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A commutativity theorem for rings

D. L Outcait and Adi I Yaqub

Let ft be an associative ring with identity in which every

element is either nilpotent or a unit. The following results are

established. The set N of nilpotent elements in R is an

ideal. If R/N is finite and if x = y (mod N) implies

x 2 = J/2 or both x and y commute with all elements of N ,

then R is commutative. Examples are given to show that R

need not be commutative if "x2 = y2" is replaced by "x = y "

for any integer k > 2 . The case N = (0) yields Wedderburn's

Theorem.

1. Introduction

Wedderburn's Theorem, asserting that a finite associative division

ring is necessarily commutative, has recently been generalized in [I].

Our purpose is to extend Wedderburn's Theorem to the case where fl is an

associative (but not necessarily finite) ring with identity in which every

element is either nilpotent or a unit. The quaternions show that this

alone need not force R to be commutative, hence additional conditions

are needed. We prove that the set N of nilpotent elements of R is an

ideal in R , and then impose conditions on N and R/N which yield the

commutativity of R . Indeed, we establish the following

THEOREM. Let R be an associative ring with identity in which every

element is either nilpotent or a unit in R . Then

(a) the set N of nilpotent elements in R is an ideal;
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(b) if (i) R/N is finite, and (ii) x = y (mod N) implies

x2 = y2 or both x and y commute with all elements of N ,

then R is aammutative.

Note that the case N = (0) recovers Wedderburn's Theorem.

We also show that this theorem need not hold if either hypothesis (i)

or (ii) is deleted. Moreover, it turns out, perhaps somewhat surprisingly,

that this theorem is not necessarily true if "x2 = y2" in (ii) is replaced

k k
by "x = y " for any k > 2 (see examples below).

2. Main section

Proof of part (a). Let a (. N , b (. R , and let ab = a . Suppose

c $ N . Then a is a unit. Let a = 0 , k minimal. Then

0 = [aCb)c~^~ = (a 1o)o~1 = a , contradicting the minimality of k .

Thus, upon considering ba similarly, we have

(1) a (. N and b d R = ab € N and ba i N .

Next, let a € N , b f N , and set a - b = u . Suppose u \ N .

Then u is a unit and a = u + b . Hence au~ = J. - y , where

y = -bu'1 t N by (1). Let yn = 0 , and let W = l + Y + Y 2 + ••• + Y^"1-

Then au w = w au = 1 - yn = 1 . Hence au~ is a unit, a

contradiction since, by (l), au~ i N • We have thus shown that

(2) a € N and b (. N => a-b (. N .

Part (a) readily follows from (l) and (2).

COROLLARY. Let R and N be as in part (a) of the theorem. Then

R/N is a division ring.

Proof. First, by part (a), N is an ideal in R and hence R/N

makes sense. For any a i R , let a = a+N 6 R/N . Suppose that a | 0 .

Then a \ N , and hence a is a unit in R . Therefore ao = aa = 1 for

some a 6 R , and hence ac = aa = I . Thus a is a unit in R/N , and

hence R/N is a division ring.

Next we prove two lemmas leading up to part (b) of the theorem.
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LEMMA 1. Let R and N satisfy part (b) of the theorem. Then N

•is a commutative subring of R .

Proof. Let a (. N , b (. N . Suppose ab 4 ba . Since a = 0

(mod N) , b = 0 (mod N) , a + b = 0 (mod N) , we have by tii),

a2 = 0 , b2 = 0 , (a+b)2 = 0 , and hence ab + ba = 0 . This follows,

since otherwise (ii) would force ab = ba . Similarly, since a + 1 = 1

(mod N) , (a+1)2 = 1 , and hence 2a = 0 . Therefore i>a = -ab = ab , a

contradiction. This proves the lemma.

LEMMA 2. Let R , W , R/N satisfy all the hypotheses of Lemma 1.

Then every element of N commutes with every element of R .

Proof. Let a € N , b € R , and suppose ab ^ ba . Since

a + b = b (mod N) , therefore by (ii)> (a+b)2 = b2 . Hence

0 = (a+b)(a+b)2 - (a+b)2(a+b) = (a+b)b2 - b2(a+b) = ab2 - b2a .

Therefore,

(3) ab2 = b2a .

Now, since ab j ba , a(b+l) =(= (b+l)a , and hence we may repeat the above

argument to b + 1 (instead of b) to get a(b+l)2 = (Jb+l)2a . This

equation, when combined with (3), yields

(It) 2(ab-ba) = 0 .

But, by the corollary, R/N is a division ring which, by til and

Wedderburn's Theorem, must be a finite field of characteristic p , say.

Hence pb t N , and thus by Lemma 1, a(pb) = (pb)a . Therefore,

(5) p(ab-ba) = 0 .

Now, if p 4 2 , then (h), (5) readily imply ab - ba - 0 , a

contradiction. Next, suppose p = 2 . Then the finite field R/N has

exactly 2 elements for some integer k . Hence (3)2 = 5 , and

thus b2 - b € N . Therefore, by Lemma 1, we get

(6) a[b2k-b) = [b2k-b)a .

Now, iterative multiplication of both sides of (3) by b2 yields

(7) ab2k = b*ka .
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Hence, by (6), (7), we get ab = ba , a contradiction. We have thus

obtained a contradiction whether p 4 2 o r P = 2 • This contradiction

proves the lemma.

We are now in a position to complete the proof of the theorem.

Proof of part (b). In view of Lemmas 1 and 2 we may assume that

x \ N and y \ N . Now, by the corollary, hypothesis (i), and

Wedderburn's Theorem, R/N is a finite field, and hence the

multiplicative group of non-zero elements of R/N is cyclic. Let

% = E, + N be a generator for R/N , £ € R . Then for some integers

i, j , and some a, a' f N , we have, x = £ t + a , y = Zp + a' . Hence,

by Lemmas 1 and 2, xy = yx , and the theorem is proved.

3. Examples

The following examples serve to show that part Cb) of the theorem

need not hold if either of the hypotheses (i), (ii) is deleted.

EXAMPLE 1. Let R be any division ring which is not commutative

(e.g., the quaternions). Here R satisfies (ii), but (i) fails to hold.

EXAMPLE 2. Let

R =

a

0

0

b

a
0

o

d

a

a, b, a, d i GF{2)

Here R is not commutative, and N consists of the strictly upper

triangular matrices in R . Moreover, R satisfies (i) but (ii.) fails to

hold.

k k,general be replaced by "x = y for any k > 2 . For, consider the

We remark that the equation "x2 = y2" in (ii) of part (b) cannot in

•al be replaced

ring R defined by

I a b a

0 a d a, b, c, d £ GF(p) , p = prime!

0 0 a) j

where p is chosen as follows: if k is odd take p to be any fixed

prime divisor of k , and if k is even take p to be any fixed prime
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divisor of k/2 . Since k > 2 , such a prime p always exists. It is

readily verified that the ring R satisfies all the hypotheses of part

(b), except that "x2 = y2" is now replaced lay "xk = yk" in (ii).

Note, however, that R is not commutative.

We observe that the theorem applies to infinite rings and to rings

with non-zero nilpotent elements. An example is furnished by adjoining

to GF(p) an infinite number of commuting nilpotent elements

rii, ^2. ••• • R = GF{p) [rii, H2> — ] (p prime). Another example is

obtained by taking

0

a. i GF[pk) , i = X n

Here the nilpotent elements consist of the strictly upper triangular

matrices in R . It is readily verified that the rings in both of these

two examples satisfy all the hypotheses of the theorem.
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