A necessary and sufficient condition for differentiability

By R. L. GOODSTEIN.

The familiar Lemma introduced by Goursat in his proof of Cauchy's theorem suggests the following necessary and sufficient condition for differentiability of a complex function f(z).

THEOREM 1. A complex function f(z) is differentiable in the *interior* of a square S, of side α , if

1.1 corresponding to any positive ϵ there is a subdivision of S into a finite number of squares s_r , with sides δ_r , such that, for each value of r, there is a number A_r and

$$| f(z) - f(z') - A_r(z-z') | < \epsilon \delta_r$$

at all points z, z' inside or on the boundary of the square s_r .

Conversely 1.1 holds if f(z) is differentiable inside, and on the boundary of, S.

1.2 The converse follows from Goursat's Lemma, for if f(z) is differentiable in a *closed* square S, then given $\epsilon > 0$, $\kappa > 0$, there is a subdivision of S into a finite number of squares s_r , of sides δ_r , such that in each s_r there is a point z_r and

$$\mid f(z)-f(z_r)-f'(z_r) \ (z-z_r) \mid \ < \kappa \epsilon \mid z-z_r \mid$$

for all points z in the closed square s_r . Whence, since $|z-z_r| \leq \delta_r \sqrt{2}$, taking $\kappa = 1/(2\sqrt{2})$ we have $|f(z)-f(z')-f'(z_r)(z-z')|$ $= |\{f(z)-f(z_r)-f'(z_r)(z-z_r)\} - \{f(z')-f(z_r)-f'(z_r)(z'-z_r)\}| < \epsilon \delta_r$.

1.3 If 1.1 holds then f(z) is continuous inside and on the boundary of S; for if z, z' are any two points in the closed square S, such that $|z-z'| < \min \{\delta_r, \epsilon/ | A_r |\}$ if $A_r \neq 0$, and $|z-z'| < \min \{\delta_r\}$ if $A_r = 0$, then z, z' lie either in the same square s_{μ} or in adjoining squares s_{μ} , s_r . In the former case

 $|f(z)-f(z')| < |A_{\mu}| |z-z'| + \epsilon \delta_{\mu} < (a+1)\epsilon;$

in the latter case, let ζ , ζ' be the points on which the line joining z to z' meets the boundaries of s_{μ} , s_{ν} respectively; then ζ , ζ' (which may coincide) lie in the same square and so

$$|f(z)-f(z')| = |f(z)-f(\zeta)+f(\zeta)-f(\zeta')+f(\zeta')-f(z')| < 3(a+1)\epsilon.$$

1.4 We prove the sufficiency of the condition 1.1 by appeal to Morera's theorem. Let C be any simple closed contour in S, of length L and bounding a region R. We denote by $s_1, s_2, \ldots, s_{\mu}$ the squares of the subdivision s_r which are completely contained in the closed region R, and by $s_{\mu+1}, s_{\mu+2}, \ldots, s_{\mu+r}$, the subsquares which are intersected by C. Further, let σ_r be the contour formed by the parts of the boundary of s_r contained in R together with the arcs c_r of C which are contained in s_r , and choose any point z_r in the common part of s_r and R.

Writing $\epsilon_r(z) = f(z) - f(z_r) - A_r(z - z_r)$ we have

$$\left|\int_{\mathcal{S}_r} f(z)dz\right| = \left|\int_{\mathcal{S}_r} \epsilon_r(z)dz\right| < 4\epsilon \delta_r^2, \ 1 \leq r \leq \mu,$$

and $\left|\int_{\sigma_r} f(z)dz\right| < \epsilon \delta_r (4\delta_r + l_r)$, where l_r is the length of c_r ,

 $< 4\epsilon \delta_r^2 + a\epsilon l_r, \qquad \mu + 1 \leq r \leq \mu + \nu.$

Hence $\left| \int_{C} f(z) dz \right| < 4\epsilon \sum_{r=1}^{\mu+\nu} \delta_{r}^{2} + aL\epsilon \leq \epsilon (4a^{2} + aL);$

but ϵ is arbitrary, and so $\int_C f(z)dz = 0$, whence by Morera's theorem, f(z) is differentiable in the interior of S.

THEOREM 1*. A function f(z) is differentiable in the interior of a square if

1.5 there is a constant κ , and corresponding to any positive ϵ there is a subdivision of the square into a finite number of squares s_r with sides δ_r , such that for each r there is a number A_r , a positive integer p_r , and a point z_r in s_r satisfying

1.51
$$|f(z) - f(z_r) - A_r(z - z_r)^{pr}| < \kappa \epsilon \delta_r$$

for all points z inside and on the boundary of the square s_r .

The proof of Theorem 1* is the same as the proof of Theorem 1, § 1.4. We observe that if a function f(z) satisfies 1.5 for all sufficiently small values of ϵ then it satisfies 1.5 for all values of ϵ , for a subdivision in which 1.51 holds for some one ϵ , is a fortiori a subdivision in which 1.51 holds for any greater ϵ , leaving A_r and δ_r unchanged.

Theorem 1* appears to be of no intrinsic interest and is introduced with a view to its application in the following rather curious result.

A NECESSARY AND SUFFICIENT CONDITION FOR DIFFERENTIABILITY 15

THEOREM 2. A function f(z) is defined in a square S, of side a. Corresponding to any point z_0 in S and any $\epsilon > 0$ there are numbers $A = A(\epsilon, z_0), \ \delta = \delta(\epsilon, z_0) > 0$ and an integer $p = p(z_0) > 1$ such that

$$| f(z) - f(z_0) - A(z - z_0)^p | < \epsilon \delta$$

at all points z of S which lie in the circle $|z - z_0| = \delta$.

• If, as $\epsilon \to 0$, $\delta(\epsilon, z)$ is bounded by M uniformly in z, then f(z) is constant inside and on the boundary of S.

2.1 We prove first that f(z) satisfies the conditions 1.5, with $\kappa = \max\{M/a, 4\sqrt{2}\}$, inside and on the boundary of S. Choose ϵ_0 so that $\delta(\epsilon, z) < M$ for all $\epsilon < \epsilon_0$ and all z in S. If there is an ϵ , less than ϵ_0 , for which 1.5 is not satisfied, we may by repeated subdivision determine a point z_0 (inside or on the boundary of S) and a square T_n , of side $a/2^n$, which contains z_0 and for which 1.5 is not satisfied for this ϵ . Corresponding to this ϵ there is a δ such that

$$|f(z) - f(z_0) - A(z - z_0)^p| < \epsilon \delta$$

at all points z in the circle $|z - z_0| = \delta$.

If $\delta = \delta(\epsilon, z_0)$ exceeds $a\sqrt{2}$ then the circle $|z - z_0| = \delta$ completely contains the square S, and so, since $\delta < M$,

$$\mid f(z) - f(z_0) - A(z-z_0)^p \mid < \epsilon \delta < (M/a)\epsilon a$$

at all points z of S, which contradicts the hypothesis that 1.5 is not satisfied for this value of ϵ .

If $\delta \leq a \sqrt{2}$, and if *m* is the *least* integer such that $2^m \geq a \sqrt{2}/\delta$, so that the circle $|z - z_0| = \delta$ completely contains the square T_{m+1} of side $c = a/2^{m+1}$, then in T_{m+1}

$$|f(z) - f(z_0) - A(z-z_0)^p| < \epsilon \delta < \epsilon a \sqrt{2}/2^{m-1} = 4\sqrt{2}\epsilon c,$$

so that 1.5 is satisfied for T_{m+1} for the given ϵ — a contradiction. Hence f(z) satisfies 1.5 for all $\epsilon < \epsilon_0$, and therefore f(z) is differentiable in the interior of S.

2.2 Let z_0 be an interior point of S, ϵ_n a null sequence, and $\delta_n = \delta(\epsilon_n, z_0)$; then either δ_n takes arbitrarily small values or δ_n has a lower bound $\lambda > 0$.

2.21 If $\delta_n \geq \lambda > 0$ for all *n*, then

$$| f(z) - f(z_0) - (z - z_0)^p A(\epsilon_n, z_0) | < \epsilon_n \delta_n < M \epsilon_n$$

for all z in the circle $|z - z_0| = \lambda$. Hence $A(\epsilon_n, z_0)$ converges to a

limit $l(z_0)$, say, and $f(z) - f(z_0) = (z - z_0)^p l(z_0)$ at all points of the circle $|z - z_0| = \lambda$, so that

$${f(z) - f(z_0)}/{(z - z_0)} = (z - z_0)^{p-1}l(z_0) \rightarrow 0$$

as $z \rightarrow z_0$, that is, $f'(z_0) = 0$.

2.22 If δ_n takes arbitrarily small values, we can find ϵ_{n_r} , a subsequence of ϵ_n , such that δ_{n_r} is less than some assigned η for all r. Let ρ be the minimum distance of z_0 from the boundary of S, take $\eta < \rho$, and let γ be the circle, centre z_0 , radius δ_{n_r} . Write

$$\epsilon(\omega) = f(\omega) - f(z_0) - A(\omega - z_0)^p$$

then, since γ is completely contained in S, $|\epsilon(\omega)| < \epsilon_{n_r} \delta_{n_r}$ at all points of γ . Hence

$$\left| f'(z_0) \right| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(\omega)d\omega}{(\omega-z_0)^2} \right| = \frac{1}{2\pi} \left| \int_{\gamma} \frac{\epsilon(\omega)d\omega}{(\omega-z_0)^2} \right| \leq \epsilon_n r$$

and so $f'(z_0) = 0$.

2.3 Accordingly $f'(z_0) = 0$ at all points z_0 interior to S, so that f(z) is constant in the interior of S. Since f(z) satisfies 1.5 for S, it follows as in § 1.3 that f(z) is continuous in the closed square, and so f(z) is constant in the closed square.

A referee, to whom I am indebted for a number of valuable suggestions on the presentation of this note, drew my attention to the following generalisation of Theorem 2.

In the inequality 1.51 we may replace $A_r(z-z_r)^{pr}$ by $(z-z_r)^2$ $A_r(z, \epsilon)$, where, for each r, $A_r(z, \epsilon)$ is an analytic function of z, for all values of z_r and ϵ , and in Theorem 2, $A(z-z_0)^p$ may be replaced by $(z-z_0)^2h(z, z_0, \epsilon)$, where $h(z, z_0, \epsilon)$ is an analytic function of z for all values of ϵ and all z_0 in S.

UNIVERSITY COLLEGE, ' Leicester.

16