafilter of A is a prime filter of A.

(ii) implies (iii). Let $a \in A$. Since F is Boolean, we have that $a \lor a^{\sim} \in F$ and $a \lor a^{-} \in F$. Apply now the fact that F is prime to get (iii).

(iii) implies (ii). Let G be a proper filter of A such that $F \subseteq G$ and suppose that $F \neq G$. Then there is $a \in G$ such that $a \notin F$. By (iii), it follows that $a^{\sim}, a^{-} \in F \subseteq G$, so by (8), $0 = a^{\sim} \odot a \in G$, hence G is not proper, that is a contradiction. Hence, G = F. Thus, F is an ultrafilter of A. Let us prove now that F is Boolean. Let $a \in A$. If $a \in F$, since $a \leq a \lor a^{\sim}$ and $a \leq a \lor a^{-}$, we get that $a \lor a^{\sim}, a \lor a^{-} \in F$. If $a \notin F$, then $a^{\sim}, a^{-} \in F$ and from $a^{\sim} \leq a \lor a^{\sim}, a^{-} \leq a \lor a^{-}$ we also get that $a \lor a^{\sim}, a \lor a^{-} \in F$.

LEMMA 5.2. Let \mathbf{A} be a pseudo-BL algebra and U be an ultrafilter of \mathbf{A} . The following are equivalent:

- (i) $U \cup U_{\sim}^* = U \cup U_{-}^* = A;$
- (ii) U is Boolean.

PROOF. Applying Proposition 5.1 (iii) and Remark 1.13 (ii) and (ii'), we get that U is Boolean if and only if for all $a \in A$, $a \in U$ or $(a^{\sim} \in U$ and $a^{-} \in U$) if and only if for all $a \in A$, $a \in U$ or $(a \in U_{\sim}^{*})$ if and only if $U \cup U_{\sim}^{*} = U \cup U_{\sim}^{*} = A$. \Box

PROPOSITION 5.3. Let A be a pseudo-BL algebra A. The following are equivalent:

(i) A is bipartite;

(ii) A has a Boolean proper filter.

PROOF. (i) implies (ii). Apply the above lemma.

(ii) implies (i). Suppose that A has a Boolean proper filter F. By Proposition 1.4, we can extend F to an ultrafilter U and U is also Boolean. Applying again Lemma 5.2, we get that A is bipartite. \Box

Let A be a pseudo-BL algebra. Following [17], we define

 $\mathscr{B}(A) = \cap \{F \mid F \text{ is a Boolean filter of } A\},\$

and

$$\sup(A) = \{a \lor a^{\sim} \mid a \in A\} \cup \{a \lor a^{-} \mid a \in A\}.$$

The following remark is obvious.

REMARK 5.4. Let A be a pseudo-BL algebra. Then

- (i) $\mathscr{B}(A)$ is the smallest Boolean filter of A;
- (ii) if $\sup(A)$ is a filter of A, then it is a Boolean filter;

(iii) $\sup(A) \subseteq \mathscr{B}(A)$.

PROPOSITION 5.5. Let A be a pseudo-BL algebra. Then

- (i) $\mathscr{B}(A) = \langle \sup(A) \rangle;$
- (ii) $\sup(A) = \{a \in A \mid a \ge a^{\sim} \text{ or } a \ge a^{-}\}.$

PROOF. (i) By the above remark, we have that $\sup(A) \subseteq \mathscr{B}(A)$ and $\mathscr{B}(A)$ is a filter of **A**. Hence, $\langle \sup(A) \rangle \subseteq \mathscr{B}(A)$. Obviously, $\langle \sup(A) \rangle$ is a Boolean filter of **A**, so $\mathscr{B}(A) \subseteq \langle \sup(A) \rangle$.

(ii) Let $a \in \sup(A)$. If $a = x \lor x^{\sim}$ for some $x \in A$ then, by (18), $a = x \lor x^{\sim} \ge x^{\sim} \ge x^{\sim} \land x^{\approx} = (x \lor x^{\sim})^{\sim} = a^{\sim}$. We prove similarly that if $a = x \lor x^{\sim}$ for some $x \in A$, then $a \ge a^{\sim}$. Conversely, if $a \in A$ such that $a \ge a^{\sim}$, then $a = a \lor a^{\sim}$, hence $a \in \sup(A)$. Similarly, if $a \ge a^{\sim}$, then $a = a \lor a^{\sim}$, that is, $a \in \sup(A)$.

PROPOSITION 5.6. Let A be a pseudo-BL algebra A. The following are equivalent:

(i) A is strongly bipartite;

(ii) any ultrafilter of A is Boolean;

(iii) $\mathscr{B}(A) \subseteq \mathscr{M}(A)$, where we remind that $\mathscr{M}(A)$ denotes the intersection of all ultrafilters of **A**.

. . . .

PROOF. (i) if and only if (ii). Apply Lemma 5.2.

(ii) implies (iii). If U is an ultrafilter of A then, by (ii), U is Boolean. Applying Remark 5.4 (i), we get that $\mathscr{B}(A) \subseteq U$.

(iii) implies (ii). Let U be an ultrafilter of A. Then $\mathscr{B}(A) \subseteq U$ and $\mathscr{B}(A)$ is a Boolean filter of A. It follows that U is also Boolean.

References

- R. Ambrosio and A. Lettieri, 'A classification of bipartite MV-algebras', Math. Japon. 38 (1993), 111-117.
- [2] L. P. Belluce, A. Di Nola and A. Lettieri, 'Local MV-algebras', Rend. Circ. Mat. Palermo (2) 42 (1993), 347–361 (1994).
- [3] R. Cignoli, I. M. L. D'Ottaviano and D. Mundici, Algebraic foundations of many-valued reasoning (Kluwer Acad. Publ., Dordrecht, 1998).
- [4] A. Di Nola, G. Georgescu and A. Iorgulescu, 'Pseudo-BL algebras: Part I', *Mult.-Valued Log.*, to appear.
- [5] _____, 'Pseudo-BL algebras: Part II', Mult.-Valued Log., to appear.
- [6] A. Di Nola and A. Lettieri, 'Perfect MV-algebras are categorically equivalent to abelian *l*-groups', Studia Logica 53 (1994), 417–432.
- [7] A. Di Nola, F. Liguori and S. Sessa, 'Using maximal ideals in the classification of MV-algebras', Portugal. Math. 50 (1993), 87-102.
- [8] A. Di Nola, S. Sessa, F. Esteva, L. Godo and P. Garcia, 'The variety generated from perfect BL-algebras: an algebraic approach in fuzzy logic setting', preprint, 2000.
- [9] A. Dvurecenskij, 'Pseudo MV-algebras are intervals in *l*-groups', J. Aust. Math. Soc. 72 (2002), 427-445.
- [10] P. Flondor, G. Georgescu and A. Iorgulescu, 'Pseudo-t-norms and pseudo-BL algebras', Soft Computing 5 (2001), 355-371.
- [11] G. Georgescu and A. Iorgulescu, 'Pseudo-MV algebras: a noncommutative extension of MValgebras', in: *Information technology (Bucharest, 1999)* (Inforce, Bucharest, 1999) pp. 961–968.
- [12] _____, 'Pseudo-MV algebras', Mult.-Valued Log. 6 (2001), 95–135.
- [13] —, 'Pseudo-BL algebras: a noncommutative extension of BL-algebras (Abstract)', in: The Fifth International Conference FSTA 2000 on Fuzzy Sets Theory and its Application, February 2000, pp. 90–92.
- [14] P. Hájek, Metamathematics of fuzzy logic (Kluwer Acad. Publ., Dordrecht, 1998).
- [15] I. Leuştean, 'Local pseudo MV-algebras', Soft Computing 5 (2001), 386-395.
- [16] D. Mundici, 'Interpretation of AFC*-algebras in Lukasiewicz sentential calculus', J. Funct. Anal. 65 (1986), 15–63.
- [17] E. Turunen, 'Boolean deductive systems of BL-algebras', Arch. Math. Logic 40 (2001), 467-473.
- [18] ——, Mathematics behind fuzzy logic (Physica-Verlag, Heidelberg, 1999).
- [19] E. Turunen and S. Sessa, 'Local BL-algebras', Mult.-Valued Log. 6 (2001), 1-21.

Faculty of Mathematics	National Institute for Research
University of Bucharest	and Development in Informatics
14 Academiei Street	8–10 Averescu Avenue
70109 Bucharest	71316 Bucharest
Romania	Romania
e-mail: georgescu@funinf.math.unibuc.ro	e-mail: leo@u3.ici.ro