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Given two unital C*-algebras equipped with states and a positive operator in the
enveloping von Neumann algebra of their minimal tensor product, we define three
parameters that measure the capacity of the operator to align with a coupling of the
two given states. Further, we establish a duality formula that shows the equality of
two of the parameters for operators in the minimal tensor product of the relevant
C*-algebras. In the context of abelian C*-algebras, our parameters are related to
quantitative versions of Arveson’s null set theorem and to dualities considered in the
theory of optimal transport. On the other hand, restricting to matrix algebras we
recover and generalize quantum versions of Strassen’s theorem. We show that in the
latter case our parameters can detect maximal entanglement and separability.
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1. Introduction

Strassen’s theorem [14] characterizing the existence of a probability measure on
a product measurable space, having fixed marginals and prescribed support, has
enjoyed an illustrious history, both leading to new fruitful research directions and
having significant applications. Such joint probability measures, known as couplings
of the pair of original measures, are the starting point of the theory of optimal trans-
port and appear as a fundamental concept in the celebrated Monge–Kantorovich
duality [15, 16]. They are also at the heart of Arveson’s null set theorem [1], which
formed the base of vast parts of non-self-adjoint operator algebra theory and had a
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lasting impact on the study of invariant spaces for collections of Hilbert space oper-
ators (see [7]). Arveson’s null set theorem was given a quantitative formulation by
Haydon and Shulman [10]; the quantifying parameters defined therein were shown
in [10] to be capacities in the sense of Choquet’s capacitability theory [6].

Recently, a quantum version of Strassen’s theorem was established [17], inspired
by applications to quantum information theory. In the latter setting, the result
identifies necessary and sufficient conditions for the existence of a state on the
tensor product of two matrix algebras with prescribed marginal states. A study of
related phenomena in the case of infinite dimensional type I factors was pursued
in [8].

The aim of the present paper is to formulate and exploit a common framework
that unifies and extends the several aforementioned themes. Given two unital C*-
algebras A and B, equipped with respective states φ and ψ, we introduce three
parameters that measure the capacity that the couplings of φ and ψ – that is,
states on the minimal tensor product A⊗ B whose marginals coincide with φ and ψ,
respectively – align with a given positive operator T in the enveloping von Neumann
algebra (A⊗ B)∗∗. In the case T is an orthogonal projection, these parameters can
be thought of as capacities of that projection to support a quantum coupling of
the two given states. We establish a duality result of Monge–Kantorovich type
in this context, stating that two of the introduced parameters coincide whenever
T ∈ A⊗ B (see theorem 2.7), and are bounded from above by the third.

Restricting to abelian C*-algebras and to orthogonal projections, we show that
our parameters coincide with the Choquet capacities of Haydon and Shulman
(see [10]). The positive operator T ∈ (A⊗ B)∗∗ can in this case be thought of as a
measurable cost function in the sense of the theory of optimal transport [15]. On
the other hand, restricting to the case where the C*-algebras are matrix algebras,
we see that the duality result implies the quantum versions of Strassen’s theorem
established in [8, 17]. Thus, our result can be thought of as a quantitative extension
of a C*-algebra version of Strassen’s theorem, closely related to a non-commutative
version of Arveson’s null set theorem.

We show that, in the case of matrix algebras, the introduced coupling capac-
ities can detect maximal entanglement and separability of bipartite states (see
theorem 3.7). We further establish several general facts, showing that our parame-
ters enjoy natural continuity properties, both when considered as functions on the
positive operator in A⊗ B, and on the pair (φ, ψ) of states. Finally, we would like
to note that in recent years the (noncommutative) optimal transport techniques
appeared in the operator algebraic contexts ranging from the classification theory
of C*-algebras [11] to free probability [9]. Some other capacities in the context of
C*-algebras have been studied in [18].

The paper is organized as follows: after describing the basic notation in the
remainder of the Introduction, in § 2 we introduce our capacities, establish the rela-
tionship between them (notably in theorem 2.7) and study the relevant continuity
properties. Here, we also discuss the commutative case, providing the connection to
Arveson’s null set theorem and to the classical Monge–Kantorovich duality. Finally,
in § 3 we focus on the matrix case, deducing the quantum Strassen’s theorem of [17]
from our main results, developing the connection between coupling capacities and
entanglement, and discussing several examples.
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Coupling capacity in C*-algebras 3

We finish this section with setting notation. For a C*-algebra A, we denote by
Ah the real vector space of all hermitian elements in A, by A+ the cone of its
positive elements and by P(A) the set of all projections in A; note that when A is
a von Neumann algebra, P(A) is a complete ortho-lattice. We use standard nota-
tion for the supremum (∨) and infimum (∧) in P(A). We denote by A∗ the dual
of A, by A∗

+ the positive functionals on A and by A∗∗ the second dual of A. We
view A∗∗ as the enveloping von Neumann algebra of A, and A as a C*-subalgebra
of A∗∗. If φ ∈ A∗ then φ has a unique extension to a weak* continuous functional on
A∗∗, which will be denoted by the same symbol; this operation preserves the
property of being a state.

All C*-algebras considered in the paper will be unital; the unit of a C*-algebra A
will be denoted by 1A (or 1 if there is no danger of confusion). An operator system
in a C*-algebra A is a self-adjoint (and not necessarily closed) linear subspace of A
containing 1A. A state of an operator system S is a positive functional f : S → C

such that f(1A) = 1; the (convex) set of all states of S is denoted by S(S).
We write Mn for the algebra of all n by n matrices, and tr (resp. Tr) for the

normalized (resp. taking value 1 on minimal projections) trace on Mn. If we want
to emphasize the underlying dimension, we write trn. We let (εi,j)ni,j=1 be the
canonical matrix unit system in Mn. Given a state ω : Mn → C, there exists a
unique positive semi-definite matrix Aω with tr(Aω) = 1 (called the density matrix
of ω) such that ω(B) = tr(AωB), B ∈Mn. We will sometimes identify ω with Aω.
In the lack of preferred matrix unit system inside Mn, we will use the notation
L(Cn). Given vectors ξ and η, we use the notation ξη∗ for the rank one operator
given by (ξη∗)(ζ) = 〈ζ, η〉ξ. Note that the scalar products are linear on the left.

If X is a compact Hausdorff space, we denote as usual by C(X) the (abelian) C*-
algebra of all continuous complex-valued functions on X and by M(X) the space of
all complex Borel measures on X. Note that, by the Riesz representation theorem,
M(X) can be canonically identified with C(X)∗.

2. Definition of coupling capacities and their fundamental properties

In this section, we define three parameters that form the focus of the paper and
examine some of their properties. The main result of the section is theorem 2.7,
which can be thought of as a non-commutative Monge–Kantorovich type duality.

2.1. Definitions

Let A and B be unital C*-algebras, equipped with states φ and ψ, respectively.
We denote by A⊗ B (resp. A	 B) the minimal (resp. the algebraic) tensor product
of A and B. For an element σ ∈ (A⊗ B)∗, we denote by σA (resp. σB) the element
of A∗ (resp. B∗) given by

σA(a) = σ(a⊗ 1) (resp. σB(b) = σ(1 ⊗ b));

thus, σA (resp. σB) is the A-marginal (resp. the B-marginal) of σ.

Definition 2.1. A positive functional σ : A⊗ B → C is called a coupling of the
states φ and ψ (or a (φ, ψ)-coupling) if σA = φ and σB = ψ.
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We denote by C(φ, ψ) the set of all (φ, ψ)-couplings. Note that each (φ, ψ)-
coupling is automatically a state and that C(φ, ψ), equipped with weak∗ topology,
is a compact convex set.

Remarks 2.2.

(i) Suppose that X (resp. Y ) is a compact Hausdorff space, A = C(X) (resp.
B = C(Y )), and let μ (resp. ν) be a Borel probability measure on X (resp.
Y ). Viewing μ (resp. ν) as a state on A (resp. B), we see that the elements
of C(μ, ν) are precisely the couplings of the measures μ and ν in terms of the
theory of optimal transport (see [16, Definition 1.1]).

(ii) Specializing further, let A and B coincide with the algebra Dn of all diagonal
matrices in Mn (where n ∈ N). Recall that a matrix Λ = (λi,j)ni,j=1 ∈Mn is
called bistochastic if

λi,j � 0 and
n∑

j′=1

λi,j′ =
n∑

i′=1

λi′,j = 1, i, j = 1, . . . , n.

In view of the canonical (algebraic) identification Dn ⊗Dn ≡Mn, we can thus
refer to an element of Dn ⊗Dn being bistochastic. If σ ∈ (Dn ⊗Dn)∗, there
exists a (unique) Aσ ∈ Dn ⊗Dn such that

σ(T ) = trn2(TAσ), T ∈ Dn ⊗Dn.

It is straightforward to verify that σ ∈ C(tr, tr) if and only if the matrix
(1/n)Aσ is bistochastic.

Let A and B be unital C*-algebras. We have that A⊗ 1 ⊆ A⊗ B as C*-algebras,
and hence

A∗∗ ⊗ 1 = (A⊗ 1)∗∗ ⊆ (A⊗ B)∗∗

as von Neumann algebras. Similarly, 1 ⊗ B∗∗ ⊆ (A⊗ B)∗∗. By [5, Proposition 9.2.1],
the two von Neumann subalgebras A∗∗ ⊗ 1 and 1 ⊗ B∗∗ of (A⊗ B)∗∗ mutually
commute and there exists a canonical separately weak* continuous embedding

A∗∗ 	 B∗∗ ⊆ (A⊗ B)∗∗.

In particular, we can consider A∗∗ ⊗ 1 + 1 ⊗ B∗∗ as an operator subsystem of (A⊗
B)∗∗. The latter identification will be made throughout the rest of the paper.

For a unital C*-algebra A and a state φ on A, we will refer to the pair (A, φ)
as a measured C*-algebra. (The motivation for the terminology comes from the
commutative case A = C(X), where X is a compact Hausdorff space and the fact
that, in this case, states on A correspond canonically to Borel probability measures
on X.)
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Definition 2.3. Let (A, φ) and (B, ψ) be measured C∗-algebras. For T ∈ (A⊗
B)∗∗+ with ‖T‖ � 1, let

α(T ) = sup{σ(T ) : σ ∈ C(φ, ψ)},

β(T ) = inf{φ(a) + ψ(b) : a ∈ A∗∗
+ , b ∈ B∗∗

+ , T � a⊗ 1 + 1 ⊗ b}, (2.1)

and

γ(T ) = inf{φ(p) + ψ(q) : p ∈ P(A∗∗), q ∈ P(B∗∗), T � (p⊗ 1) ∨ (1 ⊗ q)}.

We will refer to α(T ) (resp. γ(T )) as the coupling capacity (resp. the projective
coupling capacity) of (φ, ψ) with respect to T .

Remark 2.4.

(i) By the compactness of the set C(φ, ψ) in the weak* topology, the supremum
in the definition of α(T ) is achieved if T ∈ A⊗ B.

(ii) Let

C̃(φ, ψ) =
{
σ ∈ (A⊗ B)∗+ : σA � φ and σB � ψ

}
.

For T ∈ (A⊗ B)∗∗+ , we have that

α(T ) = sup
{
σ(T ) : σ ∈ C̃(φ, ψ)

}
. (2.2)

Indeed, letting α′(T ) denote the right-hand side of (2.2), we trivially have
α(T ) � α′(T ). Suppose that σ ∈ C̃(φ, ψ). Then, σ(1) = σA(1) � φ(1) = 1.
Let φ′ = φ− σA and ψ′ = ψ − σB; then φ′ and ψ′ are positive functionals.
If σ(1) = 1 then

φ′(1) = φ(1) − σ(1 ⊗ 1) = 0

and hence φ′ = 0, that is, σA = φ; similarly, σB = ψ, that is, σ ∈ C(φ, ψ). We
may hence assume that σ(1) < 1. Set:

σ′ = σ +
1

1 − σ(1)
φ′ ⊗ ψ′;

for a ∈ A we then have

σ′(a⊗ 1) = σ(a⊗ 1) +
1

1 − σ(1)
φ′(a)ψ′(1) = σ(a⊗ 1) + φ′(a) = φ(a),

that is, σ′
A = φ; similarly, σ′

B = ψ, that is, σ′ ∈ C(φ, ψ). In addition, σ � σ′

and hence α′(T ) � α(T ), establishing (2.2).
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2.2. A Monge–Kantorovich-type duality

The purpose of this subsection is to identify the relations between the parameters
α, β and γ. As a motivating example, consider the special case where A = B = Dn,
equipped with normalized trace tr. As pointed out in remark (ii) after definition 2.1,
up to rescaling, the elements in C(tr, tr) correspond to bistochastic matrices.

Using the Birkhoff–von Neumann theorem, it is straightforward to see that
α(E) = γ(E) for every projection E in Dn ⊗Dn. (In fact, one can easily verify
that both α(E) and γ(E) are equal to the normalized length of a maximal partial
graph of a (partial) bijection, contained in E.)

We begin with a general min–max result regarding the state extensions. After
the first version of this article was announced, Michael Hartz kindly pointed out to
us that a very similar result is contained in [2, Proposition 6.2].

Lemma 2.5. Let C be a unital C*-algebra and S ⊆ C be an operator subsystem.
For τ ∈ S(S), let Ext(τ) = {ω ∈ S(C) : ω|S = τ}. Then, for any hermitian element
x ∈ C, we have

sup {ω(x) : ω ∈ Ext(τ)} = inf{τ(y) : y ∈ Sh, y � x}. (2.3)

Proof. Let t0 (resp. t) denote the left (resp. right) hand side of (2.3). If y ∈ Sh,
x � y and ω ∈ Ext(τ), then ω(x) � ω(y) = τ(y), so t0 � t.

If x ∈ S, then both sides of (2.3) are equal to τ(x), so we may assume that x /∈ S.
Consider the subspace T := S + Cx and define a linear functional τ ′ : T → C by
letting

τ ′(y + λx) = τ(y) + λt, y ∈ S, λ ∈ C.

The fact that τ ′ is well-defined is a consequence of the fact that x /∈ S; in addition,
τ ′ is clearly unital.

Suppose that z = y + λx ∈ T+; then λ ∈ R and y ∈ Sh. We will show that τ ′(z) �
0. Assume first that λ < 0. Then, (−λ)−1y � x, so τ((−λ)−1y) � t, and hence

τ ′(z) = τ(y) + λt = −λ
(
τ((−λ)−1y) − t

)
� 0.

If λ > 0 then, for any ω ∈ Ext(τ), we have that

τ
( y
λ

)
+ ω(x) = ω

( y
λ

)
+ ω(x) =

1
λ
ω(z) � 0.

Thus, τ(y/λ) + t0 � 0. By the first part of the proof, τ(y/λ) + t � 0; this implies
that τ ′(z) � 0. Finally, for λ = 0 the fact that τ ′(z) � 0 is trivial. Thus, τ ′ is a
positive functional. Extend τ ′ to a state τ̃ on C. We have that τ̃ ∈ Ext(τ) and that
τ̃(x) = t. It follows that t � t0, completing the proof. �

Lemma 2.6. Let H be a Hilbert space and P and Q be projections on H.

(i) If PQ = QP and T is a positive contraction on H, then T � P +Q if and
only if T � P ∨Q.

(ii) If rP � Q for some r > 0 then P � Q.
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Proof. (i) Assume that T � P +Q, suppose that T 1/2(P ∨Q)⊥ = 0 and let ξ ∈ H
be such that T 1/2(P⊥Q⊥)ξ = 0. Set η = (P⊥Q⊥)ξ; then (Pη, η) = (Qη, η) = 0 but
0 = ‖T 1/2η‖2 = (Tη, η), a contradiction with the assumption that T � P +Q. It
follows that T 1/2(P ∨Q)⊥ = 0 and hence (P ∨Q)⊥T = 0, implying that ran(T ) ⊆
ran(P ∨Q). Since ‖T‖ � 1, the latter condition implies T � P ∨Q. The converse
implication follows from the fact that P ∨Q � P +Q.

(ii) For ξ ∈ H, we have

r‖PQ⊥ξ‖2 = (rPQ⊥ξ,Q⊥ξ) � (QQ⊥ξ,Q⊥ξ) = 0,

showing that PQ⊥ = 0. Thus, P � Q. �

The second part of the following theorem is one of the key results of the paper.

Theorem 2.7. Let (A, φ) and (B, ψ) be measured C∗-algebras and T ∈ (A⊗ B)∗∗

be a positive contraction. Then,

α(T ) � β(T ) � γ(T ) � 1.

Furthermore, if T ∈ (A⊗ B)+ then α(T ) = β(T ).

Proof. Let T ∈ (A⊗ B)∗∗ be as above. It is easy to see that if σ ∈ C(φ, ψ) and a ∈
A∗∗, b ∈ B∗∗, then σ(a⊗ 1 + 1 ⊗ b) = φ(a) + ψ(b). This immediately shows that
σ(T ) � φ(a) + ψ(b) whenever T � a⊗ 1 + 1 ⊗ b, so that α(T ) � β(T ).

Restricting the right-hand side of (2.4) to projections p = a and q = b, an appli-
cation of lemma 2.6(i) shows that β(T ) � γ(T ). Finally, since p = 1, q = 0 gives a
feasible choice for the projections p and q, we have that γ(T ) � 1.

Assume now that T ∈ (A⊗ B)+ and in lemma 2.5 set C := A⊗ B and S := A⊗
1 + 1 ⊗ B, equipped with the state τ := φ⊗ ψ|S . Note that if a ∈ A then a⊗ 1 ∈ S
and τ(a⊗ 1) = φ(a); similarly, if b ∈ B then τ(1 ⊗ b) = ψ(b). By lemma 2.5:

α(T ) = inf{φ(a) + ψ(b) : a⊗ 1 + 1 ⊗ b ∈ (A⊗ 1 + 1 ⊗ B)h,

T � a⊗ 1 + 1 ⊗ b}. (2.4)

The condition a⊗ 1 + 1 ⊗ b ∈ (A⊗ 1 + 1 ⊗ B)h implies that a⊗ 1 + 1 ⊗ b =
(a+ a∗)/2 ⊗ 1 + 1 ⊗ (b+ b∗)/2 and therefore that

φ(a) + ψ(b) = τ(a⊗ 1 + 1 ⊗ b) = τ

(
a+ a∗

2
⊗ 1 + 1 ⊗ b+ b∗

2

)
= φ

(
a+ a∗

2

)
+ ψ

(
b+ b∗

2

)
.

It follows that the elements a and b on the right-hand side of (2.4) can be assumed
hermitian.

Assume that a ∈ Ah and b ∈ Bh are such that T � a⊗ 1 + 1 ⊗ b. We claim that,
without loss of generality, the elements a and b can be assumed positive. Write sp(x)
for the spectrum of x and let s = min sp(a) and t = min sp(b). If min{s, t} � 0 then
a and b are positive and the claim is vacuous. Suppose that min{s, t} < 0, say s < 0.
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Let (ξn)n∈N (resp. (ηn)n∈N) be a sequence of unit vectors in the Hilbert space HA
(resp. HB) of the faithful representation of A (resp. B) such that

s = lim
n→∞〈aξn, ξn〉

(
resp. t = lim

n→∞〈bηn, ηn〉
)
.

As

0 � 〈T (ξn ⊗ ηn), ξn ⊗ ηn〉
� 〈(a⊗ 1)(ξn ⊗ ηn), ξn ⊗ ηn〉 + 〈(1 ⊗ b)(ξn ⊗ ηn), ξn ⊗ ηn〉
= 〈aξn, ξn〉 + 〈bηn, ηn〉,

we have that s+ t � 0. Let a′ = a− s1 and b′ = b+ s1. Then, a′ � 0 and b′ �
b− t1 � 0. On the other hand, trivially,

a⊗ 1 + 1 ⊗ b = a′ ⊗ 1 + 1 ⊗ b′ and φ(a) + ψ(b) = φ(a′) + ψ(b′).

We have shown that the elements a and b in (2.4) can be assumed to be positive,
and combined with the first paragraph, this implies that α(T ) = β(T ). �

Remark 2.8. It is natural to ask whether the equality α(T ) = β(T ) can be extended
beyond elements of (A⊗ B)+. An instance where this is true can be seen in
proposition 2.18; the general case remains open.

It is clear that if T ∈ (A⊗ B)∗∗ is a positive contraction and E is its range
projection then γ(T ) = γ(E). It is therefore natural to restrict attention to the
values of the parameter γ on the projections in (A⊗ B)∗∗ alone. As we next note,
the inequality β(T ) � γ(T ) can be strict even for T ∈ A⊗ B. We will need a special
case of the following proposition which, at the same time, exhibits a case, where an
equality between β and γ takes place.

Proposition 2.9. Let (A, φ) and (B, ψ) be measured C*-algebras, and e ∈ P(A∗∗)
and f ∈ P(B∗∗). Then,

γ(e⊗ f) = min{φ(e), ψ(f)}. (2.5)

If, in addition, A = Mn and B = Mm for some n, m ∈ N, and φ = trn and ψ = trm,
then

β(e⊗ f) = γ(e⊗ f) = min{φ(e), ψ(f)}. (2.6)

Proof. Since e⊗ f � e⊗ 1 and e⊗ f � 1 ⊗ f , we have that γ(e⊗ f) �
min{φ(e), ψ(f)}. On the other hand, assume that p and q are projections with
e⊗ f � (p⊗ 1) ∨ (1 ⊗ q). Then, (e⊗ f)(p⊥ ⊗ q⊥) = 0 and hence either e � p or
f � q. This implies that φ(p) + ψ(q) � min{φ(e), ψ(f)} and (2.5) is established.

Proceeding to the justification of (2.6), in view of theorem 2.7 and (2.5), it suffices
to show that min{φ(e), ψ(f)} � α(e⊗ f). Choose orthonormal bases (e1, . . . , ek)
(resp. (f1, . . . , fl)) of the ranges of e (resp. f), and complete it to a basis of C

n
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(resp. C
m). Assume, say, that k/n � l/m. Let π be the probability distribution on

{1, . . . , n} × {1, . . . , m}, given by

π(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
nl

if i � k and j � l,

0 if i � k and j > l,
1

l(n− k)

(
l

m
− k

n

)
if i > k and j � l,

1
m(n− k)

if i > k and j > l.

Then, the marginals of π coincide with the uniform distributions and

π({1, . . . , k} × {1, . . . , l}) =
k

n
.

Let

D =
n∑
i=1

m∑
j=1

π(i, j)eie∗i ⊗ fjf
∗
j .

It is then easy to check that the state on Mn ⊗Mm with density matrix D belongs
to C(trn, trm), and tr(D(e⊗ f)) = k/n. Thus, min{φ(e), ψ(f)} = k/n � α(e⊗ f)
and the proof is complete. �

Remark 2.10. The inequality β(E) � γ(E) in theorem 2.7, for projections E ∈
A⊗ B, can be strict. Indeed, let A = B = M2 and φ = ψ coincide with the vector
state ωξ corresponding to the vector ξ = (1/

√
2) ( 1

1 ). Let p be the rank one projec-
tion with range the subspace generated by the vector e1 = ( 1

0 ), and E = p⊗ p. By
proposition 2.9, γ(E) = 1/2.

We claim that β(E) = 1/4. Indeed, suppose that ω ∈ S(M2 ⊗M2) is an element
of C̃(ωξ, ωξ). Writing pξ for the projection onto Cξ, this means that ω(p⊥ξ ⊗ 1) =
ω(1 ⊗ p⊥ξ ) = 0. Now, an elementary calculation shows that the density matrix Aω
of ω has rank one. Since tr(Aω) = 1, we conclude that ω = ωξ ⊗ ωξ. This implies
that α(E) = ωξ(p)2 = 1/4.

The state ωξ above is not faithful, but considering instead of this a state of the
form (1 − ε)ωξ + εωη, say with η = (1/

√
2)
(

1−1

)
, and using once again proposi-

tion 2.9 and the upper semicontinuity of proposition 2.15(i), we can see that the
inequality β(E) � γ(E) may be strict even for faithful states.

We next exhibit another situation, where an equality between the parameters β
and γ takes place.

Proposition 2.11. Let E ∈ (A⊗ B)∗∗ be a projection. Suppose that the infimum
in the definition of β (see (2.1)) is achieved at a pair (a, b) such that E(a⊗ 1) =
(a⊗ 1)E and E(1 ⊗ b) = (1 ⊗ b)E. Then, β(E) = γ(E).

Proof. Let ε > 0 and choose a ∈ A∗∗
+ and b ∈ B∗∗

+ such that E � a⊗ 1 + 1 ⊗ b,

E(a⊗ 1) = (a⊗ 1)E and E(1 ⊗ b) = (1 ⊗ b)E,

and φ(a) + ψ(b) = β(E). Since the elements a⊗ 1, 1 ⊗ b and E are contained in a
common abelian von Neumann algebra, by functional calculus, we can assume that

https://doi.org/10.1017/prm.2023.81 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.81


10 A. Skalski, I. G. Todorov and L. Turowska

‖a‖ � 1 and ‖b‖ � 1. By the spectral theorem, there exist families (pi)ni=1 (resp.
(qj)mj=1) of mutually orthogonal projections in A∗∗ (resp. B∗∗) with sum 1, such
that E commutes with the family {pi ⊗ 1, 1 ⊗ qj}i,j , and scalars (λi)ni=1 ∈ [0, 1]
(resp. (μj)mj=1 ∈ [0, 1]) such that, if

a′ =
n∑
i=1

λipi and b′ =
m∑
j=1

μjqj ,

then a � a′, b � b′ and φ(a′) + ψ(b′) < β(E) + ε.
Set c = 1 − a′ and d = 1 − b′, ci = 1 − λi, dj = 1 − μj , i = 1, . . . , n, j =

1, . . . , m. Then,

c⊗ 1 + 1 ⊗ d− 1 ⊗ 1 � E⊥. (2.7)

For each t ∈ [0, 1], let pt =
∑

{pi : ci > t} and qt =
∑

{qj : dj > 1 − t}. We claim
that

pt ⊗ qt � E⊥ for every t ∈ [0, 1]. (2.8)

To see this, note that if ci > t and dj > 1 − t then ci + dj − 1 > 0 and write F for
the set of these pairs (i, j) for which these inequalities hold. By (2.7),∑

(i,j)∈F
(ci + dj − 1)pi ⊗ qj � E⊥.

Now, lemma 2.6(ii) implies that pi ⊗ qj � E⊥ for every (i, j) ∈ F , and (2.8) is
proved.

Set f(t) = φ(pt) and g(t) = ψ(qt), t ∈ [0, 1]. It is straightforward to check that

φ(c) + ψ(d) =
∫ 1

0

(f(t) + g(t)) dt.

Since φ(c) + ψ(d) > 2 − β(E) − ε, there exists t0 ∈ [0, 1] such that f(t0) + g(t0) >
2 − β(E) − ε. Setting p = 1 − pt0 and q = 1 − qt0 , we see that E � (p⊗ 1) + (1 ⊗
q). Lemma 2.6(i) implies that E � (p⊗ 1) ∨ (1 ⊗ q). Since

φ(p) + ψ(q) = 2 − f(t0) − g(t0) < β(E) + ε,

we have that γ(E) � β(E) and hence, by theorem 2.7, β(E) = γ(E). �

Remarks 2.12.

(i) As a consequence of proposition 2.11 and remark 2.10, we see that the infimum
in the definition of β(E), for a projection E, is not necessarily achieved on
elements a, b whose ampliations a⊗ 1 and 1 ⊗ b commute with E.

(ii) We note that the conclusion of proposition 2.11 holds true under the weaker
assumption which does not require that the infimum in the definition of
β is achieved, but that there exists a sequence of pairs ((ak, bk))k∈N, such
that for all k ∈ N we have E(ak ⊗ 1) = (ak ⊗ 1)E, E(1 ⊗ bk) = (1 ⊗ bk)E,
and φ(ak) + ψ(bk) →k→∞ β(E). By functional calculus such pairs exist if A
and B are commutative.
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2.3. Monotonicity and preservation

Let (A, φ) and (B, ψ) be measured C∗-algebras, fixed throughout this subsection.

Proposition 2.13. (i) If (Tk)k∈N is a sequence in (A⊗ B)+, T ∈ (A⊗ B)+
and Tk →k→∞ T in the weak* topology, then α(T ) � lim infk∈N α(Tk). If, in
addition, the sequence (Tk)k∈N is monotone then α(T ) = limk∈N α(Tk).

(ii) The function α : (A⊗ B)+ → R
+ is convex, monotone and continuous in the

norm topology.

Proof. (i) Assume that Tk →k→∞ T in the weak* topology and, using remark 2.4(i),
let σ ∈ C(φ, ψ) have the property σ(T ) = α(T ). Then,

α(T ) = lim
k→∞

σ(Tk) � lim inf
k∈N

α(Tk).

Now, suppose that Tk →k→∞ T in the weak* topology and the sequence (Tk)k∈N

is monotone. Let f, fk : C(φ, ψ) → R
+ be the functions given by f(σ) = σ(T ) and

fk(σ) = σ(Tk), k ∈ N. Then, the sequence (fk)k∈N is monotone, consists of con-
tinuous functions and converges to the continuous function f . By Dini’s theorem,
fk →k→∞ f uniformly; in particular, ‖fk‖∞ →k→∞ ‖f‖∞, that is, α(Tk) →k→∞
α(T ).

(ii) It is trivial that, for S, T ∈ (A⊗ B)∗∗+ , the inequality S � T implies α(S) �
α(T ). For the convexity, let S and T be positive contractions in (A⊗ B)∗∗, and
s, t ∈ [0, 1], s+ t = 1. Then,

α(sS + tT ) = sup{σ(sS + tT ) : σ ∈ C(φ, ψ)}
� sup{sσ(S) + tτ(T ) : σ, τ ∈ C(φ, ψ)} = sα(S) + tα(T ).

Let (Tk)k∈N be a sequence of positive elements in A⊗ B, and T be a positive
element in A⊗ B. Assume that ‖Tk − T‖ →k→∞ 0 and, using remark 2.4(i), let
σk ∈ C(φ, ψ) be such that α(Tk) = σk(Tk), k ∈ N. Suppose that α(Tkl

) →l→∞ δ for
some subsequence (kl)l∈N. By the weak* compactness of C(φ, ψ), we may assume,
without loss of generality, that σkl

→l→∞ σ in the weak* topology, for some σ ∈
C(φ, ψ). For ε > 0, let l0 ∈ N be such that ‖Tkl

− Tkl0
‖ < ε and |σ(T ) − σkl

(T )| < ε
whenever l � l0. Then,

|σ(T ) − α(Tkl
)| = |σ(T ) − σkl

(Tkl
)|

� |σ(T ) − σkl
(T )| + |σkl

(T ) − σkl
(Tkl

)|
� |σ(T ) − σkl

(T )| + ‖T − Tkl
‖ < 2ε,

whenever l � l0. It follows that

α(T ) � σ(T ) � α(Tkl
) − 2ε, l � l0,

implying that δ � α(T ). Thus, lim supk∈N α(Tk) � α(T ). The proof is now complete
in view of (i). �

We next record a simple observation regarding the behaviour of the coupling
capacity with respect to compositions with maps. If (A, φ) and (B, ψ) are unital
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C∗-algebras equipped with states, a positive map Θ : A⊗ B → A⊗ B will called
(φ, ψ)-reducing if Θ∗(C(φ, ψ)) ⊆ C̃(φ, ψ).

Proposition 2.14. Let (A, φ) and (B, ψ) be measured C∗-algebras, and let T be a
positive contraction in (A⊗ B)∗∗.

(i) If Θ : A⊗ B → A⊗ B is a positive (φ, ψ)-reducing map, then α(Θ∗∗(T )) �
α(T ).

(ii) If π ∈ Aut(A) and ρ ∈ Aut(B) are automorphisms such that φ ◦ π = φ and
ψ ◦ ρ = ψ, then

α(T ) = α ((π ⊗ ρ)∗∗(T )) .

In particular, if φ and ψ are traces and u (resp. v) is a unitary in A (resp.
B), then α(T ) = α((u⊗ v)T (u⊗ v)∗).

Proof. (i) Using remark 2.4(ii), we have

α(Θ∗∗(T )) = sup{σ(Θ∗∗(T )) : σ ∈ C(φ, ψ)}
� sup{σ′(T ) : σ′ ∈ C̃(φ, ψ)} = α(T ).

(ii) Letting Θ = π ⊗ ρ, we have that Θ is invertible, positive, has a positive inverse
and Θ∗(C(φ, ψ)) = C(φ, ψ). The claim therefore follows from (i). �

2.4. Dependence on the underlying states

In the previous subsection, the pairs (A, φ) and (B, ψ) were fixed and α(T ) was
examined as a function on T . We now briefly change the perspective and look at
how α(T ) changes if we fix T and allow the states φ and ψ to vary. In order to
underline the dependence on the chosen reference states, we will write αφ,ψ(T )
(resp. βφ,ψ(T )) for the parameter α (resp. β), introduced in definition 2.3. Denote
by Sf(A) the collection of all faithful states on S(A) (note that Sf(A) is not closed
unless A = C).

Proposition 2.15. Fix two unital C∗-algebras A and B and a positive contraction
T ∈ A⊗ B.

(i) The function

S(A) × S(B) → R+; (φ, ψ) �→ αφ,ψ(T ),

is upper semicontinuous.

(ii) If A and B are finite dimensional then the function

Sf(A) × Sf(B) → R+; (φ, ψ) �→ αφ,ψ(T ),

is continuous.

Proof. (i) Suppose that (φi, ψi)i∈I is a net of states, weak∗-convergent to a
pair (φ, ψ) ∈ S(A) × S(B). Using remark 2.4(i), choose σi ∈ C(φi, ψi) such that
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αφi,ψi
(T ) = σi(T ), for each i ∈ I. After passing to a subnet if necessary, we may

assume that (σi)i∈I converges to a state σ ∈ S(A⊗ B). It is clear that σ ∈ C(φ, ψ)
and, naturally, αφ,ψ(T ) � σ(T ) = limi∈I σi(T ).

(ii) Suppose that (φk, ψk)k∈N is a sequence of faithful states, convergent to
(φ, ψ) ∈ Sf(A) × Sf(B). For each k ∈ N, choose ak ∈ A+ and bk ∈ B+ such that
T � ak ⊗ I + I ⊗ bk and βφk,ψk

(T ) � φk(ak) + ψk(bk) − 1/k.
We claim that the sequence (ak)k∈N is bounded. Let τ ∈ S(A) be a faithful

trace and let D and Dk be (invertible) elements of A such that φ = τ(D·) and
φk = τ(Dk·), k ∈ N. Since Dk

k→∞−→ D, we have that D−1
k

k→∞−→ D−1. In particular,
(D−1

k )k∈N is bounded. By finite dimensionality, it follows that

‖ak‖ � M‖Dkak‖ � MCτ(Dkak) = MCφk(ak), k ∈ N,

for some positive constants M and C, depending only on A and the sequence
(φk)k∈N. Since the sequence (φk(ak))k∈N is bounded, so is the sequence (ak)k∈N; by
symmetry, so is the sequence (bk)k∈N.

After passing to subsequences if necessary, ak →k→∞ a and bk →k→∞ b for some
a ∈ A+ and b ∈ B+. We have T � a⊗ I + I ⊗ b and

βφ,ψ(T ) � φ(a) + ψ(a) = lim
k→∞

φk(ak) + ψk(bk) −
1
k

� βφk,ψk
(T ).

The claim now follows after an application of theorem 2.7 and proposition 2.15(i).
�

2.5. The commutative case

In this section, we assume that A and B are abelian. We will see that, in this
case, the coupling capacity α coincides with some previously studied parameters,
appearing before in the theory of optimal transport and in operator algebra theory.

We first note that, by the Gelfand theorem, every unital abelian C*-algebra is
*-isomorphic to the C*-algebra C(X), for some compact Hausdorff space X. If X
is a compact Hausdorff space, we write FX for the σ-algebra of Borel subsets of X.
Given α ∈ FX , the linear functional eα : M(X) → C, given by

eα(μ) = μ(α), μ ∈M(X),

is bounded with ‖eα‖ = 1, and hence gives rise to an element of C(X)∗∗, which
will be denoted in the same way. By abuse of notation, we identify eα with the
characteristic function χα of α, thus viewing χα as an element of C(X)∗∗.

We fix compact Hausdorff spaces X and Y , and set A = C(X) and B = C(Y ).
Fix Borel probability measures μ and ν on X and Y , respectively. We will write
Lp(X) and Lp(Y ) for the corresponding Lp-spaces, where p ∈ {1, ∞}, with respect
to μ and ν, respectively. We equip X × Y with the product σ-algebra FX,Y , that
is the σ-algebra generated by the sets A×B, where A ∈ FX and B ∈ FY ; note
that FX,Y is contained in the Borel σ-algebra FX×Y of X × Y . Given a positive
measure σ on (X × Y, FX,Y ), let σ∗ be the outer measure associated with σ and
let σX (resp. σY ) be the X-marginal (resp. the Y -marginal) of σ.
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Let κ ⊆ X × Y . The following parameters, associated with κ, were defined
in [10]:

(i) α(κ) = sup{σ∗(κ) : σX � μ, σY � ν};

(ii) β(κ) = inf{
∫
X
adμ+

∫
Y
bdν : a ∈ L∞(X), b ∈ L∞(Y ), a(x) + b(y) � 1 on κ};

(iii) γ(κ) = inf{μ(A) + ν(B) : A ∈ FX , B ∈ FY , κ ⊆ (A× Y ) ∪ (X ×B)}.

We will now show that the above parameters coincide with these studied in our
paper.

Proposition 2.16. Let (X, μ) and (Y, ν) be probability spaces and κ ∈ FX,Y .
Then, α(κ) = α(χκ), β(κ) = β(χκ) and γ(κ) = γ(χκ).

Proof. Since κ ∈ FX,Y , we have that σ∗(κ) = σ(κ), and hence the claim about the
parameter α follows from remark 2.4(ii).

Moving to β, let πμ : C(X) → B(L2(X, μ)) be the *-representation given by
πμ(a)ξ = aξ, a ∈ C(X), ξ ∈ L2(X, μ). Extend πμ to a normal *-representation
(denoted in the same way) πμ : C(X)∗∗ → B(L2(X, μ)); it is clear that its range
can be canonically identified with L∞(X, μ) and we hence obtain a *-epimorphism
πμ : C(X)∗∗ → L∞(X, μ). Similarly, we have a *-epimorphism πν : C(Y )∗∗ →
L∞(Y, ν).

Note that, given a ∈ L∞(X, μ) and ã ∈ C(X)∗∗ such that πμ(ã) = a (resp. b ∈
L∞(Y, ν) and b̃ ∈ C(Y )∗∗ such that πν(b̃) = b), we have

〈ã, μ〉 =
∫
X

adμ (resp. 〈b̃, ν〉 =
∫
Y

bdν).

Assume that a(x) + b(y) � 1 on κ. This means that

(πμ ⊗ πν)(ã⊗ 1 + 1 ⊗ b̃− χκ) � 0.

Using the fact that *-epimorphisms are complete quotient maps, we conclude that
ã⊗ 1 + 1 ⊗ b̃− χκ � 0, at the expense of possibly changing ã and b̃, while retaining
their positivity and the properties πμ(ã) = a and πν(b̃) = b. These arguments show
that β(κ) = β(χκ). Finally, the claim about the parameter γ are obtained from the
one about β after restricting a and b to be projections. �

Remark 2.17. By proposition 2.16, as consequences of theorem 2.7 and proposi-
tion 2.11 (together with the remarks following the latter) we obtain the fact that,
whenever κ ⊆ X × Y is a clopen set, we have that α(κ) = β(κ) = γ(κ). The latter
equalities are very special instances of Corollaries of Lemma 1 and Theorem 1 in [10]
which, in their turn, are quantitative versions of Arveson’s null set theorem [1,
Section 1.4]. Naturally, the results of [10] apply in much greater generality; we will
see a special instance of this below.

Proposition 2.18. Let (A, φ) and (B, ψ) be measured abelian C∗-algebras and
suppose that T ∈ (A⊗ B)∗∗+ is lower semicontinuous, i.e. there exists an increas-
ing net (Ti)i∈I with Ti ∈ (A⊗ B)+ which converges to T in weak*-topology. Then,
α(T ) = β(T ).
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Proof. Fix ε > 0. Note first that by functional calculus for each i ∈ I we have

β(Ti) = inf{φ(a) + ψ(b) : a ∈ A∗∗, b ∈ B∗∗, ‖a‖, ‖b‖ � ‖T‖, Ti � a⊗ 1 + 1 ⊗ b}.

For each i ∈ I let then ai ∈ A∗∗ and bi ∈ B∗∗ be such that ‖ai‖ � ‖T‖, ‖bi‖ � ‖T‖,
Ti � ai ⊗ 1 + 1 ⊗ bi, and

φ(ai) + ψ(bi) � β(Ti) + ε.

By passing to a subnet if necessary, assume that

ai →i∈I a and bi →i∈I b

in the weak* topologies of A∗∗ and B∗∗, respectively. We have that T � a⊗ 1 +
1 ⊗ b.

Since Ti ∈ A⊗ B, by theorem 2.7 we have α(Ti) = β(Ti), i ∈ I. There exists
i0 ∈ I such that, if i � i0 then

β(T ) � φ(a) + ψ(b) � φ(ai) + ψ(bi) + ε � β(Ti) + 2ε = α(Ti) + 2ε � α(T ) + 2ε,

where we have used the monotonicity of α for the last inequality. We conclude that
β(T ) � α(T ), and the converse was already noted in theorem 2.7. �

Remark 2.19. Let c : X × Y → [0, 1] be a lower semi-continuous function. Then, c
can be viewed as an element of C(X × Y )∗∗ in a natural fashion (this was detailed
in the second paragraph of this section in the case of characteristic functions of
Borel sets). We can rewrite the equality between the parameters α and β from the
proposition above as the equality

sup
{∫

X×Y
cdσ : σX = μ, σY = ν

}
= inf

{∫
X

adμ+
∫
Y

bdν : a ∈ L∞(X), b ∈ L∞(Y ), c(x, y)

� a(x) + b(y) on X × Y

}
.

In the case under consideration, L∞(X) ⊆ L1(X) and L∞(Y ) ⊆ L1(Y ). It follows
that the displayed equality persists if the infimum is taken after replacing L∞(X)
(resp. L∞(Y )) by L1(X) (resp. L1(Y )). Thus, in this special case we recover the
well-known Monge–Kantorovich duality formula in the theory of optimal transport
(see e.g. [15, Theorem 1.3]).

3. The matrix case

In this section, we consider the simplest non-commutative case, where A = L(Cn) ≡
Mn, B = L(Cm) ≡Mm, for some fixed n, m ∈ N. We first show that the quantum
Strassen’s theorem proved in [17] can be obtained as a consequence of theorem 2.7.
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For a subspace X ⊆ C
n ⊗ C

m write EX for the projection onto X . For σ ∈ (Mn ⊗
Mm)+ write

suppσ = {ξ ∈ C
n ⊗ C

m : 〈σξ, ξ〉 = 0}⊥.
In the sequel, it will be convenient to write M+

n and Mh
n instead of (Mn)+ and

(Mn)h, respectively. Recall that if φ is a state on Mn we denote its associated
density matrix by Aφ.

Proposition 3.1 (Quantum Strassen’s theorem [17]). Let X be a subspace of C
n ⊗

C
m, φ (resp. ψ) be a state on Mn (resp. Mm) and ρ1 ∈M+

n (resp. ρ2 ∈M+
m) be

such that Aφ = ρ1 (resp. Aψ = ρ2). The following are equivalent:

(i) α(EX ) = 1;

(ii) there is a coupling σ ∈ C(φ, ψ) such that suppσ ⊆ X ;

(iii) tr(ρ1a1) � tr(ρ2a2) whenever a1 ∈Mh
n , a2 ∈Mh

m are such that EX⊥ � a1 ⊗
Im − In ⊗ a2.

Proof. (i)⇔(ii) It is enough to note that if σ is a state onMn ⊗Mm then suppσ ⊆ X
if and only if σ(EX ) = 1. In fact,

σ(EX ) = 1 ⇐⇒ σ(I − EX ) = 0

⇐⇒ σ(ξξ∗) = tr(σξξ∗) =
1
nm

〈σξ, ξ〉 = 0 for all ξ ∈ X⊥

⇐⇒ suppσ ⊆ X .

(i)⇔(iii) By theorem 2.7, α(EX ) = β(EX ). The fact that β(EX ) = 1 is equivalent
to

EX � a⊗ Im + In ⊗ b⇒ φ(a) + ψ(b) � 1 (3.1)

whenever a ∈M+
n , b ∈M+

m and by the arguments in the proof of theorem 2.7,
whenever a, b are hermitian. Letting a1 = 1 − a, a2 = b, (3.1) can be rewritten as

EX⊥ � a1 ⊗ Im − In ⊗ a2 =⇒ φ(a1) � ψ(a2),

giving the desired equivalence. �

In view of proposition 3.1, we see that, in the case of matrix algebras, theorem 2.7
can be viewed as a quantitative and non-commutative extension of the quantum
Strassen’s theorem.

Remark 3.2. We note that the equivalence (i)⇔(ii) in proposition 3.1 persists in
the general case of measured C*-algebras (B(H1), φ) and (B(H2), ψ), with H1, H2

Hilbert spaces (possibly infinite dimensional), φ and ψ normal states, and the sub-
space X replaced by an arbitrary projection E ∈ B(H1 ⊗H2). Together with a
straightforward approximation argument it can be used to infer [8, Theorem 4.3].

In the rest of the section, both algebras Mn and Mm will be equipped with
normalized traces tr. As customary, we abbreviate ‘completely positive and trace
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preserving’ to ‘cptp’, and note that trace preservation is with respect to the
normalized traces.

Recall that, given a map Φ : Mn →Mm, its associated Choi matrix ΓΦ ∈Mn ⊗
Mm is given by letting

(ΓΦ)i,j = Φ(εi,j), i, j = 1, . . . , n. (3.2)

Conversely, each matrix Γ ∈Mn(Mm) determines, via (3.2), a linear map ΦΓ :
Mn →Mm. The next statement, which characterizes the elements of the set
C(trn, trm), is rather well-known and for m = n is precisely [13, Theorem 2.2].
We include a straightforward proof for the convenience of the reader.

Proposition 3.3. Let σ ∈ (Mn ⊗Mm)∗. Recall that Aσ ∈Mn ⊗Mm = Mn(Mm)
denotes the density matrix of σ. The following are equivalent:

(i) σ ∈ C(trn, trm);

(ii) (1/n)ΦAσ
is unital and trace preserving.

Proof. (i)⇒(ii) To lighten notation, we set Φ = ΦAσ
. Let Aσ = (Bi,j)ni,j=1 ∈Mn ⊗

Mm (so that we have Φ(εi,j) = Bi,j for each i, j = 1, . . . , n). For b ∈Mm we have

tr(Aσ(I ⊗ b)) =
1
n

n∑
i=1

trm (Bi,ib) = trm

(
1
n

(
n∑
i=1

Bi,i

)
b

)
= trm (b),

so that (1/n)
∑n

i=1Bi,i = Im. Therefore,

1
n

Φ(In) =
1
n

n∑
i=1

Φ(εi,i) =
1
n

n∑
i=1

Bi,i = Im.

Further, for a = (ai,j)ni,j=1 ∈Mn, we have

tr(Aσ(a⊗ I)) =
1
n

n∑
i,j=1

trm (Bi,jaj,i) = trn (a).

Taking a = εl,k for k, l = 1, . . . , n we obtain trm(Φ(εk,l)) = trm (Bk,l) = δk,l =
n trn(εk,l), which implies that (1/n)Φ is trace-preserving.

(ii)⇒(i) follows by reversing the arguments in the previous paragraph. �

Given a vector ξ ∈ C
n⊗C

m, we write Sξ for the linear transformation from C
n

into C
m corresponding to ξ in the canonical way, so that Se⊗f = fe∗, e ∈ C

n, f ∈
C
m. The singular value decomposition of Sξ allows us to find (assuming, say, that

n � m) a descending sequence of scalars λ1 � λ2 � · · · � λn � 0 and orthonormal
collections (ei)ni=1 ⊆ C

n and (fi)ni=1 ⊆ C
m such that ξ =

∑n
i=1 λiei ⊗ fi. We will

call any such decomposition a Schmidt decomposition for ξ. Note that while the
decomposition itself is not unique, the scalars λi are determined uniquely.

Let ξ ∈ C
n⊗C

m be a unit vector and set Eξ = ξξ∗. The vector ξ ∈ C
n⊗C

m is
often identified with the pure state with density matrix Eξ. Under this identifica-
tion, ξ is called a separable state, if ξ = e⊗ f for some unit vectors e ∈ C

n and
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f ∈ C
m. If ξ is not separable, it is called an entangled state; ξ is further called max-

imally entangled if (assuming n � m) there exist orthonormal sequences (ei)ni=1

and (fi)ni=1 in C
n and C

m, respectively, such that ξ = (1/
√
n)
∑n

i=1 ei ⊗ fi. Note
that each of the conditions above has a simple description in terms of the Schmidt
decomposition of ξ.

We first note an equivalent expression for α that will be useful later.

Proposition 3.4. Let T ∈Mn ⊗Mm be a positive contraction and let ζ be a max-
imally entangled vector in C

n ⊗ C
n of the form ζ = (1/

√
n)
∑n
i=1 ei ⊗ ei, where

{ei}ni=1 is an orthonormal basis of C
n. We have that

α(T ) = max
{
〈Φ(n)(T )ζ, ζ〉 : Φ : Mm →Mn is a unital cptp map

}
.

Proof. Write T = (Ti,j)ni,j=1, Ti,j ∈Mm. As in the proof of proposition 3.3, for σ ∈
C(trn, trm), set Φ = ΦAσ

; thus, (1/n)Φ : Mn →Mm is a unital quantum channel.
Write, further, Aσ = (σi,j)ni,j=1, where σi,j ∈Mm. We have

tr(σT ) =
1
n

n∑
i,j=1

trm (σj,iTi,j) =
1
n

n∑
i,j=1

trm (Φ(εj,i)Ti,j)

=
1
n

n∑
i,j=1

trn (εj,iΦ∗(Ti,j)) = tr((εi,j)ni,j=1Φ
∗(n)(T ))

= tr(Φ∗(n)(T ) · nζζ∗) =
1
n
〈Φ∗(n)(T )ζ, ζ〉.

The claim follows now by noting that a map Ψ : Mn →Mm is unital and trace
preserving if and only if so is its dual. �

Proposition 3.5. Let ξ be a unit vector in C
n ⊗ C

n. Write ξ =
∑n
i=1 λiei ⊗ fi for

its Schmidt decomposition. Then,

α(Eξ) � 1
n

(
n∑
i=1

λi

)2

� 1
n
. (3.3)

Moreover, for n = 2 the first inequality is an equality.

Proof. Set ζ = (1/
√
n)
∑n

i=1 ei ⊗ ei. By convexity, the expression for α(Eξ) in
proposition 3.4 can be restricted to the extreme points in the (convex) set of all
unital quantum channels Φ. If ΦU (T ) = UTU∗, where U is unitary, then ΦU is an
extreme unital quantum channel. We have

〈Φ(n)(Eξ)ζ, ζ〉 = 〈(I ⊗ U)Eξ(1 ⊗ U)∗ζ, ζ〉 =
〈
E(I⊗U)ξζ, ζ

〉
= |〈(I ⊗ U)ξ, ζ〉|2 =

1
n

∣∣∣∣∣
n∑
i=1

λi〈Ufi, ei〉
∣∣∣∣∣
2

� 1
n

(
n∑
i=1

λi

)2

.
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If U is the unitary, given by Ufi = ei, i = 1, . . . , n, then 〈Φ(n)(Eξ)ζ, ζ〉 =
(1/n)(

∑n
i=1 λi)

2, and the first inequality in (3.3) follows. On the other hand,

1 = ‖ξ‖2 =
n∑
i=1

λ2
i �

(
n∑
i=1

λi

)2

,

which implies the second inequality in (3.3).
If n = 2 then the channels of unitary conjugation exhaust the extreme points of

the convex set of all unital quantum channels [3, 12], and the claim follows from
the previous paragraph. �

Let

w(ξ) = inf
{
tr(a) + tr(b) : a ∈M+

n , b ∈M+
m, Eξ � Eξ((a⊗ 1) + (1 ⊗ b))Eξ

}
.

Clearly,

w(ξ) � β(Eξ), ξ ∈ C
n ⊗ C

m, ‖ξ‖ = 1. (3.4)

Let TrA : Mn ⊗Mm →Mm be the partial trace map, defined by the identity

Tr(TrA(T )B) = Tr(T (I ⊗B)), B ∈Mm, T ∈Mn ⊗Mm.

The partial trace TrB : Mn ⊗Mm →Mn is defined similarly.

Lemma 3.6. Let ξ ∈ C
n⊗C

m be a unit vector and let m � n. Then,

w(ξ) =
1

m‖TrB(Eξ)‖
=

1
m‖TrA(Eξ)‖

.

In particular, w(ξ) � 1/m.

Proof. Fix a Schmidt decomposition ξ =
∑n
i=1 λiei ⊗ fi. A direct verification shows

that

TrB(Eξ) =
n∑
i=1

λ2
i eie

∗
i ,

and hence ‖TrB(Eξ)‖ = λ2
1 = ‖TrA(Eξ)‖.

Note that if a ∈M+
n and b ∈M+

m then

Eξ � Eξ((a⊗ 1) + (1 ⊗ b))Eξ ⇐⇒ 〈((a⊗ 1) + (1 ⊗ b))ξ, ξ〉 � 1,

and the latter inequality can be rewritten as

1 �
n∑

i,j=1

λiλj〈(a⊗ 1 + 1 ⊗ b)ei ⊗ fi, ej ⊗ fj〉 =
n∑
i=1

λ2
i (〈aei, ei〉 + 〈bfi, fi〉).

In evaluating w(ξ), we are thus led to minimizing the expression (1/n)
∑n

i=1 μi +
(1/m)

∑m
j=1 νj over all non-negative scalars μ1, . . . , μn, ν1, . . . , νm, satisfying the
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relation
∑n
i=1 λ

2
i (μi + νi) � 1. Setting μn+1 = · · · = μm = 0, we have

1
n

n∑
i=1

μi +
1
m

m∑
j=1

νj � 1
m

m∑
j=1

(μj + νj),

and

min

{
1
m

m∑
i=1

(μi + νi) :
n∑
i=1

λ2
i (μi + νi) � 1

}

= min

{
1
m

n∑
i=1

(μi + νi) :
n∑
i=1

λ2
i (μi + νi) � 1

}

= min

{
1
m

n∑
i=1

νi :
n∑
i=1

λ2
i νi � 1

}
=

1
mλ2

1

.

It follows that w(ξ) � 1/mλ2
1. On the other hand, by taking ν1 = 1/λ2

1 and νi = 0
for i > 1, we have that

∑n
i=1 λ

2
i (μi + νi) � 1 and (1/n)

∑n
i=1 μi + (1/m)

∑m
j=1 νj =

1/mλ2
1, giving w(ξ) = 1/mλ2

1. �

Theorem 3.7. Let ξ be a unit vector in C
n⊗C

m, and assume that n � m. Then,

(i) ξ is separable if and only if α(Eξ) = 1/m, if and only if γ(Eξ) = 1/m;

(ii) ξ is maximally entangled if and only if α(Eξ) = 1.

Proof. (i) Let π ∈ {α, γ}. Suppose first that ξ is separable, that is, ξ = e⊗ f for
some unit vectors e ∈ C

n and f ∈ C
m. We have that Eξ � 1 ⊗ (ff∗) and hence,

by the monotonicity of γ, we have that γ(Eξ) � trm(ff∗) = 1/m. It follows from
theorem 2.7, inequality (3.4) and lemma 3.6, that π(Eξ) = 1/m.

Suppose that π(Eξ) = 1/m for some π ∈ {α, γ}. By theorem 2.7, inequality (3.4)
and lemma 3.6, w(ξ) = 1/m. By lemma 3.6 again, ‖TrB(Eξ)‖ = 1. Thus, Sξ has
rank one; equivalently, ξ is separable.

(ii) Suppose that ξ is maximally entangled. Then, by proposition 3.5, α(Eξ) � 1.
By theorem 2.7, α(Eξ) = 1.

Conversely, suppose that α(Eξ) = 1. By proposition 3.1, there exists a state σ ∈
C(trn, trm) supported in the one-dimensional space generated by ξ. Thus, Aσ is a
multiple of ξξ∗. Since tr(Aσ) = 1 and tr(ξξ∗) = 1/nm, we have that Aσ = (nm)ξξ∗.
Write ξ =

∑n
i=1 ei ⊗ ξi, where (ei)ni=1 is the canonical basis of C

n and ξ1, . . . , ξn ∈
C
m. We have Aσ = (nm)(ξiξ∗j )

n
i,j=1. The condition σ ∈ C(trn, trm) implies that for

each i, j = 1, . . . , n, we have

〈ξi, ξj〉 =
nm

n
trm(ξiξ∗j ) = tr (Aσ(εi,j ⊗ I)) = trn(εi,j) =

1
n
δi,j ,

giving that ξ is maximally entangled. �

Corollary 3.8. The set of values of α on non-zero projections in Mn ⊗Mn is
[1/n, 1]. Moreover, if E ∈Mn ⊗Mn is a projection, then α(E) = 1/n if and only
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if either E = Ẽ ⊗ ee∗ or E = ee∗ ⊗ Ẽ for a projection Ẽ ∈Mn and a unit vector
e ∈ C

n.

Proof. Let t→ ηt be a continuous function from [0, 1] into C
n ⊗ C

n such that η0
is separable, while η1 is maximally entangled. Note that the corresponding func-
tion t �→ Eηt

is norm continuous. By theorem 3.7 and proposition 2.13(ii), the set
{α(Eηt

) : t ∈ [0, 1]} coincides with the interval [1/n, 1].
Now, let E be a projection in Mn and assume that α(E) = 1/n. By monotonicity,

α(E) � α(Eξ) � 1/n for any unit vector ξ in the range of E; using theorem 3.7,
we obtain that any vector in the range of E is separable from which easily implies
(arguing by contradiction) that E is either Ẽ ⊗ ee∗ or ee∗ ⊗ Ẽ for some projec-
tion Ẽ ∈Mn and some unit vector e ∈ C

n. The converse implication follows from
proposition 2.9. �

Remark 3.9.

(i) The fact that the parameters α and γ are distinct can also be obtained as a
consequence of corollary 3.8 – indeed, the parameter γ can, by its definition,
take only finitely many rational values.

(ii) The parameters α and w are distinct. Indeed, let ξt = t(e1 ⊗ e1) +√
1 − t2(e2 ⊗ e2) in C

2 ⊗ C
2, t ∈ [1/

√
2, 1]. By proposition 3.5, α(Eξt

) =
(1/2)(t+

√
1 − t2)2 = 1/2 + t

√
1 − t2. On the other hand, lemma 3.6 implies

that w(ξt) = 1/2t2.

We finish this section with an observation about the parameters α and γ in the
case where n = m = 2.

Proposition 3.10. Let E be a projection in M2 ⊗M2 and ξ be a unit vector in
C

2 ⊗ C
2. Then,

(i) α(E) = 1 if and only if E(C2 ⊗ C
2) contains a maximally entangled vector;

(ii) γ(Eξ) =

{
1 if ξ is entangled;
1
2 if ξ is separable.

Proof. (i) Let W = E(C2 ⊗ C
2). If W contains a maximally entangled unit vector

ξ ∈ C
2 ⊗ C

2 then, by theorem 3.7, α(E) � α(Eξ) = 1 and hence α(E) = 1.
Assume now α(E) = 1. Then, there exists σ ∈ C(tr, tr) such that σ(E) = 1,

which is equivalent to tr(Aσ(I −E)) = 0 and hence, by the faithfulness of the
trace, to EAσE = Aσ (indeed, our assumption yields that tr(E⊥A1/2

σ A
1/2
σ E⊥) = 0,

so further A1/2
σ E⊥ = 0). We may assume that σ is an extreme point. In fact, if

σ =
∑n
i=1 λiσi is a convex combination of states in C(tr, tr), then σ =

∑n
i=1 λiEσiE

and 1 = σ(1) =
∑n
i=1 λiσi(E), showing that σi(E) = 1 for all i = 1, . . . , n.

Since σ is now assumed an extreme point, by [12] the corresponding unital quan-
tum channel ΦAσ/2 is given by a unitary conjugation. Thus, there exists a unitary
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U such that
1
2
Aσ = [Uεi,jU∗]2i,j=1 = [(Uei)(Uej)∗]

2
i,j=1 .

Since σ is supported on E and (1/4)Aσ is a projection,

1
2

[(Uei)(Uej)∗]
2
i,j=1 � E.

But (1/2)[(Uei)(Uej)∗]2i,j=1 is the rank one projection of the maximally entangled
vector (1/

√
2)(Ue1 ⊗ e1 + Ue2 ⊗ e2), and the claim is proved.

(ii) If ξ is separable then theorem 3.7(i) implies that γ(Eξ) = 1/2. Suppose that
ξ = λ1e1 ⊗ f1 + λ2e2 ⊗ f2 in its Schmidt decomposition, and assume, by way of
contradiction, that λ1λ2 = 0. Let p, q ∈M2 be projections such that Eξ � p⊗ 1 ∨
1 ⊗ q; note that the latter condition is equivalent to the requirement (p⊥ ⊗ q⊥)ξ =
0. Suppose that tr(p) + tr(q) < 1, in other words, that tr(p⊥) + tr(q⊥) > 1. This
forces one of the projections, say p⊥, to be equal I. But then 0 = (1 ⊗ q⊥)ξ =
λ1e1 ⊗ q⊥f1 + λ2e2 ⊗ q⊥f2, and hence 0 = q⊥f1 = q⊥f2, implying that q⊥ = 0 and
contradicts the assumption that tr(p) + tr(q) < 1. �

We note that the proof of proposition 3.10 uses the fact that the extreme points of
the set of all unital quantum channels on M2 are the unitary conjugation channels.
It was proved in [13] (and attributed to Arveson therein) that this is not true for
Mn with n � 3. It would be of interest to know if, nevertheless, proposition 3.10
remains valid in dimensions higher than two.
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