
JFP 21 (2): 159–207, 2011. c© Cambridge University Press 2010

doi:10.1017/S0956796810000134 First published online 22 September 2010

159

Roles, stacks, histories: A triple for Hoare

JOHANNES BORGSTRÖM, ANDREW D. GORDON

Microsoft Research, Cambridge, United Kingdom

(e-mail: adg@microsoft.com)

RICCARDO PUCELLA

Northeastern University, College of Computer and Information Science, Boston, Massachusetts, USA

Abstract

Behavioral type and effect systems regulate properties such as adherence to object and

communication protocols, dynamic security policies, avoidance of race conditions, and many

others. Typically, each system is based on some specific syntax of constraints, and is checked

with an ad hoc solver. Instead, we advocate types refined with first-order logic formulas as

a basis for behavioral type systems, and general purpose automated theorem provers as an

effective means of checking programs. To illustrate this approach, we define a triple of security-

related type systems: for role-based access control, for stack inspection, and for history-based

access control. The three are all instances of a refined state monad. Our semantics allows a

precise comparison of the similarities and differences of these mechanisms. In our examples,

the benefit of behavioral type-checking is to rule out the possibility of unexpected security

exceptions, a common problem with code-based access control.

1 Introduction

1.1 Behavioral type systems

Type-checkers for behavioral type systems are an effective programming language

technology aimed at verifying various classes of program properties. We consider

type and effect systems, typestate analyses, and various security analyses as being

within the class of behavioral type systems. A few examples include memory

management (Gifford & Lucassen 1986), adherence to object and communication

protocols (Strom & Yemini 1986; DeLine & Fähndrich 2001), dynamic security

policies (Pistoia et al. 2007b), authentication properties of security protocols (Gordon

& Jeffrey 2003), avoidance of race conditions (Flanagan & Abadi 1999), and many

more.

While the proliferation of behavioral type systems is a good thing—evidence

of their applicability to a wide range of properties—it leads to the problem of

fragmentation of both theory and implementation techniques. Theories of different

behavioral type systems are based on a diverse range of formalisms, such as calculi

of objects, classes, processes, functions, and so on. Checkers for behavioral type

systems often make use of specialized proof engines for ad hoc constraint languages.

The fragmentation into multiple theories and implementations hinders both the

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

160 J. Borgström et al.

comparison of different systems, and also the sharing of proof engines between

implementations.

We address this fragmentation. We show three examples of security-related

behavioral type systems that are unified within a single logic-based framework.

Moreover, they may be checked by invoking the current generation of automated

theorem provers, rather than by building ad hoc solvers.

1.2 Refinement types and automated theorem proving

The basis for our work is the recent development of automatic type-checkers for pure

functional languages equipped with refinement types. A refinement type {x : T | C}
consists of the values x of type T such that the formula C holds. Since values

may occur within the formula, refinement types are a particular form of dependent

type. Variants of this construction are referred to as refinement types in the setting

of ML-like languages (Freeman & Pfenning 1991; Xi & Pfenning 1999; Flanagan

2006), but also as subset types (Nordström et al. 1990) or set types (Constable et al.

1986) in the context of constructive type theory, and predicate subtypes in the setting

of the interactive theorem prover PVS (Rushby et al. 1998).

In principle, type-checking with refinement types may generate logical verification

conditions requiring arbitrarily sophisticated proof. In PVS, for example, some

verification conditions are implicitly discharged via automated reasoning, but often

the user needs to suggest an explicit proof tactic.

Still, some recent type-checkers for these types use external solvers to discharge

automatically the proof obligations associated with refinement formulas. These

solvers take as input a formula in the syntax of first-order logic, including equality

and linear arithmetic, and attempt to show that the formula is satisfiable. This

general problem is known as satisfiability modulo theories (SMT) (Ranise & Tinelli

2006); it is undecidable, and hence the solvers are incomplete, but remarkable

progress is being made.

Three examples of type-checkers for refinement types are SAGE (Flanagan

2006; Gronski et al. 2006), F7 (Bengtson et al. 2008), and Dsolve (Rondon et al.

2008). These type-checkers rely on the SMT solvers Simplify (Detlefs et al. 2005),

Z3 (de Moura & Bjørner 2008), and Yices (Dutertre & de Moura 2006).

Our implementation experiments are based on the F7 type-checker, which checks

programs in a subset of the Objective Caml and F# dialects of ML against a type

system enhanced with refinements. The theoretical foundation for F7 and its type

system is RCF, which is the standard Fixpoint Calculus (FPC, a typed call-by-value

λ-calculus with sums, pairs, and iso-recursive types) (Plotkin 1985; Gunter 1992)

augmented with message-passing concurrency and refinement types with formulas

in first-order logic.

1.3 RIF: refinement types meet the state monad

Moggi (1991) pioneered the state monad as a basis for the semantics of imperative

programming. Wadler (1992) advocated its use to obtain imperative effects within

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 161

pure functional programming, as in Haskell, for instance. The state monad can be

written as the following function type, parametric in a type state, of global imperative

state.

M(T) � state → (T × state)

The idea is that M(T) is the type of a computation that, if it terminates on a given

input state, returns an answer of type T , paired with an output state.

With the goal of full verification of imperative computations, various authors,

including Filliâtre (1999) and Nanevski et al. (2006), consider the state monad of

the form below, where P and Q are assertions about state. (We elide some details of

variable binding.)

MP ,Q(T) � (state | P) → (T × (state | Q))

The idea here is that MP ,Q(T) is the type of a computation returning T , with

precondition P and postcondition Q. More precisely, it is a computation that, if

it terminates on an input state satisfying the precondition P , returns an answer of

type T , paired with an output state satisfying the postcondition Q. Hence, one can

build frameworks for Hoare-style reasoning about imperative programs (Filliâtre &

Marché 2004; Nanevski et al. 2008), where MP ,Q(T) is interpreted so that (state | P)

and (state | Q) are dependent pairs consisting of a state together with proofs of

P and Q. (The recent paper by Régis-Gianas & Pottier (2008) on Hoare logic

reasoning for pure functional programs has a comprehensive literature survey on

formalizations of Hoare logic.)

In this paper, we consider an alternative reading: let the refined state monad be

the interpretation of MP ,Q(T), where (state | P) and (state | Q) are refinement types

populated by states known to satisfy P and Q. In this reading, MP ,Q(T) is simply a

computation that accepts a state known to satisfy P and returns a state known to

satisfy Q, as opposed to a computation that passes around states paired with proof

objects for the predicates P and Q.

This paper introduces and studies an imperative calculus in which computations

are modeled as Fixpoint Calculus expressions in the refined state monad MP ,Q(T).

More precisely, our calculus, which we refer to as Refined Imperative FPC, or RIF

for short, is a generalization of FPC with dependent types, subtyping, global state

accessed by get and set operations, and computation types refined with preconditions

and postconditions. To specify correctness properties, we include assumptions and

assertions as expressions. The expression assume(s)C adds the formula C{M/s}, where

M is the current state, to the log, a collection of formulas assumed to hold. The

expression assert(s)C always returns at once, but we say it succeeds when the formula

C{M/s}, where M is the current state, follows from the log, and otherwise it fails.

We define the syntax, operational semantics, and type system for RIF, and give a

safety result, Theorem 1 (Safety), which asserts that safety (the lack of all assertion

failures) follows by type-checking. This theorem follows from a direct encoding of

RIF within RCF, together with appeal to a safety theorem for RCF itself. The

appendices include the direct encoding of our calculus RIF within the existing

calculus RCF.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

162 J. Borgström et al.

Our calculus is similar in spirit to Hoare Type Theory (Nanevski et al. 2006) and

YNot (Nanevski et al. 2008), although we use refinement types for states instead

of dependent pairs, and we use formulas in classical first-order logic suitable for

direct proof with SMT solvers, instead of constructive higher-order logic. Another

difference is that RIF has a subtype relation, which may be applied to computation

types to, for example, strengthen preconditions or weaken postconditions. A third

difference is that we are not pursuing full program verification, which typically

requires some human interaction, but instead view RIF as a foundation for automatic

type-checkers for behavioral type systems.

If we ignore variable binding, both our refined type MP ,Q(T) and the constructive

types in the work of Filliâtre & Marché (2004) and Nanevski et al. (2008) are

instances of Atkey’s (Atkey 2009) parameterized state monad, where the parame-

terization is over the formulas concerning the type state. When variable binding

is included, the type MP,Q(T) is no longer a parameterized monad, since the

preconditions and postconditions are of different types as the postcondition can

mention the initial state.

1.4 Unifying behavioral types for roles, stacks, and histories

Our purpose in introducing RIF is to show that the refined state monad can

unify and extend several automatically checked behavioral type systems. RIF is

parametric in the choice of the type of imperative state. We show that by making

suitable choices of the type state, and by deriving suitable programming interfaces,

we recover several existing behavioral type systems, and uncover some new ones.

We focus on security-related examples where runtime security mechanisms—based

on roles, stacks, and histories—are used by trusted library code to protect themselves

against less trusted callers. Unwarranted access requests result in security exceptions.

First, we consider role-based access control (RBAC) (Ferraiolo & Kuhn 1992;

Sandhu et al. 1996), where the current state is a set of activated roles. Each activated

role confers access rights to particular objects.

Second, we consider permission-based access control, where the current state

includes a set of permissions available to running code. We examine two standard

variants: stack-based access control (SBAC) (Gong 1999; Wallach et al. 2000;

Fournet & Gordon 2003) and history-based access control (HBAC) (Abadi &

Fournet 2003). We implement each of the three access control mechanisms as an

application programming interface (API) within RIF.

We show how the APIs for the RBAC, SBAC, and HBAC mechanisms support

the writing of both trusted libraries and untrusted application code. In each case,

checking application code against the API amounts to behavioral typing, and ensures

that application code causes no security exceptions. For trusted library code, which

controls the state representing the access control permissions, static checking prevents

accidental programming errors that can lead to security exceptions. For untrusted

callers that may invoke the trusted library, and which do not have direct access

to the state representing the access control permissions, static checking prevents

both programming errors and subversion of the security mechanism. (Of course,

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 163

subversion cannot be prevented in trusted library code, or in untrusted callers when

the trusted library provides direct access to the access control permissions.)

Our results show the theoretical feasibility of our approach. We have type-checked

all of the example code in this paper by first running a tool that implements the

encoding of RIF into RCF described in the appendices, and then type-checking the

translated code with F7 and Z3.

The contents of the paper are as follows. Section 2 considers access control with

roles. Section 3 considers access control with permissions, based either on stack

inspection or a history variable. We use our typed calculus in these sections but

postpone the formal definition to Section 4. Finally, Section 5 discusses related work

and Section 6 offers some conclusions, and a dedication.

Appendix A recalls the definition of RCF (Bengtson et al. 2008). Appendix B

provides a semantics of the calculus of this paper in RCF.

An earlier, abridged version of this article will appear in the proceedings of a

meeting at Microsoft Research, Cambridge, on April 16–17, 2009, to celebrate the

75th birthday of Tony Hoare. A draft of the present article appears as a technical

report (Borgström et al. 2009).

2 Types for role-based access control

In general, access control policies regulate access to resources based on information

about both the resource and the entity requesting access to the resource, as well as

information about the context of the request. In particular, RBAC policies base their

decisions on the actions that an entity is allowed to perform within an organization—

their role. Without loss of generality, we can identify resources with operations to

access these resources, and therefore RBAC decisions concern whether a user can

perform a given operation based on the role that the user plays. Thus, roles are a

device for indirection: instead of assigning access rights directly to users, we assign

roles to users, and access rights to roles.

In this section, we illustrate the use of our calculus by showing how to express

RBAC policies, and demonstrate the usefulness of refinements on state by showing

how to statically enforce that the appropriate permissions are in place before

controlled operations are invoked. This appears to be the first type system for RBAC

properties—most existing studies on verifying RBAC properties in the literature use

logic programming to reason about policies independently from code (Li et al. 2002;

Becker & Sewell 2004; Becker & Nanz 2007). We build on the typeful approach

to access control introduced by Fournet et al. (2005), where the access policy is

expressed as a set of logical assumptions; relative to that work, the main innovation

is the possibility of de-activating as well as activating access rights.

2.1 Simple RBAC: File system permissions

As we mentioned in the introduction, our calculus is a generalization of FPC

with dependent types and subtyping. As such, we will use an ML-like syntax for

expressions in the calculus. The calculus also uses a global state to track security

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

164 J. Borgström et al.

information, and computation types refined with preconditions and postconditions

to express properties of that global state. The security information recorded in

the global state may vary depending on the kind of security guarantees we want

to provide. Therefore, our calculus is parameterized by the security information

recorded in the global state and the operations that manipulate that information.

To use our calculus, we need to instantiate it with an extension API module that

implements the security information tracked in the global state, and the operations

to manipulate that information. The extension API needs to define a concrete state

type that captures the information recorded in the global state. Functions in the

extension API are the only functions that can explicitly manipulate the state via

the primitives get() and set(). Moreover, the extension API defines predicates by

assuming logical formulas; this is the only place where assumptions are allowed.

We present an extension API for RBAC. In the simplest form of RBAC, permis-

sions are associated with roles, and therefore we assume a type role representing

the class of roles. The model we have in mind is that roles can be active or not.

To be able to use the permissions associated with a role, that role must be active.

Therefore, the security information to be tracked during computation is the set of

roles that are currently active.

RBAC API:

type state = role list

val activate: r:role → {(s)True} unit {(s’)Add(s’,s,r)}
val deactivate: r:role → {(s)True} unit {(s’)Rem(s’,s,r)}

assume ∀ts,x. Mem(x,ts) ⇔ (∃y, vs. ts = y::vs ∧ (x = y ∨ Mem(x,vs)))

assume ∀rs,ts,x. Add(rs,ts,x) ⇔ (∀y. Mem(y,rs) ⇔ (Mem(y,ts) ∨ x=y))

assume ∀rs,ts,x. Rem(rs,ts,x) ⇔ (∀y. Mem(y,rs) ⇔ (Mem(y,ts) ∧ ¬(x = y)))

assume ∀s,r. Active(r,s) ⇔ Mem(r,s)

An extension API supplies three kinds of information. First, it fixes a type for

the global state. Based on the discussion above, the global state of a computation is

the set of roles that are active, hence we take type state = role list, where role is the

type for roles, which is a parameter to the API.

Second, an extension API gives functions to manipulate the global state. The

extension API for primitive RBAC has two functions only: activate to add a role

to the state of active roles, and deactivate to remove a role from the state of active

roles.

We use val f : T to give a type to a function in an API. Expressions get computation

types of the form {(s0)C0}x:T {(s1)C1}, where the scope of s0 is C0, T and C1 and

the scope of x and s1 is C1. Such a computation type is interpreted semantically

using the refined state monad mentioned in Section 1.3, where it corresponds to

the type M(s0)C0 ,(s1)C1
(T). In particular, a computation type states that an expression

starts its evaluation with a state satisfying C0 (in which s0 is bound to that state

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 165

in C0) and yields a value of type T and a final state satisfying C1 (in which s0 is

bound to the initial state of the computation in C1, s1 is bound to the final state of

the computation, and x is bound to the value returned by the computation). Thus,

for instance, activate is a function that takes role r as input and computes a value of

type unit. That computation takes an unconstrained state (that is, satisfying True),

and returns a state that is the union of the initial state and the newly activated

role r—recall that a state here is a list of roles. Similarly, deactivate is a function that

takes a role as input and computes a unit value in the presence of an unconstrained

state and producing a final state that is simply the initial state minus the deactivated

role.

The third kind of information contained in an API are logical axioms. Observe

that the postconditions for activate and deactivate use predicates such as Add and

Rem. We define such predicates using assumptions, which let us assume arbitrary

formulas in our assertion logic, formulas that will be taken to be valid in any

code using the API. Ideally, these assumed formulas would be proved sound in

some external proof assistant, in terms of some suitable model, but here we follow

an axiomatic approach. For the purposes of RBAC, we assume some set-theoretic

predicates (using lists as a representation for sets) and a predicate Active true exactly

when a given role is currently active. Most predicates are parameterized by the

global state, that is, the current set of active roles.

RBAC API implementation:

// Set-theoretic operations (provided by a library)

val add: l:α list → e:α → {(s)True} r:α list {(s’)s=s’ ∧ Add(r,l,e)}
val remove: l:α list → e:α → {(s)True} r:α list {(s’)s=s’ ∧ Rem(r,l,e)}

let activate r = let rs = get() in let rs’ = add rs r in set(rs’)

let deactivate r = let rs = get() in let rs’ = remove rs r in set(rs’)

The implementation of activate and deactivate use primitive operations get() and

set() to, respectively, get and set the state of the computation. It is important that get()

and set() only be used in the implementation of API functions; in particular, user

code calling into the API cannot use those operations to arbitrarily manipulate the

state. The API functions are meant to encapsulate all state manipulation. In practice,

we enforce such a restriction through a module system that keeps get() and set() local

to the module implementing the API. For the purpose of this paper, we shall simply

assume that get() and set() are only available in API functions implementations.

Beyond the use of get() and set(), the implementation of the API functions above

also uses set-theoretic operations add and remove to manipulate the content of the

state. We only give the types of these operations—their implementations are the

standard list-based implementations.

We associate permissions to roles via an access control policy expressed as logical

assumptions. We illustrate this with a simple example, that of modeling access

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

166 J. Borgström et al.

control in a primitive file system. We assume two kinds of roles: the superuser, and

friends of normal users (represented by their login names):
� �

type role = SuperUser | FriendOf of string
� �

In this scenario, permissions concern which users can read which files. For simplicity,

we consider a policy where a superuser can read all files, while other users can access

specific files, as expressed in the policy. A predicate CanRead(f,s) expresses the “file f

can be read in global state s”. Here is a simple policy in line with this description:

permission.
� �

assume ∀file,s. Active(SuperUser,s) ⇒ CanRead(file,s)

assume ∀s.Active(FriendOf("Andy"),s) ⇒ CanRead("andy.log",s)
� �

This policy, aside from stating that the superuser can read all files, also states that

if the specific role FriendOf("Andy") is active, then the file andy.log can be read. For

simplicity, we consider only read permissions here. It is straightforward to extend

the example to include write permissions or execute permissions.

The main function we seek to restrict access to is readFile, which intuitively

requires that the currently active roles suffice to derive that the file to be read can

in fact be read.
� �

val readFile: file:string → {(rs) CanRead(file,rs)} string {(s)s=rs}
let readFile file = assert (rs)(CanRead(file,rs)); primReadFile file

� �

We express this requirement by writing an assertion in the code of readFile, before

the call to the underlying system call primReadFile. The assert expression checks that

the current state (bound to variable rs) proves that CanRead(file,rs) holds. Such an

assertion succeeds if the formula is provable, and fails otherwise. The main property

of our language is given by a safety theorem: if a program type-checks, then all

assertions succeed. In other words, if a program that uses readFile type-checks, then

we are assured that by the time we call primReadFile, we are permitted to read file,

at least according to the access control policy. The type system, somewhat naturally,

forces the precondition of readFile to ensure that the state can derive CanRead for

the file under consideration.

Intuitively, the following expression type-checks:
� �

activate(SuperUser); readFile "andy.log"
� �

The expression first adds role SuperUser to the state, and the postcondition of activate

notes that the resulting state is the union of the initial state (of which nothing is

know) with SuperUser. When readFile is invoked, the precondition states that the

current state rs must be able to prove the permission CanRead("andy.log",rs). Be-

cause SuperUser is active and Active(SuperUser,s) implies CanRead(file,s) for any file

and global state s, we get CanRead("andy.log",rs), and we can invoke readFile. The

following examples type-check for similar reasons, since Active(FriendOf "Andy",rs)

can prove the formula CanRead("andy.log",rs):

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 167

� �

activate(FriendOf "Andy"); readFile "andy.log"

activate(FriendOf "Andy"); deactivate(FriendOf "Jobo"); readFile "andy.log"
� �

In contrast, the following example fails to activate any role that gives a CanRead

permission on file "andy.log", and therefore fails to type-check:
� �

activate(FriendOf "Ric"); readFile "andy.log" // Does not type-check
� �

After activating FriendOf "Ric", the postcondition of activate expresses that the

state contains whatever was in the initial state along with role FriendOf "Ric".

When invoking readFile, the type system tries to establish the precondition, but it

only knows that Active(FriendOf "Ric",rs), where rs is the current global state, and

the policy cannot derive the formula CanRead("andy.log",rs) from it. Therefore,

the type system fails to satisfy the precondition of readFile "andy.log", and reports

a type error.

The access control policy need not be limited to a statically known set of files.

Having a full predicate logic at hand affords us much flexibility. To express, for

instance, that any file with extension .txt can be read by anyone, we can use a

predicate Match:
� �

assume ∀file,s.Match(file,"*.txt") ⇒ CanRead(file,s)
� �

Rather than axiomatizing the Match predicate, we rely on a function glob that does

a dynamic check to see if a file name matches the provided pattern, and in its

postcondition fixes the truth value of the Match predicate on those arguments:
� �

val glob: file:string → pat:string →
{(rs) True} r:bool {(rs’) rs=rs’ ∧ (r=true ⇔ Match(file,pat))}

let glob file pat = if (∗ ... code for globbing ... ∗)

then assume Match(file,path); true

else assume ¬Match(file,path); false
� �

The following code therefore type-checks, even when all the activated roles do not

by themselves suffice to give a CanRead permission. When checking the then-branch

of the conditional, our system recalls the post-condition of the call to glob, and also

that its result is true. These facts imply that Match(f, "*.txt") holds, and hence that

CanRead(f, s) holds for any s, which suffices to establish the precondition of the call

to readFile.
� �

activate(FriendOf "Ric");

let f = "log.txt" in

if (glob f "*.txt") then readFile f else "skipped"
� �

Similarly, not only can we specify which roles give CanRead permissions for which

files by saying so explicitly in the policy (as above), we can also dynamically check

that a friend of some user can read a file by querying the physical file system

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

168 J. Borgström et al.

through a primitive function primReadFSPerm(f,u) that checks whether a given user

u (and therefore their friends) can access a given file f, and reflects the result of that

dynamic check into the type system:
� �

val hasFSReadPermission: f:string → u:string → {(rs) True}
r:bool {(rs’) rs=rs’ ∧ (r=True ⇒ (∀s.Active(FriendOf(u),s) ⇒ CanRead(f,s)))}

let hasFSReadPermission f u =

if primReadFSPerm (f,u)

then assume (s) Active(FriendOf(u),s) ⇒ CanRead(f,s); true

else false
� �

Above, the assumption in primReadFSPerm is dependent on the current state, bound

to the variable s in the formula Active(FriendOf(u),s)⇒ CanRead(f,s). The following

code now type-checks:
� �

activate(FriendOf "Andy");

if (hasFSReadPermission "somefile" "Andy")

then readFile "somefile"

else "cannot read file"
� �

The code first activates the role FriendOf "Andy", and then dynamically checks, by

querying the physical file system, that user "Andy" (and therefore his friends) can

in fact read file "somefile". The type of hasFSReadPermission is such that if the

result of the check is true, the new formula ∀s.Active(FriendOf("Andy"),s)⇒ CanRead

("somefile",s) can be used in subsequent expressions—in particular, when calling

readFile "somefile". At that point, FriendOf "Andy" is active in global state rs, and

therefore CanRead("somefile",rs) holds.

To what extent is our encoding of RBAC as an API in RIF correct? Unfortunately,

we are not aware of any work that presents an independently-motivated semantics

for RBAC as a type system for a calculus or programming language against which

we could compare our encoding. The best we can do is observe that we can capture

with our type system the kind of policies that are investigated in specialized logics

for access control. This is somewhat unsatisfying because those logics are rarely

embedded in a programming language, making a direct comparison difficult. The

next section provides an example of the kind of comparison we can perform.

2.2 Extended RBAC: Health care policies

To evaluate how suitable our language is for modeling complex RBAC scenarios,

we embed an example by Becker & Nanz (2007, Section 4), inspired by policies in

electronic health care.

To model this example, we build on top of the insights gained in Section 2.1,

using a more extensive state. Not only do we have roles such as patient, clinician

and administrator, as before, but we introduce a notion of users that activate and

deactivate those roles, and a database of facts to record information that can be

queried by the policies. In particular, the database will record information such as

which users can activate which roles.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 169

We assume a type id of identities, a type role of roles, and a type fact of facts

(see example below). We take states to have type state = id ∗ role list ∗ fact list. The

API is now somewhat richer, including operations to deal with identities and the

database of facts. To simplify the presentation of pre- and postconditions, we assume

that free variables that occur in a pre- or postcondition are existentially quantified

in that formula, e.g., pre- or postcondition (s’)s=(i,rs,db) ∧ s’=(u,[],db) in the scope

of u and s is a shorthand for (s’)∃i,rs,db. s=(i,rs,db) ∧ s’=(u,[],db).

Extended RBAC API:

type state = id ∗ role list ∗ fact list

val switch user: u:id → {(s)True} unit {(s’) s=(i,rs,db) ∧ s’=(u,[],db)}
val activate: r:role → {(s) CanActivate(r,s)} unit {(s’)s=(i,rs,db) ∧ s’=(i,rs’,db) ∧

Add(rs’,rs,r)}
val deactivate: r:role → {(s)True} unit {(s’)s=(i,rs,db) ∧ s’=(i,rs’,db) ∧ Rem(rs’,rs,r)}
val record: f:fact → {(s)True} unit {(s’)s=(i,rs,db) ∧ s’=(i,rs,db’) ∧ Add(db’,db,f)}
val remove: f:fact → {(s)True} unit {(s’)s=(i,rs,db) ∧ s’=(i,rs,db’) ∧ Rem(db’,db,f)}

assume ∀s,id,rs,db.s=(id,rs,db) ⇒ Ident(id,s)

assume ∀s,id,rs,db.s=(id,rs,db) ⇒ (∀r.Active(r,s) ⇔ Mem(r,rs))

assume ∀s,id,rs,db.s=(id,rs,db) ⇒ (∀f.Fact(f,s) ⇔ Mem(f,db))

Extended RBAC API implementation:

let switch user u = let (i,rs,db) = get() in set(u,[],db)

let activate r = assert (s)(CanActivate(r,s));

let (i,rs,db) = get() in let rs’ = add rs r in set(i,rs’,db)

let deactivate r = let (i,rs,db) = get() in let rs’ = remove rs r in set(i,rs’,db)

let record f = let (i,rs,db) = get() in let db’ = add db f in set(i,rs,db’)

let remove f = let (i,rs,db) = get() in let db’ = remove db f in set(i,rs,db’)

The main difference here is that activate now has precondition stating that the

role can be activated by the current user. The predicates Ident, Active, and Fact,

respectively, capture the current identity, the currently active roles, and the currently

registered facts recorded in the global state. The predicate CanActivate is defined by

the access control policy, as we shall see below.

The API above is very general, and in particular does not impose any restriction

on who can record and remove facts from the database. In a library built using this

API, as we shall see below, we should specialize the types of record and remove for

the various kinds of facts at hand, and we should prevent user code from accessing

the underlying record and remove functions. Again, this is achieved in practice using

a module system, but here we simply assume the underlying functions are hidden.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

170 J. Borgström et al.

Identities are simply names, roles include patient, clinician, and administrator,

and the database of facts records information such as which identities can activate

which roles, as well as consents that have been requested and granted.
� �

type id = Name of string

type role = Patient | Clinician | Admin

type fact = IsMember of id ∗ role | HasConsented of id ∗ id

| HasRequestedConsent of id ∗ id
� �

In order for a user to activate a role, we need to ensure that the current identity

is either allowed to activate the role according to a static policy, or is a member of

the requested role as recorded in the database. In addition, we impose a separation-

of-duty restriction, ensuring that one cannot activate both the Clinician role and the

Administrator role at the same time.
� �

assume ∀r,s.CanActivate(r,s) ⇔ (UserCanActivate(r,s) ∧ NoConflict(r,s))

assume ∀r,s,id.(Ident(id,s) ∧ Fact(IsMember(id,r)),s) ⇒ UserCanActivate(r,s)

assume ∀s.Ident(Name("Andy"),s) ⇒ UserCanActivate(Admin,s)

assume ∀r,s.NoConflict(r,s) ⇔ ((r=Clinician ⇒ ¬Active(Admin,s)) ∧
(r=Admin ⇒ ¬Active(Clinician,s)))

� �

Since role activation may depend on membership information kept in the database,

we define the following primitives for registering and unregistering membership

information, subject to the requirement that they can only be invoked when the

Admin role is active—an assertion to that effect enforces this requirement.
� �

val register: u:id → r:role → {(s) Active(Admin,s)} unit

{(s’)s=(i,rs,db) ∧ s’=(i,rs,db’) ∧ Add(db’,db,IsMember(u,r))}
let register u r = assert (s)(Active(Admin,s)); record(IsMember(u,r))

val unregister: u:id → r:role → {(s) Active(Admin,s)} unit

{(s’)s=(i,rs,db) ∧ s’=(i,rs,db’) ∧ Rem(db’,db,IsMember(u,r))}
let unregister u r = remove(IsMember(u,r))

� �

Consider the following policy for reading electronic health records (EHR): users

can read their own EHR, and clinicians can read any EHR for which they have

received consent.
� �

assume ∀u,s.Ident(u,s) ⇒ CanReadEHR(u,s)

assume ∀u,s.Active(Clinician,s) ∧ Consented(u,s) ⇒ CanReadEHR(u,s)
� �

The main function is readEHR, which reads an EHR. It asserts that the current user

can in fact read the EHR, based on the currently active roles.
� �

val readEHR: file:string → {(s) CanReadEHR(Name(file),s)} string {(t)s=t}
let readEHR file =

assert (s)(CanReadEHR(Name(file),s));

(∗ ... read record ... ∗)
� �

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 171

There remains the issue of consent. A patient can give consent to an individual to

read their EHR, as long as that individual first requested consent from the patient.

We record who requested consent and who consented (and to whom in both cases)

in the database. We provide functions requestConsent and giveConsent that refine

the type of record and ensure that the right identity is used in the consent, and that

the right roles are active:
� �

assume ∀u,v,s.Consented(u,s) ⇔ (Ident(v,s) ∧ Fact(HasConsented(u,v),s))

val requestConsent: u:id → v:id →
{(s) Ident(u,s) ∧ Active(Clinician,s)} unit

{(s’) s=(i,rs,db) ∧ s’=(i,rs,db’) ∧ Add(db’,db,HasRequestedConsent(u,v))}
let requestConsent u v = record(HasRequestedConsent(u,v))

val giveConsent: u:id → v:id →
{(s) Ident(u,s) ∧ Active(Patient,s) ∧ Fact(HasRequestedConsent(v,u,s))}

unit

{(s’)s=(i,rs,db) ∧ s’=(i,rs,db’) ∧ Add(db’,db,HasConsented(u,v))}
let giveConsent u v =

assert (s)(Ident(u,s) ∧ Active(Patient,s) ∧ Fact(HasRequestedConsent(v,u,s)));

record(HasConsented(u,v))
� �

How can we use the above interface? One application is to type-check access

control properties of workflows for interacting with a medical records server.

Roughly speaking, a workflow is a description of the steps that a group of users

can follow to achieve an objective. In the setting of this section, it is probably more

natural to consider workflows as models of a system of users attempting to achieve

an objective, thereby using RIF as a modeling language. This is similar in spirit to

how we can use the logic of Becker & Nanz (2007, Section 4) which inspired our

example. It is also possible to implement workflows as actual executable artifacts,

for instance, on a machine such as a web server, or a smartcard. The key primitive

that needs to be implemented there is the switch user u primitive, which corresponds

to a context switch between users, and may be implemented by having the server

present a login window requiring password-based authentication, with the primitive

returning only if user u correctly logs in.

As an example, we can verify that the following workflow is well typed against

the above interface. It takes users pat and doc as arguments—where doc is assumed

to be a clinician—registers pat as a patient, and lets doc read pat ’s medical file.
� �

val workflow: pat:id → doc:id → {(s) Fact(IsMember(doc,Clinician),s)} string {(s’)
True}

let workflow pat doc =

switch user (Name "Andy"); activate Admin; register pat Patient;

switch user doc; activate Clinician; requestConsent doc pat;

switch user pat; activate Patient; giveConsent pat doc;

switch user doc; activate Clinician; readEHR pat
� �

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

172 J. Borgström et al.

This workflow prescribes that an administrator (here, Name "Andy") must first log

in to enable the registration of the patient, and then the doctor must log in to

request consent from the patient, followed by the patient logging in to give consent,

at which point the doctor can log in again to read the medical file. The point here

is to force the author of the workflow to put in sufficient input validation that there

will be no policy-driven error messages at runtime.

3 Types for permission-based access control

The RBAC systems of the previous section are most applicable in an interactive

setting, where principals inhabiting different roles can influence the computation as

it is running. Without interaction, we can instead work with a static division of the

program code based on its provenance. We assume that each function is assigned

a set of static permissions that enable it to perform certain side effects, such as

file system IO. A classical problem in this setting is the Confused Deputy (Hardy

1988), where untrusted code performs unauthorized side effects through exploiting a

trusted API. This problem has been addressed through various mechanisms. In this

section, we consider SBAC (Gong 1999; Wallach et al. 2000) and HBAC (Abadi &

Fournet 2003).

The purpose of SBAC is to protect trusted functions from untrusted callers. Unless

explicitly requested, a permission only holds at run-time if all callers on the call

stack statically hold the permission.

HBAC also intends to protect trusted code from the untrusted code it may call,

by ensuring that the run-time permissions depend on the static permissions of every

function called so far in the entire program. In particular, when a function returns,

the current run-time permissions can never be greater than the static permissions of

that function. HBAC can be seen as a refinement of SBAC, in the sense that the

run-time permissions at any point when using the HBAC calling conventions are

less than those when using SBAC.

In this section, we show how the RIF calculus supports type-checking of both

SBAC and HBAC policies. There are several formalizations of SBAC, some of

which include type systems. Previous type systems for SBAC took a rather simple

view of permissions. To quote Pottier et al. (2005): “In our model, privileges are

identifiers, and expressions cannot compute privileges. It would be desirable to

extend the static framework to at least handle first-class parameters of privileges,

so for example, a Java FilePermission, which takes a parameter that is a specific

file, could be modeled.” Having both computation types and dependent types in

our imperative calculus lets us treat not only parameters to privileges, but also have

a general theory of partially ordered privileges. We can also type-check code that

computes privileges, crucially including the privilege-manipulating API functions

defined in Section 3.2.

As a side effect, we can also investigate the differences between SBAC and HBAC

as implemented in our framework. We show one (previously known) example, where

switching from SBAC to HBAC resolves a security hole by throwing a run-time

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 173

exception; additionally, static type-checking discovers that the code is not safe to

run under HBAC.

The use of type-checkers allows the authors of trusted code to statically exclude

run-time security exceptions relating to lack of privileges. As discussed above, we

provide a more sensitive analysis than previous work, which facilitates the use of

the principle of least privilege. Type-checking can also be applied to untrusted code

before loading it, ensuring the lack of run-time security exceptions.

3.1 A lattice of permission sets

As a running example, we introduce the following permissions. The ScreenIO

permission is atomic. A FileIO permission is a tuple of an access right of type

RW and a file scope of type Wildcard. The access rights are partially ordered: the

owner of a file can both read and write it. The scope Any extends to any file in the

system.

Partially ordered permissions:

type αWildcard = Any | Just of α

type RW = Read | Write | Owns

type Permission = ScreenIO | FileIO of RW ∗ (string Wildcard)

type Perms = Permission list

When generalizing HBAC and SBAC to the setting, where permissions are

partially ordered, we run into a problem. Both HBAC and SBAC are built on taking

unions and intersections of sets of atomic permissions. In our setting permissions

are not atomic, but are built from partially ordered components, which makes

set-theoretic union and (especially) intersection unsuitable. As an example, the

greatest permission implied by both FileIO(Owns,Just(logFile)) and FileIO(Read,Any)

is FileIO(Read,Just(logFile)), rather than the empty permission.

For this reason, we need to generalize the usual model of working directly with

the lattice of (finite) subsets of an atomic permission set.

Note the contrast to RBAC, where the set of roles is partially ordered and the

permissions of a lesser role automatically accrue to all greater roles. Structured

permissions should still be useful in RBAC, since computations on permission sets

could be used to define and check constraints.

To represent and calculate with structured permissions such as wildcards, we use

a simple theory of lattices. Generalizing from the example above, we start with

a partially ordered set (P ,�) of permissions, where p � q iff holding permission

q implies that we also hold p. In this setting, the permissions at any point when

running a program form a downward closed subset of P . Since such sets can be

infinite, we represent them by the cochain of their maximal elements, which we

require to be finite.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

174 J. Borgström et al.

Definition 1 (Finite Lower Bounds)

If ps ⊆ P , we write ↓ps � {p | ∃q ∈ ps. p � q} for the downward closure of ps. If

ps = ↓ps, we say that ps is downward closed. The maximal elements of a set ps ⊆ P is

maxs(ps) � {q ∈ ps | ∀p ∈ ps. q � p ⇒ q = p}. ps is a cochain (of P) if ps = maxs(ps).

The maximal lower bounds of q, r ∈ P is mlbs(q, r) � maxs({p ∈ P | p � q ∧ p � r}).
P has finite lower bounds (FLB) iff mlbs(q, r) is finite for all for all q, r ∈ P .

In the following, we assume that P has FLB. We let Ofin(P) be the set of finite

cochains of P , and define a lattice structure on Ofin(P) as follows. The greatest lower

bound of ps and qs is ps � qs � maxs((↓ps) ∪ (↓qs)), and the least upper bound of

ps and qs is ps � qs � maxs((↓ps) ∩ (↓qs)). We write ps � qs iff ↓ps ⊆ ↓qs, “ps is

subsumed by qs”.

If all cochains in a poset P are finite, then P trivially has FLB. In the example above,

string Wildcard has FLB, but infinite cochains. As a common special case, if (P ,�)

forms a forest with the maximal elements at the roots then P has FLB and mlbs(p, q)

is the smaller of p and q (with respect to �), or empty if they are incomparable.

Returning to the running example, where the permissions form a forest, we have

that mlbs(Owns,Read) = {Read} and mlbs(Any, Just(logFile)) = {Just(logFile)}.
The greatest lower bound (glb) of two permission sets ps and qs subsumes precisely

those sets subsumed by both ps and qs. Dually, the least upper bound (lub) of two

permission sets ps and qs is the smallest set subsuming both ps and qs. We can

compute the results of these lattice operations as follows.

Proposition 2 (Computing lattice operations)

If P has FLB and ps, qs ∈ Ofin(P) then ps � qs = maxs(ps ∪ qs) and ps � qs =

maxs(
⋃

{mlbs(p, q) | p ∈ ps, q ∈ qs}). Moreover, ps � qs iff ps ⊆ ↓qs.
Assume that P and Q both have FLB. Then P × Q has FLB, with

mlbs((p1, q1), (p2, q2)) = mlbs(p1, p2)×mlbs(q1, q2). Furthermore, if P and Q are disjoint

then P ∪ Q also has FLB, with Ofin(P ∪ Q) isomorphic to Ofin(P) × Ofin(Q).

Proof

Note that maxs and ↓ are idempotent, maxs(↓ps) = maxs(ps) and ↓maxs(ps) = ↓ps.
The intersection of two downward closed sets is itself downward closed, and ↓
distributes over ∪ and ×. If ps and qs are both cochains and ↓ps = ↓qs, then

ps = qs.

• ps � qs = maxs((↓ps) ∪ (↓qs)) = maxs(↓(ps ∪ qs)) = maxs(ps ∪ qs).

• ↓(ps � qs) = ↓maxs((↓ps) ∩ (↓qs)) = ↓((↓ps) ∩ (↓qs)) = (↓ps) ∩ (↓qs) since

(↓ps) ∩ (↓qs) is downward closed. Then r ∈ (↓ps) ∩ (↓qs) iff ∃q ∈ ps, r ∈ qs such

that r � p and r � q; that is, iff r ∈ ↓mlbs(p, q). Thus ↓(ps�qs) =
⋃

{↓mlbs(p, q) |

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 175

p ∈ ps, rq ∈ qs} = ↓
⋃

{mlbs(p, q) | p ∈ ps, q ∈ qs}. maxs↓(ps � qs) = ps � qs

since ps � qs is a cochain, so ps � qs = maxs(
⋃

{mlbs(p, q) | p ∈ ps, q ∈ qs}).
• ↓mlbs((p1, p2), (q1, q2)) = {(r1, r2) | ri � pi ∧ ri � qi for i = 1, 2} =

{(r1, r2) | ri ∈ ↓mlbs(pi, qi) for i = 1, 2} = (↓mlbs(p1, q1)) × (↓mlbs(p2, q2)) =

↓(mlbs(p1, q1) × mlbs(p2, q2)). mlbs(p1, q1) × mlbs(p2, q2) is a cochain since

mlbs(p1, q1) and mlbs(p2, q2) are. Thus mlbs((p1, p2), (q1, q2)) = mlbs(p1, q1) ×
mlbs(p2, q2).

• Since P and Q are disjoint we have that p and q are incomparable if p ∈ P

and q ∈ Q. Thus, if ps ⊆ P and qs ⊆ Q then ↓ps∩↓qs = � and maxs(ps∪qs) =

maxs(ps) ∪ maxs(qs).
We first show that P ∪ Q has FLB. Take p, q ∈ P ∪ Q. By symmetry we may

assume that p ∈ P . If q ∈ P then mlbs(p, q) is finite by assumption. If q ∈ Q

then mlbs(p, q) = maxs(↓{p} ∩ ↓{q}) = maxs(�) = �, which is finite.

The function f : Ofin(P) × Ofin(Q) → Ofin(P ∪ Q), where f(ps, qs) � ps ∪ qs

is an isomorphism iff f is a bijection that preserves least upper and greatest

lower bounds. Since P and Q are disjoint, f is injective. Moreover, every finite

cochain rs ⊆ (P ∪ Q) can be written as f(ps, qs), where ps = rs ∩ P and

qs = rs ∩ Q are finite cochains (in P resp. Q), so f is surjective.

Fix ps, ps′ ∈ Ofin(P) and qs, qs′ ∈ Ofin(Q). We have that f(ps � ps′, qs � qs′) =

ps � ps′ ∪ qs � qs′ = maxs(↓ps ∪ ↓ps′) ∪ maxs(↓qs ∪ ↓qs′) = maxs(↓ps ∪ ↓ps′ ∪
↓qs ∪ ↓qs′) = maxs(↓(ps ∪ qs) ∪ ↓(ps′ ∪ qs′)) = f(ps, qs) � f(ps′, qs′). Finally,

f(ps� ps′, qs� qs′) = ps� ps′ ∪ qs� qs′ = maxs(↓ps∩ ↓ps′) ∪maxs(↓qs∩ ↓qs′) =

maxs((↓ps∩↓ps′)∪ (↓qs∩↓qs′)) = maxs((↓ps∪↓qs)∩ (↓ps′ ∪↓qs′)) = maxs(↓(ps∪
qs) ∩ ↓(ps′ ∪ qs′)) = f(ps, qs) � f(ps′, qs′). �

We can now compute that

{FileIO(Owns,Just(logFile))} � {FileIO(Read,Any)} = {FileIO(Read,Just(logFile))},

as desired.

We encode the partial order on permissions as a predicate Holds(p,ps) that checks

if a permission p is in the downward closure of the permission set ps. We define the

predicate Subsumed in term of Holds.

Predicate symbols and their definitions:

assume ∀x,y,xs. Holds(FileIO(Owns,y),xs) ⇒ Holds(FileIO(x,y),xs)

assume ∀x,y,xs. Holds(FileIO(x,Any),xs) ⇒ Holds(FileIO(x,Just(y)),xs)

assume ∀x,xs. Holds(x,x::xs)

assume ∀x,y,xs. Holds(x,xs) ⇒ Holds(x,y::xs)

assume ∀xs. Subsumed(xs,xs) ∧ Subsumed([],xs)

assume ∀x,xs,ys. Holds(x,ys) ∧ Subsumed(xs,ys) ⇒ Subsumed(x::xs,ys)

We also define predicates for Lub and Glb, with the intended meaning that Lub(x,y,z)

holds iff x is the least upper bound of y and z (and idem. for Glb). As an incomplete

axiomatization, we assume standard lattice axioms relating these predicates to each

other and to Subsumed.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

176 J. Borgström et al.

Lattice axioms:

// Glb is the greatest lower bound ; Lub is the least upper bound.

assume (∀x,y,z. Glb(x,y,z) ⇒ Subsumed(x,y))

assume (∀x,y,z. Lub(x,y,z) ⇒ Subsumed(y,x))

assume (∀x,y,z,t. Subsumed(t,x) ∧ Subsumed(t,y) ∧ Glb(z,x,y) ⇒ Subsumed(t,z))

assume (∀x,y,z,t. Subsumed(x,t) ∧ Subsumed(y,t) ∧ Lub(z,x,y) ⇒ Subsumed(z,t))

// Glb/Lub of comparable elements

assume (∀x,y. Subsumed(y,x) ⇒ Glb(y,x,y))

assume (∀x,y. Subsumed(y,x) ⇒ Lub(x,x,y))

// Associativity and Transitivity

assume (∀x,y,z. Glb(x,y,z) ⇒ Glb(x,z,y))

assume (∀x,y,z. Lub(x,y,z) ⇒ Lub(x,z,y))

assume (∀x,y,z. Subsumed(x,y) ∧ Subsumed(y,z) ⇒ Subsumed(x,z))

We then assume functions lub, glb and subsumed that compute the corresponding

operations for the permission language defined above, with the following types.

Types for lattice operations:

val lub: ps:Perms → qs:Perms → {(s) True} res:Perms {(t) s=t ∧ Lub(res,ps,qs)}
val glb: ps:Perms → qs:Perms → {(s) True} res:Perms {(t) s=t ∧ Glb(res,ps,qs)}
val subsumed: ps:Perms → qs:Perms →

{(s) True} x:bool {(t) s=t ∧ (x=True ⇔ Subsumed(ps,qs))}

3.2 Stack-based access control

In order to compare HBAC and SBAC in the same framework, we begin by

implementing API functions for requesting and testing permissions. We let state be a

record type with two fields: type state = {ast:Perms; dy:Perms}. The ast field contains

the current static permissions, which are used only when requesting additional

dynamic permissions (see request below). The dy field contains the current dynam-

ically requested permissions. Computations have type (α ;req) SBACcomp, for some

return type α and required initial dynamic permissions req. An SBACthunk wraps a

computation in a function with unit argument type (a thunk); this abbreviation is

introduced to simplify some latter examples.

The API functions have the following types and implementations. The become

function is used (notionally by the run-time system) when calling a function that may

have different static permissions from its caller. It first sets the static permissions

to those of the called code. Then, since the called function may be untrusted, it

reduces the dynamic permissions to the greatest lower bound of the current dynamic

permissions and the static permissions of the called function. Dually, upon return

the run-time system calls sbacReturn with the original permissions returned by

become, restoring them. The request function augments the dynamic permissions,

after checking that the static context (Subsumed(ps,st)) permits it. We check that the

permissions ps dynamically hold using the function demand; it has type ps:Perms

→ (unit;ps) SBACcomp.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 177

SBAC API and calling convention:

type (α ;req:Perms) SBACcomp = {(s) Subsumed(req,s.dy)} α {(t) s=t}
type (α ;req:Perms) SBACthunk = unit → (α ;req) SBACcomp

val become: ps:Perms→ {(s)True}s’:State{(t) s=s’ ∧ t.ast = ps ∧ Glb(t.dy,ps,s.dy)}
val sbacReturn: olds:State → {(s) True} unit {(t) t=olds}
val permitOnly: ps:Perms→ {(s) True}unit{(t) s.ast = t.ast ∧ Glb(t.dy,ps,s.dy)}
val request: ps:Perms →

{(s) Subsumed(ps,s.ast)} unit {(t) s.ast = t.ast ∧ Lub(t.dy,ps,s.dy)}
val demand: ps:Perms → (unit;ps) SBACcomp

The postcondition of an SBACcomp is that the state is unchanged. In order to

recover formulas that hold about the state, we use subtyping. As usual, a subtype of

a function type may return a subtype of the original computation type. In a subtype

G of a computation type F , we can strengthen the precondition. The postcondition

of G must also be weaker than (implied by) the precondition of G together with the

postcondition of F . As an example, {(s)C}α {(t)C{t/s}} is a subtype of (α ;[])SBACcomp

for every C , since � C ⇒ Subsumed([],s.dy) and � (C ∧ s = t) ⇒ C{t/s}. Subtyping is

used to ensure that pre- and postconditions match up when sequencing computations

using let. We also use subtyping to propagate assumptions that do not mention the

state, such as the definitions of predicates.

This API is used for code-based access control by inserting a become P call at

the start of every function with provenance P , and a call to sbacReturn where the

function returns. In the implementations of request and demand below, we assert

that subsumed returns true. The safety rheorem for RIF states that in a well-typed

program, assertions never fail at runtime. In the case of request, this corresponds to

the condition that no function ever requests permissions that its provenance does

not allow. In the case of demand, this corresponds to the condition that the necessary

permissions ps have been requested earlier in the call stack, and that all later stack

frames have static permissions at least ps.

SBAC API implementation:

let sbacReturn s = set s

let become ps =

let {ast=st;dy=dy} = get() in let dz = glb ps dy in

set {ast=ps;dy=dz}; {ast=st;dy=dy}
let permitOnly ps =

let {ast=st;dy=dy} = get() in let dz = glb ps dy in set ({ast=st;dy=dz})
let request ps =

let {ast=st;dy=dy} = get() in let x = subsumed ps st in

if x then let dz = lub ps dy in set {ast=st; dy=dz}
else assert False ; failwith "SecurityException: request"

let demand ps =

let {ast= ; dy=dy} = get() in let x = subsumed ps dy in

if x then () else assert False; failwith "SecurityException: demand"

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

178 J. Borgström et al.

To exercise this framework, we work in a setting with two principals. Applet is

untrusted, and can perform screen IO, read a version file and owns a temporary file.

System can read and write every file. We define three trusted functions, that either run

primitive (non-refined) functions or run as System. Function readFile demands that

the read permission for its argument holds dynamically. Similarly deleteFile requires

a write permission. Finally, cleanupSBAC takes a function returning a filename, and

then deletes the file returned by the function.
� �

let Applet = [ScreenIO;FileIO(Read,Just(version));FileIO(Owns,Just(tempFile))]

let System = [ScreenIO;FileIO(Write,Any);FileIO(Read,Any)]

val readFile: a:string → (string;[FileIO(Read,Just(a))]) SBACcomp

let readFile n = let olds = become System in demand [FileIO(Read,Just(n))] ;

let res = "Content of "ˆn in sbacReturn olds; res

val deleteFile: a:string → (string;[FileIO(Write,Just(a))]) SBACcomp

let deleteFile n = let olds = become System in demand [FileIO(Write,Just(n))] ;

let res = primitiveDelete n in sbacReturn olds; res

val cleanupSBAC: (string;[]) SBACthunk → (unit;[]) SBACcomp

let cleanupSBAC f = let olds = become System in request [FileIO(Write,Any)];

let s = f () in let res = deleteFile s in sbacReturn olds; res
� �

We now give some examples of untrusted code using these trusted functions and

the SBAC calling conventions. In SBAC1, an applet attempts to read the version

file. Since Applet has the necessary permission, this function is well typed at type

(unit;[]) SBACcomp.
� �

let SBAC1: (unit;[]) SBACthunk = fun () → let olds = become Applet in

request [FileIO(Read,Just(version))]; readFile version; sbacReturn olds
� �

In SBAC2, the applet attempts to delete a password file. Since the applet does not

have the necessary permissions, a runtime exception is thrown when executing the

code—and we cannot type the function SBAC2 at type (unit;[]) SBACcomp.
� �

//Does not typecheck

let SBAC2 = fun () → let olds = become Applet in

request [FileIO(Read,Just("passwd"))]; deleteFile "passwd"; sbacReturn olds
� �

However, in SBAC3, the SBAC abstraction fails to protect the password file. Here

the applet instead passes an untrusted function to cleanup. Since the permissions are

reset after returning from the untrusted function, the cleanup function deletes the

password file. This is a variant of the confused deputy problem (Hardy 1988) that is

common to SBAC mechanisms. Moreover, SBAC3 type-checks.
� �

let aFunSBAC: (string;[]) SBACthunk = fun () → let olds = become Applet in

let res = "passwd" in sbacReturn olds; res

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 179

let SBAC3: (unit;[]) SBACthunk = fun () → let olds = become Applet in

cleanupSBAC aFunSBAC; sbacReturn olds
� �

3.3 History-based access control

The HBAC calling convention was defined (Abadi & Fournet 2003) to protect

against the kind of attack that SBAC fails to prevent in SBAC3 above. To protect

callers from untrusted functions, HBAC reduces the dynamic permissions after

calling an untrusted function. This is in contrast to the SBAC mechanism, where

the dynamic permissions are restored. Moreover, extensions of HBAC can be used

to enforce history-dependent properties such as Chinese Walls (a program must

not access both of two conflicting sets of data). Abadi and Fournet argue that a

continuation-passing transform would allow a HBAC policy to be checked in an

SBAC setting; intutively, this works because programs in CPS never return from

a function, so the dynamic permissions are never restored. (We do not attempt to

prove this result.)

In our formalization, a computation in HBAC of type (α ;req,pres) HBACcomp

returning type α preserves the static permissions and does not increase the dynamic

permissions. It also requires permissions req and preserves permissions pres. As

above, a HBACthunk is a function from unit returning an HBACcomp. Here (α ;req)

SBACcomp is a subtype of (α ;req,pres) HBACcomp for every pres. The HBAC

calling convention is implemented by the function hbacReturn, which resets the

static permissions and reduces the dynamic permissions to at most the initial

ones.

HBAC API and calling convention (Part 1):

type (α ;req:Perms,pres:Perms) HBACcomp = {(s) Subsumed(req,s.dy) } α
{(t) s.ast = t.ast ∧ Subsumed(t.dy,s.dy)

∧ (∀qs. Subsumed(qs,pres) ∧ Subsumed(qs,s.dy) ⇒ Subsumed(qs,t.dy))}
type (α ;req:Perms,pres:Perms) HBACthunk = unit → (α ;req,pres) HBACcomp

val hbacReturn: os:State → {(s) True} unit {(t) t.ast=os.ast ∧ Glb(t.dy,s.dy,os.dy)}

The HBAC API includes the functions become, permitOnly, request, and demand

from the SBAC API, but also two functions for structured control of permissions,

grant and accept, which can be seen as scoped versions of request. We use grant to run

a subcomputation with augmented permissions. The second argument to grant ps is

a (α ;ps,[]) HBACthunk, which may assume that the permissions ps hold upon entry.

We can only call grant itself if the current static permissions subsume ps. Dually,

accept allows us to recover permissions that might have been lost when running

a subcomputation. A call accept ps takes an HBACthunk that does not require any

dynamic permissions, and guarantees that at least the glb (intersection) between ps

and the initial dynamic permissions holds upon exit. As before, we can only call

accept if the current static permissions subsume ps.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

180 J. Borgström et al.

HBAC API and calling convention (Part 2):

val grant: ps:Perms → (α ;ps,[]) HBACthunk → {(s) Subsumed(ps,s.ast)} α
{(t) t.ast=s.ast ∧ Subsumed(t.dy,s.dy)}

val accept: ps:Perms → (α ;[],[]) HBACthunk → {(s) Subsumed(ps,s.ast)} α
{(t) s.ast = t.ast ∧ Subsumed(t.dy,s.dy) ∧

(∀qs. Subsumed(qs,ps) ∧ Subsumed(qs,s.dy) ⇒ Subsumed(qs,t.dy))}

Note that grant and accept are higher-order functions. As given above, their types

are conservative in that they assume that their thunk arguments neither preserve nor,

in the case of accept, require any permissions. For more precise typing, we could

parameterize these functions with these permissions; we have not developed this

approach, in part because these parameters would be needed only for the purpose

of type-checking.

HBAC API implementation:

let hbacReturn s = let {ast=oldst; dy=oldy} = s in let {ast=st;dy=dy} = get() in

let dz = glb dy oldy in set {ast=oldst;dy=dz}
let grant ps a = let {ast= ;dy=dy} = get() in request ps; let res = a () in

permitOnly dy; res

let accept ps a = let {ast= ;dy=dy} = get() in let res = a () in request ps;

permitOnly dy; res

As seen above, SBAC computations have no effect on the dynamic permissions

after they have returned. In the case where System is the maximal permission,

we have that the type (string;[]) SBACthunk (the argument type of cleanupSBAC)

corresponds to (string;[],System) HBACthunk. Below, we repeat the successful attack

on SBAC in the stricter history-based setting. Here, we cannot type-check the attack

code, and the attack fails because of insufficient dynamic permissions at the call to

deleteFile.
� �

type cleanupArg: (string;[],System) HBACthunk

val cleanupHBAC: cleanupArg → (unit;[],System) HBACthunk

let cleanupHBAC f = let olds = become System in

request [FileIO(Write,Any)]; let s = f () in deleteFile s ; hbacReturn olds

let aFunHBAC: (string;[],[]) HBACthunk = fun () → let olds = become Applet in

let res = "passwd" in hbacReturn olds; res

//Does not type-check, since aFunHBAC is not a cleanupArg

let HBAC1 = fun () → let olds = become Applet in

cleanupHBAC aFunHBAC ; hbacReturn olds
� �

On the other hand, cleanupHBAC will delete the given file if the function it calls

preserves the relevant write permission. This can cause a vulnerability. For instance,

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 181

assume a library function expand that (notionally) expands environment variables in

its argument. Such a library function would be statically trusted, and passing it to

cleanup HBAC will result in the sensitive file being deleted. Moreover, we can type-

check expand at type string → cleanupArg, where a cleanupArg preserves all System

permissions, including FileIO(Write,Just("passwd")), when run.

� �

let expand:string → cleanupArg = fun n → fun () →
let olds = become System in let res = n in hbacReturn olds ; n

let HBAC2:(unit;[],[]) HBACthunk = fun () → let olds = become Applet in

cleanup HBAC (expand "passwd") ; hbacReturn olds
� �

In HBAC, the functions grant and accept are preferred over request. As an example,

we define a function cleanup grant. This function prudently checks the return value

of its untrusted argument, and uses grant to give precisely the required permission

to deleteFile. If the check fails, we instead give an error message (not to be confused

with a security exception). For this reason, HBAC3 type-checks.

� �

let cleanup grant: (string;[],[]) HBACthunk → (unit;[],[]) HBACcomp =

fun f → let olds = become System; let s = f () in

(if (s = tempFile) then let h = deleteFile s in grant [FileIO(Write,Just(s))] h

else print "Check of untrusted return value failed.");

hbacReturn olds

let aFunHBAC: (string;[],[]) HBACthunk = fun () →
let olds = become Applet in let res = "passwd" in hbacReturn olds ; res

let HBAC3: (unit;[],[]) HBACthunk = fun () →
let olds = become Applet in cleanup grant aFunHBAC ; hbacReturn olds

� �

Here HBAC provides a middle ground when compared to SBAC on the one hand

and taint-tracking systems on the other, in regards to accuracy and complexity.

In the examples above, well-typed code does not depend on the actual state in

which it is run. Indeed, we could dispense with the state-passing entirely, keeping

the state as a “ghost” or specification variable. However, we can also introduce a

function which lets us check if we hold certain run-time permissions. When this

function is part of the API, we need to keep a concrete permission state (in the

general case).

API function for checking run-time permissions:

val check: ps:Perms → {(s) True} b:bool {(t) s=t ∧ (b=true ⇒ Subsumed(ps,t.dy))}
let check ps = let {ast= ;dy=dy} = get() in subsumed ps dy

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

182 J. Borgström et al.

We can use this function in the following (type-safe) way.
� �

let HBAC4:(unit;[],[]) HBACthunk = fun () → let olds = become Applet in

(if check [FileIO(Write,Just("passwd"))]

then deleteFile "passwd"

else print "Not enough permissions: giving up.");

hbacReturn olds
� �

In future work, it would be interesting to verify the correctness of our encoding of

SBAC and HBAC. One direction would be to establish a relationship between code

written using the SBAC API and the calculus of Pottier et al. (2005). More precisely,

we conjecture that it is possible to translate programs in the latter calculus into RIF

programs using the SBAC API in such a way that both the operational meaning

of the program is preserved and the original program type-checks if and only if its

translation type-checks in RIF. An analogous result may apply for HBAC, but to

state it we need first to devise a formal calculus of HBAC.

4 A Calculus for the refined state monad

In this section, we present the formal definition of RIF, the calculus we have been

using to model security mechanisms based on roles, stacks and histories. We begin

with its assertion logic, syntax and operational semantics in Sections 4.1, 4.2 and

4.3. Section 4.4 describes the type system of RIF and its soundness with respect to

the operational semantics. Finally, Section 4.5 describes how the calculus may be

instantiated by suitable choice of the state type.

4.1 Logic

Formally, RIF, like RCF (Bengtson et al. 2008), is parameterized by an authorization

logic, which is specified by a set of formulas C , and a deducibility relation S � C ,

from finite multisets of formulas to formulas. For the purposes of this paper, we

assume the logic is FOL/FO, which is first-order logic together with axiom schemes

for the disjointness and injectivity of the syntactic constructors of closed first-order

RIF values (that is, values that do not contain functions).

Syntax of formulas:

p predicate symbol

C ::= formula

p(M1, . . . ,Mn) atomic formula, Mi first order

M = M ′ equation, M and M ′ first order

C ∧ C ′ conjunction

C ∨ C ′ disjunction

¬C negation

∀x.C universal quantification

∃x.C existential quantification

True � () = () False � ¬True M �=M ′�¬(M = M ′) (C⇒C ′)�(¬C ∨ C ′)

(C ⇔ C ′) � (C ⇒ C ′) ∧ (C ′ ⇒ C)

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 183

We identify all phrases of syntax up to the consistent renaming of bound variables.

In general, we write φ{ψ/x} for the outcome of substituting the phrase ψ for each free

occurrence of the variable x in the phrase φ. We write fv(φ) for the set of variables

occurring free in the phrase φ.

In general, an authorization logic must at least satisfy the following rules. The

choice of rules is driven by the type safety proof of RCF, as discussed by Bengtson

et al. (2008). The rules are mostly standard. The rules (Eq) and (Ineq) require that

the logic can deduce equations and inequations between ground values. The rule

(Ineq Cons) additionally states that if M is closed and its outer constructor is not

h, then ∀x.h x �= M is deducible.

Minimal properties of deducibility of an authorization logic: S � C
S, C stands for S ∪ {C}; in (Subst), σ ranges over substitutions of values for

variables and permutations of names.

(Axiom)

C � C

(Mon)

S � C

S, C ′ � C

(Subst)

S � C

Sσ � Cσ

(Cut)

S � C S, C � C ′

S � C ′

(And Intro)

S � C0 S � C1

S � C0 ∧ C1

(And Elim)

S � C0 ∧ C1

S � Ci

(Or Intro)

S � Ci

S � C0 ∨ C1

i = 0, 1

(Exists Intro)

S � C{M/x}

S � ∃x.C

(Exists Elim)

S � ∃x.C S, C � C ′ x /∈ fv(S, C ′)

S � C ′

(Eq)

� � M = M

(Ineq)

M �= N

fv(M,N) = �

� � M �= N

(Ineq Cons)

h N = M for no N

fv(M) = �

� � ∀x.h x �= M

FOL/FO consists of the standard inference rules of first-order logic together with

the following additional axiom schemas. The intended universe of FOL/FO is the

free algebra of the constructors of closed first-order values. A syntactic function

symbol is one used to represent such a value as a logical term. The rules below state

that these functions are injective and that they have disjoint ranges.

Additional rules for FOL/FO:

(F Disjoint)

f �= f′ syntactic

S � ∀�x.∀�y.f(�x) �= f′(�y)

(F Injective)

f syntactic

S � ∀�x.∀�y.f(�x) = f(�y) ⇒�x =�y

For a more detailed discussion of authorization logics and the particular logic

FOL/FO, see Bengtson et al. (2008). (Our work in this paper relies on the type-

checker F7, and implementation of RCF for F#. F7 uses the Z3 SMT solver, after

loading a background theory containing instances of the rules (F Disjoint) and

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

184 J. Borgström et al.

(F Injective) as universally quantified formulas. Future versions of F7 may exploit

Z3’s primitives for algebraic types.)

4.2 Syntax

Our starting point is the Fixpoint Calculus (FPC) (Plotkin 1985; Gunter 1992),

a deterministic call-by-value λ-calculus with sums, pairs and iso-recursive data

structures.

Syntax of the core Fixpoint Calculus:

s, x, y, z variable

h ::= value constructor

inl left constructor of sum type

inr right constructor of sum type

fold constructor of recursive type

M,N ::= value

x variable

() unit

fun x → A function (scope of x is A)

(M,N) pair

h M construction (an application of a value

constructor)

A,B ::= expression

M value

M N application

M = N syntactic equality

let x = A in B let (scope of x is B)

let (x, y) = M in A pair split (scope of x, y is A)

match M with h x → A else B constructor match (scope of x is A)

A value may be a variable x, the unit value (), a function fun x → A, a pair

(M,N), or a construction. The constructions inl M and inr M are the two sorts of

value of sum type, while the construction fold M is a value of an iso-recursive type.

A first-order value is any value not containing any instance of fun x → A.

In our formulation of FPC, the syntax of expressions is in a reduced form in

the style of A-normal form (Sabry & Felleisen 1993), where sequential composition

of redexes is achieved by inserting suitable let-expressions. The other expressions

are function application M N, equality M = N (which tests whether the values M

and N are syntactically identical), pair splitting let (x, y) = M in A, and constructor

matching match M with h x → A else B.

To complete our calculus, we augment FPC with the following operations for

manipulating and writing assertions about a global state. The state is implicit and

is simply a value of the calculus.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 185

Completing the syntax: Adding global state to the fixpoint calculus

A,B ::= expression

· · · expressions of the Fixpoint Calculus

get() get current state

set(M) set current state

assume (s)C assumption of formula C (scope of s is C)

assert (s)C assertion of formula C (scope of s is C)

In programs, formulas C may a priori contain function values; this will be

excluded by typing. A formula C is of first order if and only if it only contains

first-order values. A collection S is of first order if and only if it only contains

first-order formulas.

The expression get() returns the current state as its value. The expression set(M)

updates the current state with the value M and returns the unit value ().

We specify intended properties of programs by embedding assertions, which are

formulas expected to hold with respect to the log, a finite multiset of assumed

formulas. The assumption expression assume (s)C adds the formula C{M/s} to

the logged formulas, where M is the current state, and returns (). The assertion

expression assert (s)C immediately returns (); we say the assertion succeeds if the

formula C{M/s} is deducible from the logged formulas, and otherwise that it fails.

This style of embedding assumptions and assertions within expressions is in the spirit

of the pioneering work of Floyd, Hoare, and Dijkstra on imperative programs; the

formal details are an imperative extension of assumptions and assertions in RCF

(Bengtson et al. 2008).

We use some syntactic sugar to make it easier to write and understand examples.

We write A;B for let = A in B. We define Boolean values as false � inl () and

true � inr (). Conditional statements can then be defined as if M then A else B �
match M with inr x → A else B. We write let rec f x = A in B as an abbreviation for

defining a recursive function f, where the scope of f is A and B, and the scope of x

is A. When s does not occur in C , we simply write C for (s)C . In our examples, we

often use a more ML-like syntax, lessening the A-normal form restrictions of our

calculus. In particular, we use let f x = A for let f = fun x → A, if A then B1 else B2

for let x = A in if x then B1 else B2 (where x �∈ fv(B1, B2)), let (x, y) = A in B

for let z = A in let (x, y) = z in B (where z �∈ fv(B)), and so on. See Bengtson

et al. (2008), for example, for a discussion of how to recover standard functional

programming syntax and data types like Booleans and lists within the core Fixpoint

Calculus.

4.3 Semantics

We formalize the semantics of our calculus as a small-step reduction relation on

configurations, each of which is a triple (A,N, S) consisting of a closed expression A,

a state N, and a log S , which is a multiset of formulas generated by assumptions. A

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

186 J. Borgström et al.

configuration (A,N, S) is of first order if and only if N, S and all formulas occurring

in A are of first order.

We present the rules for reduction in two groups. The rules in the first group are

independent of the current state, and correspond to the semantics of core FPC.

Reductions for the core calculus: (A,N, S) −→ (A′, N ′, S ′)

R ::= [] | let x = R in A evaluation context

(R[A], N, S) −→ (R[A′], N ′, S ′) if (A,N, S) −→ (A′, N ′, S ′) (Red Ctx)

((fun x → A) M,N, S) −→ (A{M/x}, N, S) (Red Fun)

(M1 = M2, N, S) −→ (true, N, S) if M1 = M2 (Red Eq)

(M1 = M2, N, S) −→ (false, N, S) if M1 �= M2 (Red Neq)

(let x = M in A,N, S) −→ (A{M/x}, N, S) (Red Let)

(let (x, y) = (M1,M2) in A,N, S) −→ (A{M1/x}{M2/y}, N, S) (Red Split)

(match (h M) with h x → A else B,N, S) −→ (A{M/x}, N, S) (Red Match)

(match (h′ M) with h x → A else B,N, S) −→ (B,N, S) if h �= h′ (Red Mismatch)

The second group of rules formalizes the semantics of assumptions, assertions and

the get and set operators, described informally in the previous section.

Reductions related to state: (A,N, S) −→ (A′, N ′, S ′)

(get(), N, S) −→ (N,N, S) (Red Get)

(set(M), N, S) −→ ((),M, S) (Red Set)

(assume (s)C,N, S) −→ ((), N, S ∪ {C{N/s}}) (Red Assume)

(assert (s)C,N, S) −→ ((), N, S) (Red Assert)

Intuitively, we say an expression is safe if none of its assertions may fail at

runtime. Recall that an assertion fails when its formula is not deducible from the

logged formulas. An assertion failure has no effect during execution. This may

appear strange, but first note that our type system guarantees that such assertion

failures will never occur during execution. Second, because our operational semantics

is meant to reflect our implementation behavior, this means that we do not need

to establish the deducibility of formulas during execution—which is undecidable for

the logic we are considering.

To define safety formally, we say that a configuration (A,N, S) has failed when

A = R[assert (s)C] for some evaluation context R, where S ∪ {C{N/s}} is not of first

order or we cannot derive S � C{N/s}. A configuration (A,N, S) is safe if and only if

there is no failed configuration reachable from (A,N, S), that is, for all (A′, N ′, S ′), if

(A,N, S) −→∗ (A′, N ′, S ′) then (A′, N ′, S ′) has not failed. The safety of a (first-order)

configuration can always be assured by carefully chosen assumptions (for example,

assume (s)False). For this reason, user code should use assumptions with prudence

(and possibly not at all).

The purpose of the type system in the next section is to establish safety by typing.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 187

4.4 Types

There are two categories of type: value types characterize values, while computation

types characterize the imperative computations denoted by expressions. Computa-

tion types resemble Hoare triples, with preconditions and postconditions.

Syntax of value types and computation types:

T ,U, V ::= (value) type

α type variable

unit unit type

Πx : T . F dependent function type (scope of x is F)

Σx : T . U dependent pair type (scope of x is U)

T +U disjoint sum type

μα.T iso-recursive type (scope of α is T)

F,G ::= computation type

{(s0)C0}x:T {(s1)C1} (scope of s0 is C0, T , C1, and scope of s1, x is C1)

Value types are based on the types of the Fixpoint Calculus, except that function

types Πx : T . F and pair types Σx : T . U are dependent. In our examples we use

the F7-style notations x : T → F and x : T ∗U instead of Πx : T . F and Σx : T . U.

If the bound variable x is not used, these types degenerate to simple types. In

particular, if x is not free in U, we write T ∗U for x : T ∗U, and if x is not free in

F , we write T → F for x : T → F . A value type T is of first order if and only if T

contains no occurrences of Πx : U. F (and hence contains no computation types).

(It follows that the values of a first-order type are themselves first-order values, that

is, they contain no function values.) For the type Πx : T . F to be well formed, we

require that either T is a first-order type or that x is not free in F . Similarly, for the

type Σx : T . U to be well formed, we require that either T is a first-order type or

that x is not free in U.

A computation type {(s0)C0}x:T {(s1)C1} means the following: if an expression

has this type and it is started in an initial state s0 satisfying the precondition C0,

and it terminates in final state s1 with an answer x, then postcondition C1 holds. As

above, we write {(s0)C0}T {(s1)C1} for {(s0)C0}x:T {(s1)C1} if x is not free in C1. If

T is not of first order, we require that x is not free in C1.

When we write a type T in a context where a computation type is expected,

we intend T as a shorthand for the computation type {(s0)True}T {(s1)s1 = s0}.
This is convenient for writing curried functions. Thus, the curried function type

x : T → y : U → F stands for Πx : T . {(s′
0)True} Πy : U. F {(s′

1)s
′
1 = s′

0}.
Our calculus is parameterized by a type state representing the type of data in the

state threaded through a computation, and which we take to be an abbreviation for

a closed RIF type not involving function types – that is, a closed first-order type.

Our typing rules are specified with respect to typing environments, given as follows,

which contain value types of variables, temporary subtyping assumptions for iso-

recursive types and the names of the state variables in scope.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

188 J. Borgström et al.

Syntax of typing environments:

μ ::= environment entry

α <: α′ subtype (α �= α′)

s state variable

x : T variable

E ::= � | E, μ environment

dom(α <: α′) = {α, α′} dom(s) = {s} dom(x : T) = {x}
dom(E, μ) = dom(E) ∪ dom(μ) dom(�) = �
fov(E) = {s ∈ E} ∪ {x ∈ dom(E) | (x : T) ∈ E, T is first order}

Our type system consists of several inductively defined judgments.

Judgments:

E � � E is syntactically well formed

E � T in E, type T is syntactically well formed

E � F in E, type F is syntactically well formed

E � C fo in E, formula C is of first order

E � T <: U in E, type T is a subtype of type U

E � F <: G in E, type F is a subtype of type G

E � M : T in E, value M has type T

E � A : F in E, expression A has computation type F

The rules defining these judgments are displayed in a series of groups. First, we

describe the rules defining when environments, formulas, and value and computation

types are well formed. An environment is well formed if its entries have pairwise

disjoint domains. A formula is well formed if all its free variables have first-order

type in the environment. A type is well formed if its free variables have first-order

type in the environment.

Rules of well formedness:

(Env Empty)

� � �

(Env Entry)

E � �
fv(μ) ⊆ fov(E)

dom(μ) ∩ dom(E) = �

E, μ � �

(Form)

E � �
C is of first order

fv(C) ⊆ fov(E)

E � C fo

(Env Type)

E � �
fv(T) ⊆ fov(E)

E � T

First-order values may occur in types, but only within formulas; since our logic

is untyped, these well-formedness rules need not constrain values occurring within

types to be themselves well typed. We do constrain variables occurring in formulas

to have first-order types, to ensure that substitution is defined.

Notice that the assumptions of the rule (Env Entry) are such that if E, x : T � �
is derivable with (Env Entry) then we also have E � T derivable with (Env Type).

Hence, each type in a well-formed environment is itself well formed.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 189

So as to have the same rules for those types that are of first order and those that

are not, we define the notation (C if T fo) to mean the formula C , if T is of first

order, and otherwise to mean the formula True.

General rules for expressions:

(Exp Return)

E, s0 � M : T E, s0, x:T , s1 � ((x = M if T fo) ∧ s0 = s1) fo

E � M : {(s0)True}x : T {(s1)(x = M if T fo) ∧ s0 = s1}
(Stateful Exp Let)

E � A : {(s0)C0}x1:T1 {(s1)C1}
E, s0, x1 : T1 � B : {(s1)C1}x2:T2 {(s2)C2}
{s1, x1} ∩ fv(T2, C2) = �

E � let x1 = A in B : {(s0)C0}x2:T2 {(s2)C2}
(Exp Eq)

E � M : T E � N : U x /∈ fv(M,N) E, s0, s1 � C fo

C = (s0 = s1) ∧ (x = true ⇔ M = N if Σ : T . U fo)

E � M = N : {(s0)True}x:bool {(s1)C}

In (Exp Return), when returning a value from a computation, the state is

unchanged. If the type is a first-order type, we additionally record the returned value.

In (Exp Eq), the return value of an equality test is refined with the logical formula

expressing the test. The rule (Stateful Exp Let) glues together two computation

types if the postcondition of the first matches the precondition of the second.

Assumptions and assertions:

(Exp Assume)

E, s0, s1 � � E, s0 � C fo

E � assume (s0)C : {(s0)True} unit {(s1)((s0 = s1) ∧ C)}
(Exp Assert)

E, s0, s1 � � E, s0 � C fo

E � assert (s0)C : {(s0)C} unit {(s1)s0 = s1}

In (Exp Assume), an assumption assume (s)C has C as postcondition, and does

not modify the state. Dually, in (Exp Assert), an assertion assert (s)C has C as

precondition.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

190 J. Borgström et al.

Rules for state manipulation:

(Stateful Get)

E, s0, x1 : state, s1 � �

E � get() : {(s0)True}x1:state {(s1)x1 = s0 ∧ s1 = s0}
(Stateful Set)

E � M : state E, s0, s1 � �

E � set(M) : {(s0)True} unit {(s1)s1 = M}

In (Stateful Get), the type of get() records that the value read is the current

state. In (Stateful Set), the postcondition of set(M) states that M is the new state.

The postcondition of set(M) does not mention the initial state. We can recover this

information through subtyping (see below).

Subtyping for computations:

(Sub Comp)

E, s0 � C0 fo E, s0 � C′
0 fo

E, s0, x:T , s1 � C1 fo E, s0, x:T′, s1 � C′
1 fo

C ′
0 � C0 E, s0 � T <: T ′ (C ′

0 ∧ C1) � C ′
1

E � {(s0)C0}x:T {(s1)C1} <: {(s0)C ′
0}x:T ′ {(s1)C ′

1}

(Exp Subsum)

E � A : F E � F <: F ′

E � A : F ′

In (Sub Comp), when computing the supertype of a computation type, we

may strengthen the precondition, and weaken the postcondition relative to the

strengthened precondition. For example, since (C0 ∧ C1) � (C0 ∧ C1), we have:

E � {(s0)C0}x:T {(s1)C1} <: {(s0)C0}x:T {(s1)C0 ∧ C1}

Next, we present rules grouped by the different forms of value type. When type-

checking values, we may gain information about their structure. We record this

information by adding it to the precondition of the computation that uses the data.

To do so, we define the notation C � F below, where C is a formula, and F is a

computation type.

Augmenting the precondition of a computation type:

C � F � {(s0)C ∧ C0}x:T {(s1)C1} where F = {(s0)C0}x:T {(s1)C1} and s0 /∈ fv(C)

Rules for unit and variables:

(Val Unit)

E � �

E � () : unit

(Val Var)

E � � (x : T) ∈ E

E � x : T

The unit type has only one inhabitant (). The rule (Val Var) looks up the type of

a variable in the environment.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 191

Rules for Pairs:

(Val Pair)

E � M : T E � N : U{M/x}

E � (M,N) : (Σx : T . U)

(Stateful Exp Split)

E � M : (Σx : T . U)

E, x : T , y : U � A : ((x, y) = M if Σx : T . U fo)� F

{x, y} ∩ fv(F) = �

E � let (x, y) = M in A : F

In (Stateful Exp Split), when splitting a pair, we strengthen the precondition of

the computation with the equation (x, y) = M derived from the pair split, if the pair

type is of first order.

Rules for sums and recursive types:

inl:(T ,T+U) inr:(U,T+U) fold:(T {μα.T/α}, μα.T)

(Val Inl Inr Fold)

h : (T ,U) E � M : T E � U

E � h M : U

(Stateful Exp Match Inl Inr Fold)

E � M : T h : (U,T) x /∈ fv(F)

E, x : U � A : (h x = M if T fo) � F

E � B : (∀x.h x �= M if T fo) � F

E � match M with h x → A else B : F

The rules for constructions h M depend on an auxiliary relation h : (T ,U) that

gives the argument T and result U of each constructor h. The rule (Stateful Exp

Match Inl Inr Fold) strengthens the preconditions of the different branches with

information derived from the branching condition. In particular, provided the type

T is of first order, we remember the equation h x = M when checking the positive

branch A, and the inequation ∀x.h x �= M when checking the negative branch B.

Strengthening these preconditions in this rule and in the rule (Stateful Exp Split)

is essential for context-dependent type-checking.

The following typing rules for dependent functions are standard.

Rules for functions:

(Stateful Val Fun)

E, x : T � A : F

E � fun x → A : (Πx : T . F)

(Stateful Exp Appl)

E � M : (Πx : T . F) E � N : T

E � M N : F{N/x}

We complete the system with the following rules of subtyping for value types.

Subtyping for value types:

(Sub Unit)

E � �

E � unit <: unit

(Sub Sum)

E � T <: T ′ E � U <: U ′

E � (T +U) <: (T ′ +U ′)

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

192 J. Borgström et al.

(Stateful Sub Fun)

E � T ′ <: T E, x : T ′ � F <: F ′

E � (Πx : T . F) <: (Πx : T ′. F ′)

(Sub Pair)

E � T <: T ′ E, x : T � U <: U ′

E � (Σx : T . U) <: (Σx : T ′. U ′)

(Sub Var)

E � � (α <: α′) ∈ E

E � α <: α′

(Sub Rec)

E, α <: α′ � T <: T ′ α /∈ fv(T ′) α′ /∈ fv(T)

E � (μα.T) <: (μα′.T ′)

These rules are essentially standard (Cardelli 1986; Pierce & Sangiorgi 1996;

Aspinall & Compagnoni 2001). In (Sub Rec), when checking subtyping of recursive

types, we use the environment to keep track of assumptions introduced when

unfolding the types.

The main result of this section is that a well-typed expression run in a state

satisfying its precondition is safe, that is, no assertions fail. Using this result, we can

implement different type systems for reasoning about stateful computation in the

calculus.

Theorem 4.1 (Safety)

If � � A : {(s)C} : T {(s′)True}, � � C{M/s} and � � M : state then configuration

(A,M,�) is safe.

The proof of this theorem uses a state-passing translation of RIF into RCF. In

particular, a computation type {(s0)C0}x:T {(s1)C1} is translated to the refined state

monad MC0 ,C1
([[T]]) described in the introduction, where [[T]] is the translation of

the value type T . We prove that the translation preserves types, allowing us to

appeal to the safety theorem for well-typed RCF programs. We give this translation

and proof of the safety theorem in the appendices.

4.5 Pragmatics

We find it useful to organize our code into modules. Rather than formalize modules

in the syntax, we follow the conventions of Bengtson et al. (2008). A module consists

of a set of function names f1, . . . , fk with corresponding implementations M1, . . . ,Mk

and associated types T1, . . . , Tk . It may also include predicate symbols p and an

assumption assume (s)C . In our examples, such top-level assumptions are used to

introduce formulas defining the meaning of logical predicates, and we allow the

parameter s, which refers to the initial state of the whole program, to be omitted.

In fact, our examples never rely on s to constrain the initial state. (Without loss of

generality, we suppose there is a single such assume expression, but clearly multiple

assume expressions can be reduced to a single assume expression with a conjunction

of the assumed formulas.) A module is well formed if the functions type-check at

the declared function types, under the given assumptions, that is, if for all i ∈ [1..k]:

f1 : T1, . . . , fk : Tk � let = assume (s)C in Mi : Ti. All modules used in this paper

are well formed. We use let f = M to define the implementation of a function in a

module, and val f : T for its associated type. We sometimes also use let f : T = M

to capture the same information.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 193

Type-checking a computation A (at type F) in the context of a module with

functions f1, . . . , fk with implementations M1, . . . ,Mk and types T1, . . . , Tk corre-

sponds to type-checking f1 : T1, . . . , fk : Tk � let = assume (s)C in A : F and

executing A in the context of that module corresponds to executing the expression

assume (s)C; let f1 = M1 in . . . let fn = Mn in A.

As illustrated in previous sections, to use our calculus, we first instantiate it

with an extension API module that embodies the behavioral type system that we

want to capture. In particular, functions in an extension API module perform all

the required state manipulations. These extension API functions are written in the

internal language described earlier, using the state-manipulation primitives get() and

set(). Moreover, the extension API defines a concrete state type.

4.6 Implementation

There are several challenges that remain pertaining to the implementation of the type

system described above. For instance, the typing rule (Stateful Exp Let) requires

pre- and postconditions of two expressions to match, which means in practice

that typing a let expression requires a use of (Sub Comp) to make the pre- and

post-conditions match. Turning such a nondeterministic rule into a deterministic

type-checker is usually achieved by computing either weakest preconditions or

strongest postconditions for expressions. We have not yet studied the question of

type inference for our type system.

As we noted in the introduction, we have a prototype implementation, Stateful

F7, that we have used to type-check all the examples in this paper. This prototype

implementation avoids the challenges we highlighted above by using the translation

of RIF into RCF given in the appendices—the one used to prove Theorem 4.1—

and doing the actual type-checking in RCF. As we establish in the appendices, the

translation preserves both semantics and typeability, and the result of the translation

is safe only if the original program is safe. As a consequence, our implementation

may type-check programs that RIF rejects (but only such programs that are safe,

per Corollary 3).

Our implementation translates programs written in a subset of Objective Caml and

F# extended with RIF-based computation types into the language of the F7 type-

checker, which implements the RCF type system, and we perform type-checking

in F7, which itself calls Z3 to discharge proof obligations. The RBAC API and

examples yielded 53 verification conditions, while the HBAC and SBAC APIs and

examples yielded 80 conditions; the total run time of Z3 on all of these conditions is

under a second. Error messages inform the user if Z3 cannot prove these formulas.

We unfortunately have no fallback on interactive proof when Z3 is unable to prove

a valid formula; it is sometimes possible to guide Z3’s proof search by asserting and

then assuming suitable intermediate formulas.

5 Related work

We discuss related work on type systems for access control. Pottier et al. (2005)

develop a type and effect system for SBAC. As in our work, the goal is to prevent

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

194 J. Borgström et al.

security exceptions. Our work is intended to show that their type system may be

generalized so that effects are represented as formulas. Hence, our work is more

flexible in that we can deal with an arbitrary lattice of dependent permissions; their

system is limited to a finite set of permissions.

Besson et al. (2004) develop a static analysis for .NET libraries, to discover

anomalies in the security policy implemented by stack inspection. The tool depends

on a flow analysis rather than a type system.

A separate line of work investigates the information flow properties of SBAC and

HBAC (Banerjee & Naumann 2005a, 2005b; Pistoia et al. 2007a). We believe our

type system could be adapted to check information flow, but this remains future

work. Another line of future investigation is type inference; ideas from the study of

refinement types may be helpful (Knowles & Flanagan 2007; Rondon et al. 2008).

Abadi et al. (1993) initiated the study of logic for access control in distributed

systems; they propose a propositional logic with a says-modality to indicate the

intentions of different principals. This logic is used by Wallach et al. (2000) to

provide a logical semantics of stack inspection. Abadi (2006) develops an approach

to access control in which the formulas of a constructive version of the logic are

interpreted as types. AURA (Jia et al. 2008) is a language that is based, in part, on

this idea.

Fournet et al. (2005) introduced the idea of type-checking code to ensure confor-

mance to a logic-based authorization policy. A series of papers develops the idea

for distributed systems modeled with process calculi (Fournet et al. 2007; Maffeis

et al. 2008). In this line of work, access rights may be granted but not retracted. Our

approach in Section 2 is different in that we deal with roles that may be activated

and deactivated.

6 Conclusion

We described a higher-order imperative language whose semantics is based on the

state monad, refined with preconditions and postconditions. By making different

choices for the underlying state type, and supplying suitable primitive functions, we

gave semantics for standard access control mechanisms based on stacks, histories,

and roles. Type-checking ensures the absence of security exceptions, a common

problem for code-based access control.

This work is dedicated to Tony Hoare, in part in gratitude for his useful feedback

over the years on various behavioral type systems for process calculi. Some of those

calculi had a great deal of innovative syntax. So we hope he will endorse our general

conclusion that it is better to design behavioral type systems using types refined

with logical formulas, than to invent still more syntax.

Acknowledgment

We are grateful to Martı́n Abadi, Robert Atkey, Anindya Banerjee, Moritz Becker,

Cliff Jones, David Naumann, Nikhil Swamy, and Wouter Swierstra for comments

and discussions.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 195

References

Abadi, M. (2006) Access control in a core calculus of dependency. In International Conference

on Functional Programming (ICFP’06), pp. 263–273.
Abadi, M., Burrows, M., Lampson, B. & Plotkin, G. (1993) A calculus for access control in

distributed systems, ACM Trans. Program. Lang. Syst., 15(4): 706–734.
Abadi, M. & Fournet, C. (2003) Access control based on execution history. In Network and

Distributed System Security Symposium (NDSS’03), M. Reiter & V. Gligor (eds). Reston,

VA: The Internet Society, pp. 107–121.
Aspinall, D. & Compagnoni, A. (2001) Subtyping dependent types, Theor. Comput. Sci., 266

(1–2): 273–309.
Atkey, R. (2009) Parameterized notions of computation, J. Funct. Program., 19: 355–376.
Banerjee, A. & Naumann, D. (2005a) History-based access control and secure information

flow. In Construction and Analysis of Safe, Secure and Interoperable Smart Devices (CASSIS

2004), G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet & T. Muntean (eds), Lecture Notes

in Computer Science, vol. 3362. Berlin Heidelberg, Germany: Springer, pp. 27–48.
Banerjee, A. & Naumann, D. (2005b) Stack-based access control and secure information flow,

J. Funct. Program., 15(2): 131–177.
Becker, M. Y. & Nanz, S. (2007) A logic for state-modifying authorization policies. In European

Symposium on Research in Computer Security (ESORICS’07), J. Biskup & J. López (eds),

Lecture Notes in Computer Science, vol. 4734. Berlin Heidelberg, Germany: Springer,

pp. 203–218.
Becker, M. Y. & Sewell, P. (2004) Cassandra: Flexible trust management, applied to

electronic health records. In IEEE Computer Security Foundations Workshop (CSFW’04),

pp. 139–154.
Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A. D. & Maffeis, S. 2008 Refinement Types

for Secure Implementations. Technical Report MSR–TR–2008–118, Microsoft Research (a

preliminary, abridged version appears in the proceedings of Computer Security Foundations

Symposium 2008).
Besson, F., Blanc, T, Fournet, C. & Gordon, A. D. (2004) From stack inspection to access

control: A security analysis for libraries. In IEEE Computer Security Foundations Workshop

(CSFW’04), pp. 61–77.
Borgström, J., Gordon, A. D. & Pucella, R. (2009) Roles, Stacks, Histories: A Triple for Hoare.

Technical Report MSR–TR–2009–97, Microsoft Research.
Cardelli, L. (1986) Typechecking dependent types and subtypes. In Foundations of Logic and

Functional Programming, M. Boscarol, L. C. Aiello & G. Levi (eds), Lecture Notes in

Computer Science, vol. 306. Berlin Heidelberg, Germany: Springer, pp. 45–57.
Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper,

R. W., Howe, D. J., Knoblock, T. B., Mendler, N. P., Panangaden, P., Sasaki, J. T. & Smith,

S. F. (1986) Implementing Mathematics with the Nuprl Proof Development system. Hemel

Hampstead, England: Prentice-Hall.
DeLine, R. & Fähndrich, M. (2001) Enforcing high-level protocols in low-level software. In

Programming Language Design and Implementation (PLDI’01), pp. 59–69.
de Moura, L. & Bjørner, N. (2008) Z3: An efficient SMT solver. In Tools and Algorithms for

the Construction and Analysis of Systems (TACAS’08), C. R. Ramakrishnan & J. Rehof

(eds), Lecture Notes in Computer Science, vol. 4963. Berlin Heidelberg, Germany: Springer,

pp. 337–340.
Detlefs, D., Nelson, G. & Saxe, J. B. (2005) Simplify: A theorem prover for program checking,

J. ACM, 52(3):365–473.
Dutertre, B. & de Moura, L. (2006) The YICES SMT solver [online]. Accessed August 13,

2010. Available at: http://yices.csl.sri.com/tool-paper.pdf
Ferraiolo, D. F. & Kuhn, D. R. (1992) Role based access control. In National Computer

Security Conference, pp. 554–563.
Filliâtre, J. & C. Marché, C. (2004) Multi-prover verification of C Programs. In International

Conference on Formal Engineering Methods (ICFEM 2004), J. Davies, W. Schulte & M.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

196 J. Borgström et al.

Barnett (eds), Lecture Notes in Computer Science, vol. 3308. Berlin Heidelberg, Germany:

Springer, pp. 15–29.

Filliâtre, J.-C. (1999) Proof of imperative programs in type theory. In Selected papers from the

International Workshop on Types for Proofs and Programs (TYPES ’98), vol. 1657. Berlin

Heidelberg, Germany: Springer, pp. 78–92.

Flanagan, C. (2006) Hybrid type checking. In ACM Symposium on Principles of Programming

Languages (POPL’06), pp. 245–256.

Flanagan, C. & Abadi, M. (1999) Types for safe locking. In European Symposium on

Programming (ESOP’99), S. Doaitse Swierstra (ed), Lecture Notes in Computer Science,

vol. 1576. Berlin Heidelberg, Germany: Springer, pp. 91–108.

Fournet, C. & Gordon, A. D. (2003) Stack inspection: Theory and variants, ACM Trans.

Program. Lang. Syst., 25 (3): 360–399.

Fournet, C., Gordon, A. D. & Maffeis, S. (2005) A type discipline for authorization policies.

In European Symposium on Programming (ESOP’05), M. Sagiv (ed), Lecture Notes in

Computer Science, vol. 3444. Berlin Heidelberg, Germany: Springer, pp. 141–156.

Fournet, C., Gordon, A. D. & Maffeis, S. (2007) A type discipline for authorization

policies in distributed systems. In IEEE Computer Security Foundation Symposium (CSF’07),

pp. 31–45.

Freeman, T. & Pfenning, F. (1991) Refinement types for ML. In Programming Language

Design and Implementation (PLDI’91). ACM Press, pp. 268–277.

Gifford, D. & Lucassen, J. (1986) Integrating functional and imperative programming. In

ACM Conference on Lisp and Functional Programming, pp. 28–38.

Gong, L. (1999) Inside Java 2 Platform Security: Architecture, API Design, and Implementation.

Addison-Wesley.

Gordon, A. D. & Fournet, C. (2009) Principles and Applications of Refinement Types. Technical

Report MSR–TR–2009–147, Microsoft Research.

Gordon, A. D. & Jeffrey, A. S. A. (2003) Authenticity by typing for security protocols,

J. Comput. Secur., 11 (4): 451–521.

Gronski, J., Knowles, K., Tomb, A., Freund, S. N. & Flanagan, C. (2006) Sage: Hybrid

checking for flexible specifications. In Scheme and Functional Programming Workshop,

Findler, R. (ed), pp. 93–104.

Gunter, C. (1992) Semantics of Programming Languages. MIT Press.

Hardy, N. (1988) The confused deputy (or why capabilities might have been invented), ACM

SIGOPS Oper. Syst. Rev., 22: 36–38.

Jia, L., Vaughan, J. A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J. & Zdancewic, S.

(2008) AURA: Preliminary Technical Results. Technical Report MS-CIS-08-10, University

of Pennsylvania.

Knowles, K. W. & Flanagan, C. (2007) Type reconstruction for general refinement types.

In European Symposium on Programming (ESOP’07), R. De Nicola (ed), Lecture Notes in

Computer Science, vol. 4421. Berlin Heidelberg, Germany: Springer, pp. 505–519.

Li, N., Mitchell, J. C. & Winsborough, W. H. (2002) Design of a role-based trust management

framework. In IEEE Security and Privacy, pp. 114–130.

Maffeis, S., Abadi, M., Fournet, C. & Gordon, A. D. (2008) Code-carrying authorization. In

European Symposium On Research In Computer Security (ESORICS’08), pp. 563–579.

Moggi, E. (1991) Notions of computations and monads, Inf. Comput., 93: 55–92.

Nanevski, A., Morrisett, G. & Birkedal, L. (2006) Polymorphism and separation in Hoare

Type Theory. In International Conference on Functional Programming (ICFP’06), pp. 62–73.

Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P. & Birkedal, L. (2008) Ynot: Dependent

types for imperative programs. In International Conference on Functional Programming

(ICFP’08), pp. 229–240.

Nordström, B., Petersson, K. & Smith, J. (1990) Programming in Martin-Löf ’s type Theory.

Clarendon Press, Oxford.

Pierce, B. & Sangiorgi, D. (1996) Typing and subtyping for mobile processes, Math. Struct.

Comput. Sci., 6 (5): 409–454.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 197

Pistoia, M., Banerjee, A. & Naumann, D. (2007a) Beyond stack inspection: A unified access-

control and information-flow security model. In IEEE Security and Privacy, pp. 149–163.

Pistoia, M., Chandra, S., Fink, S. J. & Yahav, E. (2007b) A survey of static analysis methods

for identifying security vulnerabilities in software systems, IBM Syst. J., 46 (2): 265–288.

Plotkin, G. D. (1985) Denotational Semantics with Partial Functions. Unpublished lecture notes,

CSLI, Stanford University.

Pottier, F., Skalka, C. & Smith, S. (2005) A systematic approach to static access control, ACM

Trans. Program. Lang. Syst., 27(2): 344–382.

Ranise, S. & Tinelli, C. (2006) The SMT-LIB Standard: Version 1.2. [online]. Accessed August

13, 2010. Available at: http://goedel.cs.uiowa.edu/smtlib/papers.html

Régis-Gianas, Y. & Pottier, F. (2008) A Hoare logic for call-by-value functional programs. In

Mathematics of Program Construction (MPC’08), P. Adebaud & C. Paulin-Mohring (eds),

Lecture Notes in Computer Science, vol. 5133. Berlin Heidelberg, Germany: Springer, pp.

305–335.

Rondon, P., Kawaguchi, M. & Jhala, R. (2008) Liquid types. In Programming Language Design

and Implementation (PLDI’08). ACM, pp. 159–169.

Rushby, J., Owre, S. & Shankar, N. (1998) Subtypes for specifications: Predicate subtyping in

PVS, IEEE Trans. Softw. Eng., 24 (9): 709–720.

Sabry, A. & Felleisen, M. (1993) Reasoning about programs in continuation-passing style,

LISP Symb. Comput., 6 (3–4): 289–360.

Sandhu, R., Coyne, E. J., Feinstein, H. L. & Youman, C. E. (1996) Role-based access control

models, IEEE Comput., 29 (2): 38–47.

Strom, R. E. & Yemini, S. (1986) Typestate: A programming language concept for enhancing

software reliability, IEEE Trans. Softw. Eng., 12: 157–171.

Wadler, P. (1992) Comprehending monads, Math. Struct. Comput. Sci., 2: 461–493.

Wallach, D. S., Appel, A. W. & Felten, E. W. (2000) SAFKASI: A security mechanism for

language-based systems, ACM Trans. Softw. Eng. Methodol., 9(4): 341–378.

Xi, H. & Pfenning, F. (1999) Dependent types in practical programming. In Principles of

Programming Languages (POPL’99), pp. 214–227.

Appendix A RCF: refined concurrent FPC

Our theory of RIF is based on refined concurrent FPC, a typed concurrent λ-calculus.

This section gives the formal definitions of the calculus, and states the properties

relied on in this paper. For fuller explanations, please consult the original report on

RCF (Bengtson et al. 2008) or some recent tutorial notes (Gordon & Fournet 2009).

The expressions and values of RCF are as follows. It consists of the core Fixpoint

Calculus, together with constructs for communication and concurrency from the

π-calculus, and assumptions and assertions from Dijkstra’s guarded command

language. The calculus is parameterized on a choice of authorization logic, as

introduced in Section 4.1. The choice of logic determines the exact syntax of formulas

C and the deduction relation {C1, . . . , Cn} � C . In this paper, both RIF and RCF are

parameterized with the variant FOL/FO of first-order logic defined in Section 4.1.

Syntax of RCF values and expressions:

a, b, c name

x, y, z variable

h ::= value constructor

inl left constructor of sum type

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

198 J. Borgström et al.

inr right constructor of sum type

fold constructor of recursive type

M,N ::= value

x variable

() unit

fun x → A function (scope of x is A)

(M,N) pair

h M construction

A,B ::= expression

M value

M N application

M = N syntactic equality

let x = A in B let (scope of x is B)

let (x, y) = M in A pair split (scope of x, y is A)

match M with h x → A else B constructor match (scope of x

is A)

(νa)A restriction (scope of a is A)

A � B fork

a!M transmission of M on channel a

a? receive message off channel

assume C assumption of formula C

assert C assertion of formula C

false � inl () true � inr ()

RCF follows similar syntactic conventions as in RIF but additionally its syntax

includes names as well as variables. We say a value is of first order if it contains no

functions fun x → A. We write fn(φ) for the set of names occurring free in φ, and

also fnfv(φ) = fv(φ) ∪ fn(φ), the set of both names and variables occurring free in

φ. In the logic, each RCF name is a constant, that is, a nullary syntactic function

symbol.

Expressions represent run-time configurations as well as source code. Structures

S are normal forms for expressions, and formalize the idea that a configuration has

three parts: (1) the log, a multiset
∏

i∈1..m assume Ci of assumed formulas; (2) a series

of messages Mj sent on channels but not yet received; and (3) a series of elementary

expressions ek being evaluated in parallel contexts.

We give structures below, together with a notion of static safety, which means

that all active assertions in a structure are deducible in the logic from the active

assumptions. We additionally require all formulas to be of first order, since the logic

only speaks about first-order values.

Structures and static safety:

e ::= M | M N | M = N | let (x, y) = M in A |
match M with h x → A else B | a? | assert C∏

i∈1..n Ai � () � A1 � . . . � An
L ::= {} | (let x = L in B)

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 199

S ::= (νa1) . . . (νa
)(
∏

i∈1...m assume Ci) � (
∏

j∈1...n cj!Mj) � (
∏

k∈1...o Lk{ek}))

Let structure S be statically safe if and only if, for all p ∈ 1 . . . o and C ,

if ep = assert C then C1, . . . , Cm and C are first order, and {C1, . . . , Cm} � C .

Next, we present the heating relation, A � A′, which relates expression up to

various structural re-arrangements. In particular, every expression can be related to

a structure via heating.

Heating: A � A′

Axioms A ≡ A′ are read as both A � A′ and A′ � A.

A � A (Heat Refl)

A � A′′ if A � A′ and A′ � A′′ (Heat Trans)

A � A′ ⇒ let x = A in B � let x = A′ in B (Heat Let)

A � A′ ⇒ (νa)A � (νa)A′ (Heat Res)

A � A′ ⇒ (A � B) � (A′ � B) (Heat Fork 1)

A � A′ ⇒ (B � A) � (B � A′) (Heat Fork 2)

() � A ≡ A (Heat Fork ())

a!M � a!M � () (Heat Msg ())

assume C � assume C � () (Heat Assume ())

a /∈ fn(A′) ⇒ A′ � ((νa)A) � (νa)(A′ � A) (Heat Res Fork 1)

a /∈ fn(A′) ⇒ ((νa)A) � A′ � (νa)(A � A′) (Heat Res Fork 2)

a /∈ fn(B) ⇒
let x = (νa)A in B � (νa)let x = A in B

(Heat Res Let)

(A � A′) � A′′ ≡ A � (A′ � A′′) (Heat Fork Assoc)

(A � A′) � A′′ � (A′ � A) � A′′ (Heat Fork Comm)

let x = (A � A′) in B ≡
A � (let x = A′ in B)

(Heat Fork Let)

The reduction relation, A → A′, is the operational semantics of RCF.

Reduction: A → A′

(fun x → A) N → A{N/x} (R Red Fun)

(let (x1, x2) = (N1, N2) in A) → A{N1/x1
}{N2/x2

} (R Red Split)

(match M with h x → A else B) →{
A{N/x} if M = h N for some N

B otherwise

(R Red Match)

M = N →
{

true if M = N

false otherwise
(R Red Eq)

a!M � a? → M (R Red Comm)

assert C → () (R Red Assert)

let x = M in A → A{M/x} (R Red Let Val)

A → A′ ⇒ let x = A in B → let x = A′ in B (R Red Let)

A → A′ ⇒ (νa)A → (νa)A′ (R Red Res)

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

200 J. Borgström et al.

A → A′ ⇒ (A � B) → (A′ � B) (R Red Fork 1)

A → A′ ⇒ (B � A) → (B � A′) (R Red Fork 2)

A → A′ if A � B,B → B′, B′ � A′ (R Red Heat)

We define expression safety as follows. A closed expression A is safe if and only

if, in all evaluations of A, all assertions succeed.

Expression safety:

An expression A is safe if and only if, for all A′ and S, if A →∗ A′ and A′ � S,

then S is statically safe.

The purpose of the system of refinement types for RCF is to verify by typing

that an expression is safe. The types of RCF are as follows. The starting point is

the system of unit, function, pair, sum, and iso-recursive types of FPC, to which we

add refinement types {x : T | C}, while making function and pair types dependent.

Syntax of types:

H,T ,U, V ::= type

α type variable

unit unit type

Πx : T . U dependent function type (scope of x is U)

Σx : T . U dependent pair type (scope of x is U)

T +U disjoint sum type

μα.T iso-recursive type (scope of α is T)

{x : T | C} refinement type (scope of x is C)

A type T is of first order if and only if T contains no occurrences of Πx : T . U.

For a type Πx : T . F or Σx : T . U or {x : T | C} to be well formed, we require that

either T is a first-order type or that x is not free in F , U, or C , respectively. The

type system relies on the following derivable types. An ok-type {C} is a unit token

conveying that the formula C holds. We use ok-types to record logical assumptions

in our typing environments.

Some derivable types:

{C} � { : unit | C} ok-type

bool � unit + unit Boolean type

Below, we define the syntax of typing environments, E, for tracking the identifiers

(type variables, names, and (value) variables) in scope during type-checking.

Syntax of typing environments:

μ ::= environment entry

α <: α′ subtype (α �= α′)

a � T name of a typed channel

x : T variable

E ::= μ1, . . . , μn environment

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 201

dom(α <: α′) = {α, α′} fnfv(α <: α′) = �
dom(a � T) = {a} fnfv(a � T) = fnfv(T)

dom(x : T) = {x} fnfv(x : T) = fnfv(T)

dom(μ1, . . . , μn) = dom(μ1) ∪ . . . ∪ dom(μn)

fov(E) = {x ∈ dom(E) | (x : T) ∈ E with T first order}
recvar(E) = {α | α ∈ dom(E)}

The type system consists of five inductively defined judgments.

Judgments (E � J):

E � � E is syntactically well formed

E � T in E, type T is syntactically well formed

E � C fo formula C is first order in E

E � C formula C is derivable from E

E � T <: U in E, type T is a subtype of type U

E � A : T in E, expression A has type T

The judgments E � �, E � T , and E � C are inductively defined by the rules

in the following table. The function forms(E), also given below, returns the set of

formulas occurring in refinement types in the environment.

Rules of well formedness and deduction:

(R Env Empty)

� � �

(R Env Entry)

E � �
fnfv(μ) ⊆ dom(E)

dom(μ) ∩ dom(E) = �

E, μ � �

(R Type)

E � �
fnfv(T) ⊆ dom(E)

E � T
(R Derive)

E � C fo

forms(E) � C

E � C

(R Form)

E � � C is first order

fn(C) ⊆ dom(E) fv(C) ⊆ fov(E)

E � C fo

forms(E) �⎧⎨
⎩

{C{y/x}} ∪ forms(y : T) if E = (y : {x : T | C})
forms(E1) ∪ forms(E2) if E = (E1, E2)

� otherwise

The judgment E � T <: T ′ is inductively defined by the following rules.

Rules for subtyping:

(R Sub Refl)

E � T recvar(E) ∩ fnfv(T) = �

E � T <: T

(R Sub Unit)

E � �

E � unit <: unit

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

202 J. Borgström et al.

(R Sub Fun)

E � T ′ <: T E, x : T ′ � U <: U ′

E � (Πx : T . U) <: (Πx : T ′. U ′)

(R Sub Pair)

E � T <: T ′ E, x : T � U <: U ′

E � (Σx : T . U) <: (Σx : T ′. U ′)

(R Sub Sum)

E � T <: T ′ E � U <: U ′

E � (T + T ′) <: (U +U ′)

(R Sub Var)

E � � (α <: α′) ∈ E

E � α <: α′

(R Sub Rec)

E, α <: α′ � T <: T ′ α /∈ fnfv(T ′) α′ /∈ fnfv(T)

E � (μα.T) <: (μα′.T ′)

(R Sub Refine Left)

E � {x : T | C} E � T <: T ′

E � {x : T | C} <: T ′

(R Sub Refine Right)

E � T <: T ′ E, x : T � C

E � T <: {x : T ′ | C}

The judgment E � A : T is inductively defined by the rules in the following

table. We use the notation E + C defined as follows: when E � C fo holds, we let

E + C � E, : {C}; otherwise, we let E + C � E.

Rules for typing expressions:

(R Val Var)

E � � (x : T) ∈ E

E � x : T

(R Exp Subsum)

E � A : T E � T <: T ′

E � A : T ′

(R Exp Eq)

E � M : T E � N : U x /∈ fv(M,N)

E � M = N : {x : bool | x = true ⇔ M = N}

(R Exp Assume)

E � C fo

E � assume C : { : unit | C}
(R Exp Assert)

E � C

E � assert C : unit

(R Exp Let)

E � A : T E, x : T � B : U x /∈ fv(U)

E � let x = A in B : U

(R Val Unit)

E � �

E � () : unit

(R Val Fun)

E, x : T � A : U

E � fun x → A : (Πx : T . U)

(R Exp Appl)

E � M : (Πx : T . U) E � N : T

E � M N : U{N/x}

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 203

(R Val Pair)

E � M : T E � N : U{M/x}

E � (M,N) : (Σx : T . U)

(R Exp Split)

E � M : (Σx : T . U)

E, x : T , y : U + ((x, y) = M) � A : V

{x, y} ∩ fv(V) = �

E � let (x, y) = M in A : V

inl:(T ,T+U) inr:(U,T+U) fold:(T {μα.T/α}, μα.T)

(R Val Inl Inr Fold)

h : (T ,U) E � M : T E � U

E � h M : U

(R Exp Match Inl Inr Fold)

E � M : T h : (U,T)

E, x : H + (h x = M) � A : U x /∈ fv(U)

E + (∀x.h x �= M) � B : U

E � match M with h x → A else B : U

(R Val Refine)

E � M : T E � C{M/x}

E � M : {x : T | C}

(R Exp Res)

E, a � T � A : U a /∈ fn(U)

E � (νa)A : U

(R Exp Send)

E � M : T (a � T) ∈ E

E � a!M : unit

(R Exp Recv)

E � � (a � T) ∈ E

E � a? : T

(R Exp Fork)

E, : {A2} � A1 : T1 E, : {A1} � A2 : T2

E � (A1 � A2) : T2

(νa)A � (∃a.A) A1 � A2 � (A1 ∧ A2) let x = A1 in A2 � A1 assume C � C

A � True if A matches no other rule

To state the following general properties of all the judgments of our system, we

let J range over {�, T , C, C fo,T <: T′,A : T}.

Admissible rules:

(R Bound Weakening)

E � T ′ <: T E, x : T ,E ′ � J

E, x : T ′, E ′ � J

(R Bound Unrefine)

E, x : T ,E ′ � J

E, x : {x : T | C}, E ′ � J

(R Weakening)

E,E ′ � J

E, x : T ,E ′ � J

(R Exchange)

E, μ1, μ2, E
′ � J dom(μ1) ∩ fnfv(μ2) = �

E, μ2, μ1, E
′ � J

(R Sub Refine)

E � T <: T ′ E, x : {x : T | C} � C ′

E � {x : T | C} <: {x : T ′ | C ′}

(R Sub Refine Left Refl)

E � {x : T | C}

E � {x : T | C} <: T

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

204 J. Borgström et al.

The primary soundness results about RCF, proved elsewhere (Bengtson et al.

2008), are as follows. Let E be executable if and only if recvar(E) = �.

Lemma 3 (Static Safety)

If � � S : T then S is statically safe.

Proposition 4 (� Preserves Types)

If E is executable and E � A : T and A � A′ then E � A′ : T .

Proposition 5 (→ Preserves Types)

If E is executable, fv(A) = �, and E � A : T and A → A′ then E � A′ : T .

Theorem 2 (Safety of RCF)

If � � A : T then A is safe.

Appendix B: Semantics of RIF by translation to RCF

We give a semantics to RIF through translation to the sequential fragment of RCF.

For our purposes, this fragment is virtually identical to the source language, except

for the lack of binders on assert C and assume C . The translation of values and

formulas is homomorphic.

V[[M]] is the translation of the value M in the source language to a value in RCF.

Translation of values: V[[M]]

V[[x]] � x

V[[()]] � ()

V[[fun x → A]] � fun x → E[[A]]

V[[(M,N)]] � (V[[M]],V[[N]])

V[[h M]] � h (V[[M]])

Let E[[A]] be the translation of an expression A in the source language to a function

in RCF. This function receives the current state and returns a pair, consisting of the

original return value and the resulting state. Intuitively, the translation threads a

state through the original computation. We rely on an auxiliary translation Ec[[A]]s

on expressions to reduce the number of administrative redexes.

Translation of expressions: E[[A]] and Ec[[A]]s

E[[A]] � fun s → Ec[[A]]s (s /∈ fv(A))

Ec[[M]]s � (V[[M]], s)

Ec[[M N]]s � let f = V[[M]] V[[N]] in f s

Ec[[M = N]]s � let b = (V[[M]] = V[[N]]) in (b, s)

Ec[[let x = A in B]]s � let y = Ec[[A]]s in let (x, s′) = y in Ec[[B]]s′ (y, s′ /∈ fv(B))

Ec[[let (x, y) = M in A]]s � let (x, y) = V[[M]] in Ec[[A]]s

Ec[[matchM with h x→A else B]]s � match V[[M]]with h x→Ec[[A]]s else Ec[[B]]s

Ec[[assume (s)C]]s � let = assume [[C]] in ((), s)

Ec[[assert (s)C]]s � let = assert [[C]] in ((), s)

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 205

Ec[[get()]]s � (s, s)

Ec[[set(M)]]s � ((),V[[M]])

We want to work in a single, unified authorization logic for both the source and

the target of the translation. We prove that (first-order) formulas are mapped to

themselves by formula translation; equiprovability trivially follows. Let [[C]] be the

translation of the formula C .

Translation of formulas: [[C]]

[[p(M1, . . . ,Mn)]] � p(V[[M1]], . . . ,V[[Mn]])

[[M = M ′]] � V[[M]] = V[[M ′]]

[[C ∧ C ′]] � [[C]] ∧ [[C ′]]

[[C ∨ C ′]] � [[C]] ∨ [[C ′]]

[[¬C]] � ¬[[C]]

[[∀x.C]] � ∀x.[[C]]

[[∃x.C]] � ∃x.[[C]]

A formula C is of first order if it contains only first-order values.

Lemma 6 (Translating first-order phrases)

If M is a first-order value then [[M]] = M, and if C is a first-order formula then

C = [[C]].

Proof

By inductions on the structure of M and C . �

Corollary 1 (Equiprovability)

• If C is a first-order formula, then � C iff � [[C]].

• If C and all formulas in S are of first order, then S � C iff [[S]] � [[C]].

The translation of types is straightforward. We translate computation types into

a function type that takes a refinement of the state type and returns a pair of the

original return type and a refined state.

Translation of types: T[[T]],T[[F]]

T[[α]] � α

T[[unit]] � unit

T[[Πx : T . F]] � Πx : T[[T]]. T[[F]]

T[[Σx : T . U]] � Σx : T[[T]]. T[[U]]

T[[T +U]] � T[[T]] + T[[U]]

T[[μα.T]] � μα.T[[T]]

T[[{(s0)C0}x1:T1 {(s1)C1}]] � Πs0 : {s0 : state | [[C0]]}. Σx1 : T[[T1]]. {s1 :state | [[C1]]}

Closed first-order types are translated to themselves, so T[[state]] = state. The

translation of environments is also straightforward; we make explicit that state

variables are of type state.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

206 J. Borgström et al.

Translation of environments: [[E]]

[[�]] � �
[[E, μ]] � [[E]], [[μ]]

[[α <: α′]] � (α <: α′)

[[s]] � (s : state)

[[x : T]] � x : T[[T]]

The state-passing translation of expressions and values is type-preserving.

Proposition 7 (Static Adequacy)

(1) If E � � then [[E]] � �.

(2) If E � T then [[E]] � T[[T]].

(3) If E � F then [[E]] � T[[F]].

(4) If E � C fo then [[E]] � [[C]] fo.

(5) If E � T <: U then [[E]] � T[[T]] <: T[[U]].

(6) If E � F <: G then [[E]] � T[[F]] <: T[[G]].

(7) If E � M : T then [[E]] � V[[M]] : T[[T]].

(8) If E � A : F then [[E]] � E[[A]] : T[[F]] using (R Val Fun) as the top-level rule

of the derivation.

The proof of the proposition is by induction on the derivation, and relies on several

lemmas, as follows.

Lemma 8 (Free Variable Preservation)

(1) fnfv(V[[M]]) = fv(M), fnfv(E[[A]]) = fv(A) and fnfv(Ec[[A]]s) = fv(A) ∪ {s}.
(2) fnfv(T[[T]]) = fv(T) and fnfv(T[[F]]) = fv(F).

(3) fnfv([[μ]]) = fv(μ) and fnfv([[E]]) = fv(E).

Proof

By structural inductions. �

Lemma 9 (Environment Translation)

(1) dom([[μ]]) = dom(μ) and dom([[E]]) = dom(E).

(2) If μ ∈ E then [[μ]] ∈ [[E]].

Proof

By induction on E. �

Lemma 10 (Substitutivity)

(1) V[[N{M/x}]] = V[[N]]{V[[M]]/x}.
(2) E[[A{M/x}]] = E[[A]]{V[[M]]/x}.
(3) Ec[[A{M/x}]]s = Ec[[A]]s{V[[M]]/x} if s /∈ fv(M,x).

(4) T[[T {M/x}]] = T[[T]]{V[[M]]/x}.
(5) T[[F{M/x}]] = T[[F]]{V[[M]]/x}.
(6) [[C{M/x}]] = [[C]]{V[[M]]/x}.
(7) T[[T {U/α}]] = T[[T]]{T[[U]]/α}.
(8) T[[F{U/α}]] = T[[F]]{T[[U]]/α}.

Proof

By structural inductions. �

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

Roles, stacks, histories: A triple for Hoare 207

B.1 Safety

We define [[R]] by [[let x = R in B]] � let y = [[R]] in let (x, s′) = y in Ec[[B]]s′ and

[[[]]] � []. When S is the multiset {|C1, . . . , Cn|}, we write [[S]] � {|[[C1]], . . . , [[Cn]]|} and

[[assume S]] � assume [[C1]] � · · · � assume [[Cn]] � ().

Lemma 11 (Static Safety)

If [[assume S]] � Ec[[A]]s{V[[M]]/s} is statically safe, then (A,M, S) has not failed.

Proof

The configuration (A,M, S) has failed iff A = R[assert (s)C] and we cannot derive

S � C{M/s}. If A = R[assert (s)C] then B � Ec[[A]]s{V[[M]]/s} = [[R]][let =

assert C{V[[M]]/s} in ((), s)]. If [[assume S]] � B is statically safe, then [[S]] � C{V[[M]]/s}.
Thus [[S]] and C{V[[M]]/s} are of first order. The translations of formulas send

embedded functions to functions, so it follows that S and C{M/s} must also be of

first order. By Corollary 1, S � C{V[[M]]/s}. �

Lemma 12 (Simulation)

If (A0, N0, S0) → (A1, N1, S1) then [[assume S0]] � Ec[[A0]]s{V[[N0]]/s} →∗[[assume S1]] �
Ec[[A1]]s{V[[N1]]/s}

Proof

By induction on the derivation of the transition. �

Corollary 2 (Safety Preservation)

If E[[A]]V[[M]] is safe then (A,M,�) is safe.

Proof

By Lemma A.1, Lemma 12 and the definition of safety. �

Corollary 3 (Safety by Well-typed Translation)

If � � E[[A]]V[[M]] : T then (A,M,�) is safe.

Proof

By Corollary 2 and Theorem 2 (Safety of RCF). �

Theorem 3 (Theorem 1 (Safety))

If � � A : {(s)C} : T {(s′)True}, � � C{M/s} and � � M : state then configuration

(A,M,�) is safe.

Proof

By Corollary 3, it suffices to prove � � E[[A]] V[[M]] : U for some U. By

Proposition 7 (Static Adequacy), we have � � E[[A]] : Πs : {s : T[[state]] | [[C]]}. Σ :

T . {s′ : T[[state]] | True} (*) and � � M : T[[state]]. By (R Val Refine) � � M : {s :

T[[state]] | [[C]]} (**). Finally, by (R Exp Appl) (*, **) � � E[[A]] V[[M]] : U with

U � Σ : T . {s′ : T[[state]] | True}. �

By Corollary 3, we can prove the safety of RIF configurations through type-checking

their RCF translation with the refinement type-checker F7.

https://doi.org/10.1017/S0956796810000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000134

