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Abstract

Background: Factors influencing excessive antimicrobial utilization in hospitalized patients remain poorly understood, particularly with the
COVID-19 pandemic.

Methods: In this retrospective cohort, we compared administrative data regarding antimicrobial prescriptions in hospitalized patients in South
Carolina from March 2020 through September 2022. The study examined variables associated with antimicrobial use across demographics,
COVID status, and length of stay, among other variables.

Results: Significant relationships were seen with antimicrobial use in COVID-19 positive patients (OR 2.00, 95% Confidence Interval (CI):
1.9–2.1), young adults (OR 1.08, 95% CI: 0.99–1.12, COVID-19 positive Blacks and Hispanics (OR 1.06, 95% CI: 1.01–1.11, OR 1.05, 95% CI:
0.89–1.23), and COVID-19 positive patients with ≥2 comorbid conditions (OR 1.55, 95% CI: 1.43–1.68).

Discussion: Further analysis in more than one healthcare system should explore these ecologic relationships further to understand if these are
common trends to inform ongoing stewardship interventions.

(Received 1 August 2023; accepted 20 October 2023)

Introduction

Approximately 50% of hospitalized patients in the United States
(US) receive antibiotics, with little change from this baseline in
the last ten years, despite the USNational Action Plan to Combat
Antibiotic Resistant Bacteria goal to reduce inappropriate
antibiotic use by 20% in inpatient setting.1,2 The intersection
of the COVID-19 pandemic and this ongoing urgent public
health threat of antimicrobial resistance created antimicrobial
stewardship (ASP) challenges juxtaposed with the lack of
knowledge about the disease state of COVID-19. Antibiotic
prescribing in early COVID-19 patients in Europe was 63.1%; in
the USA, 64.8%; in China, 76.2%; in the Middle East, 86.0%; and
in East/Southeast Asia (excluding China), 87.5%.3 There was a
trend toward reduced antibiotic prescribing as the pandemic
continued, as studies ending in April 2020 showing 62.6%,
down from 85.3%3; this remains higher than the baseline pre-
pandemic and is clearly higher than the goal of reduced
antimicrobial use by the US action plan.

A Canadian interrupted time series analysis from March 2019
to June 2021 through three pandemic waves showed only increased
antimicrobial use in the first wave of the pandemic in the general
wards, but above baseline antimicrobial use in waves 1 and 2 of
the pandemic in the ICU.4 In an evaluation of twelve hospitals from
January 2019 to February 2021 with different ASP models, there
were some fluctuations in antimicrobial prescribing practices,
however, no statistically significant deviations from previous
trends.5 In a study comparing antimicrobial use in hospitals that
admitted vs those that did not admit COVID-19 patients in the
early pandemic, a 6.6% increase in antimicrobial use was seen in
those that did admit COVID-19 patients. Most of the antimicrobial
use seen was in broad-spectrum antimicrobials, including a
16.4% increase in broad-spectrum agents primarily used to treat
hospital-onset infections and a 9.9% increase in the use of
anti-methicillin-resistant Staphylococcus aureus agents.6

There is a significant amount of inappropriate antimicrobial
utilization regardless of COVID-19, and it is poorly understood
who is receiving these antimicrobials. In this analysis, we compared
administrative data regarding antimicrobial prescriptions in hospi-
talized patients, including an analysis of those with COVID-19
diagnoses to those who did not have COVID-19. We attempted to
characterize patient populations that received excessive antibiotics in
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South Carolina (SC) hospitals to attempt to better understand overall
population-based antimicrobial use and target appropriate ASP
interventions.

Methods

Population and data source

The study population includes patients who had inpatient clinical
visit encounters at a major healthcare system in SC betweenMarch
2020 and September 2022. This system services 2,700 beds in
multiple hospitals and affiliates, and their electronic medical record
system was the source of an administrative dataset from these
deidentified patient encounters. The database provided information
regarding visit information (admission date, admission source,
encounter type, primary payor, discharge date, and discharge type),
disease diagnosis code (International Classification of Diseases 10th

revision [ICD-10] code), and medication prescribing information
(prescribing order/start/end date, dosage, and frequency). The data
were integrated by the SC Office of Revenue and Fiscal Affairs
(RFA), and only deidentified data were released to the research team
for analysis. The dates included in the dataset were offset (1–365) to
further deidentify the data. After excluding patients for missing data
(72 with erroneous linkage ID, 65 patients with erroneous age
records, 5,304 with age<18 years old, 1 patient withmissing gender,
and 6 with missing residence), 33,943 patients were included with
overall 63,916 inpatient encounters (4,010 COVID-19 positives and
59,906 negatives) as the study population for the overall cohort. We
further define two sub-cohorts: patients with diabetes mellitus, type
II (DM2) (N= 10,723 with 24,551 inpatient encounters) and
patients with obesity (N= 8,453 with 18,327 inpatient encounters)
as part of the diagnoses for subgroup analysis.

Definitions

The RxNorm code was used to identify the antimicrobial
medications; the RxNorm is standard clinical drug vocabulary
used by the National Library of Medicine to capture all drugs
regardless of manufacturer.7 We defined the outcome antimicro-
bial use as a binary variable, indicating whether the patient has
any antimicrobial ordered during an inpatient visit type (see
Supplemental Data).

Demographics include age group, gender, race (White, Black,
other, unknown/missing), ethnicity (Hispanic/Latino, non-Hispanic/
Latino, and unknown/missing), and residence (rural, urban). Rural
residences are counties that are not designated as part ofMetropolitan
Areas by the Office of Management and Budget.8 Note that this is
limited to what the electronic medical record (EMR) captures,
including binary genders, race, and ethnicity classifications as is pre-
set for capture at intake.

The COVID-19 and comorbid condition diagnoses were
identified based on the ICD-10 code. We defined 19 comorbidities
categories (see Table S10) utilizing Centers for Disease Control and
Prevention definitions for patients with certain medical conditions
at high risk for COVID-19 complications.9 When adjusting for
comorbidities in themodel, we categorized it into three levels based
on number of comorbid conditions: 0, 1, ≥2. For subanalyses, we
categorized the number of comorbidities besides DM2 or obesity
into three levels: 1, 2, ≥3 since all of them had at least one
comorbidity besides DM2 or obesity. Length of stay was defined as
days from admission date to discharge date and was categorized
into five levels: 0–2, 3–6, 7–13, 14–28, ≥29 days.

Statistical analysis

Descriptive statistics were used to summarize the distribution of
antimicrobial use across characteristics for overall, COVID-19
diagnosis, and COVID-19 negative cohorts, respectively. The
demographic subgroups were compared via chi-square test or
Fisher’s exact test as appropriate. Generalized linear mixed models
(GLMMs) with logistic link and autoregression covariance matrix
(selected based on Quasi information criterion) were applied to
investigate the potential risk factors for antimicrobial use. We
examine the impact of COVID-19 status, demographic, comor-
bidity, and length of stay step by step. Model 1 adjusted for
COVID-19 status only, while model 2 overlaid demographics, and
then model 3.a and model 3.b overlaid number of comorbidities
and length of stay, respectively. Subsequently, model 4.a andmodel
4.b evaluated possible interactions between COVID-19 status and
other covariates and we only reported the model with the
significant interaction. Similar GLMM models were applied to the
DM2 and obesity subgroups separately. The odds ratio (OR) and
95% confidence interval (CI) were reported. P-values under 0.05
were considered statistically significant. All statistical analysis was
conducted using statistical software, SAS version 9.4 (SAS Institute,
Inc., Cary, NC, USA) and R 4.2.0 (R Core Team 2022).

Results

Overall

Of 63,916 inpatient encounters in the overall population, 14,190
(22.2%) had antimicrobial use during the 2020–2022 period of
analysis (Table 1). There was a significant difference in
antimicrobial use in those who were COVID-19 diagnosed
compared to those without COVID-19 diagnosis (34.9% vs
21.4%, p < 0.0001) (Tables 2 and 3). Vancomycin, azithromycin,
and cefepime were the three most commonly used antibiotics in
hospitalized patients with COVID-19 diagnosis in the respective
order (Figure 1 and Table 2). Patients with antimicrobial use
were younger, more likely to be Black and of Hispanic or Latino
ethnicity (Table 1). Patients with ≥2 comorbidities and
residents in urban counties were also more likely to receive
antimicrobials than those with <2 comorbidities and residents
of rural counties, respectively (Table 1).

All models demonstrated that hospitalized patients with
COVID-19 diagnosis had significantly greater odds of receiving
antibiotics while in the hospital (OR: 2.00 [1.87, 2.14], p=<0.0001,
Tables 2 and 4) than those without COVID-19. In addition,
patients with Black race (OR: 1.06 [1.01, 1.11], p= 0.0110) had
greater odds of antimicrobial use in model 2 only. This association
was not demonstrated after adjustments for comorbidities (OR:
1.03 [0.98, 1.08], p= 0.2289), and length of stay (OR: 1.01 [0.96,
1.05], p= 0.7735) in model 3 (Figure 2, Table S7). Residence in an
urban area maintains a higher odds of antimicrobial use, whereas
older age (≥60 years) had lower odds with P< 0.0001 throughout
all the models. Number of comorbidities increases the odds of
antimicrobial use (≥2 comorbidities OR: 1.55 [1.43, 1.68],
p< 0.0001) (Model 3.a) and longer LOS increases the odds of
antimicrobial use (≥29 days OR: 11.07 [9.79, 12.52], p< 0.0001)
(Model 3.b). Male sex only showed the significant decrease in
antimicrobial use when adjusting for the length of stay (p= 0.0299
in Model 3.b and p= 0.0318 in Model 4.b).

The possible interaction between demographic features and
COVID-19 diagnosis was reported as Model 4.a and Model 4.b,
respectively. Age group has a significant interaction with
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COVID-19 diagnosis (Model 4.a). Older age has smaller odds of
antimicrobial use among COVID negatives (≥60 years old OR:
0.71 [0.65, 0.77], p< 0.0001) while not significant among positives
(OR: 1.08 [0.82, 1.43], p= 0.5763) (see Table 4). For model with
LOS, the length of stay has a significant interaction with COVID-
19 diagnosis (Model 4.b). Longer stay had greater odds of
antimicrobial use among both positives (≥29 days OR: 12.15 [8.26,
17.89], p< 0.0001) and negatives (≥29 OR: 10.77 [9.45, 12.27],
p< 0.0001) (see Table 4).

DM2 subgroup analysis

Among those 24,551 inpatient encounters in the subgroup for
DM2, there are 5,788 (23.6%) encounters with antimicrobial use
(Table S1). COVID-19 diagnosis had a significant impact on
antimicrobial use throughout all models. For example, COVID-19
diagnosis was associated with larger odds of antimicrobial use (OR:
2.08 [1.88, 2.31), p< 0.0001) in the crude model. After adjusting
for demographics, number of comorbidities, and COVID-19 status

Table 1. Demographic characteristics of the overall inpatient encounters

Characteristics

Overall No antibiotics Any antibiotics

p-valueN= 63,916 N= 49,726 N= 14,190

77.80% 22.20%

Age group <.0001

18–29 6,633 (10.38) 5,033 (10.12) 1,600 (11.28)

30–39 7,695 (12.04) 5,739 (11.54) 1,956 (13.78)

40–49 7,146 (11.18) 5,647 (11.36) 1,499 (10.56)

m50–59 10,330 (16.16) 8,271 (16.63) 2,059 (14.51)

≥60 32,112 (50.24) 25,036 (50.35) 7,076 (49.87)

Gender 0.999

Female 34,890 (54.59) 27,144 (54.59) 7,746 (54.59)

Male 29,026 (45.41) 22,582 (45.41) 6,444 (45.41)

Race <.0001

White 35,202 (55.08) 27,596 (55.50) 7,606 (53.60)

Black 27,655 (43.27) 21,345 (42.93) 6,310 (44.47)

Other 337 (0.53) 254 (0.51) 83 (0.58)

Unknown/Missing 722 (1.13) 531 (1.07) 191 (1.35)

Ethnicity 0.0171

Not Hispanic or Latino 62,180 (97.28) 48,412 (97.36) 13,768 (97.03)

Hispanic or Latino 1,421 (2.22) 1,063 (2.14) 358 (2.52)

Unknown/Missing 315 (0.49) 251 (0.50) 64 (0.45)

Residence <.0001

Rural 12,852 (20.11) 10,377 (20.87) 2,475 (17.44)

Urban 51,064 (79.89) 39,349 (79.13) 11,715 (82.56)

Covid-19 status <.0001

Negative 59,906 (93.73) 47,115 (94.75) 12,791 (90.14)

Positive 4,010 (6.27) 2,611 (5.25) 1,399 (9.86)

# of comorbidities <.0001

0 5,394 (8.44) 4,373 (8.79) 1,021 (7.20)

1 4,651 (7.28) 3,868 (7.78) 783 (5.52)

≥2 53,871 (84.28) 41,485 (83.43) 12,386 (87.29)

Length of stay (days) <.0001

0–2 18,971 (29.68) 16,709 (33.60) 2,262 (15.94)

3–6 26,470 (41.41) 20,896 (42.02) 5,574 (39.28)

7–13 12,449 (19.48) 8,832 (17.76) 3,617 (25.49)

14–28 4,729 (7.40) 2,770 (5.57) 1,959 (13.81)

29þ 1,297 (2.03) 519 (1.04) 778 (5.48)

Antimicrobial Stewardship & Healthcare Epidemiology 3

https://doi.org/10.1017/ash.2023.496 Published online by Cambridge University Press

https://doi.org/10.1017/ash.2023.496
https://doi.org/10.1017/ash.2023.496


(Model 3.a), older age has less odds of antimicrobial use (≥60 years
old: 0.69 (0.54, 0.88); P= 0.0029), while COVID-19 diagnosis (OR:
2.25 [2.03, 2.49], p< 0.0001), male sex (OR: 1.18 [1.10, 1.26],
p< 0.0001), urban residence (OR: 1.22 [1.12, 1.34], p< 0.0001),
and both ≥3 comorbidities (OR: 1.64 [1.42, 1.90], p< 0.0001) or 2
comorbidities (OR: 1.35 [1.14, 1.59], p< 0.0001) had significantly
higher odds of antimicrobial use (Figure S3). When adjusting LOS
(Model 3.b), longer stay increased the odds of antimicrobial use
(≥29 days OR: 14.10, [11.61, 17.12], p< 0.0001) and other
covariates have similar significance to those in Model 3.a. The
interaction model (Model 4.b) showed that LOS ≥29 days has
greater odds of antimicrobial use among patients with COVID-19
diagnosis (OR: 12.01 [6.93, 20.80], p< 0.0001) while not significant

odds among patients without COVID-19 diagnosis (OR: 0.87
[0.48, 1.56], p= 0.6405).

Obesity subgroup analysis

Of 18,327 inpatient encounters in the subgroup for obesity, 4,771
(26.0%) had antimicrobial use (Table S4). COVID-19 diagnosis
had a significant impact on antimicrobial use throughout all models.
After adjusting for demographics, number of comorbidities and
COVID-19 diagnosis (model 3.a), older age antimicrobial use
(≥60 years old, 0.80 [0.67,0.95], p = 0.0095) and more
comorbidities (≥3 OR: 0.86 [0.75, 0.98], p = 0.0282) has smaller
odds of antimicrobial use while male (OR: 1.14 [1.05, 1.24],

Table 2. Demographic characteristics of the inpatient COVID-19 diagnosis during hospital encounters

Characteristics

Overall No med Any med

p-valueN= 4,010 N= 2,611 1,399

65.11% 34.89%

Age group 0.4021

18–29 253 (6.31) 175 (6.70) 78 (5.58)

30–39 312 (7.78) 206 (7.89) 106 (7.58)

40–49 379 (9.45) 252 (9.65) 127 (9.08)

50–59 571 (14.24) 380 (14.55) 191 (13.65)

≥60 2,495 (62.22) 1,598 (61.20) 897 (64.12)

Gender 0.001

Female 2,217 (55.29) 1,493 (57.18) 724 (51.75)

Male 1,793 (44.71) 1,118 (42.82) 675 (48.25)

Race 0.0018

White 1,697 (42.32) 1,159 (44.39) 538 (38.46)

Black 2,194 (54.71) 1,383 (52.97) 811 (57.97)

Other 18 (0.45) * *

Unknown/Missing 101 (2.52) * *

Ethnicity 0.7114

Not Hispanic or Latino 3,831 (95.54) 2,499 (95.71) 1,332 (95.21)

Hispanic or Latino 161 (4.01) * *

Unknown/Missing 18 (0.45) * *

Residence 0.0001

Rural 990 (24.69) 695 (26.62) 295 (21.09)

Urban 3,020 (75.31) 1,916 (73.38) 1,104 (78.91)

# of comorbidities <.0001

0 262 (6.53) 200 (7.66) 62 (4.43)

1 303 (7.56) 227 (8.69) 76 (5.43)

≥2 3,445 (85.91) 2,184 (83.65) 1,261 (90.14)

Length of stay (days) <.0001

0–2 666 (16.61) 520 (19.92) 146 (10.44)

3–6 1,573 (39.23) 1,188 (45.50) 385 (27.52)

7–13 1,077 (26.86) 658 (25.20) 419 (29.95)

14–28 520 (12.97) 206 (7.89) 314 (22.44)

29þ 174 (4.34) 39 (1.49) 135 (9.65)

Note. * Small number of less than 10 were masked due to SC DHEC’s policy.
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p=0.0019) and urban residence (OR: 1.31 [1.17, 1.46], p < 0.0001)
had greater odds (Figure S4). For model with length of stay,
longer stay (OR: 12.04 [9.48, 15.30], p < 0.0001) increased the
odds of antimicrobial use significantly while male sex had no
significance anymore (1.07 [0.98, 1.17], p = 0.1403). Other
covariates have similar significance to those in Model 3.a.

Discussion

In this administrative database cohort of SC hospitalized patients
in theMarch 2020–April 2022 timeframe, 22% received antibiotics.
This is significantly lower than the national average andmay reflect
robust antimicrobial stewardship practices. However, young adult
patients received a significant proportion of antibiotics (24.1% in

the 18–19 years old cohort, compared to ≥60 years old receiving
22.0%). Interestingly, older patients had less odds of receiving
antimicrobials, at OR 0.872. When further examined interactions,
the decrease is also noted in the COVID-19-negative older
patients. This may represent the inclusion of a significant number
of old patients admitted for noninfectious causes (i.e. cerebro-
vascular events, heart failure exacerbations, and renal failure) who
received COVID-19 testing due to admission screening require-
ments. In turn, this may suggest that younger patients are more
likely to be admitted for an infectious-related diagnosis, while older
patients are admitted to hospital for a wide variety of illnesses.
Numbers of hospitalizations for young people (18–64 years)
decreased by 18.4% in April–June 2020, but in-hospital deaths
increased by 36.4% in the same time period; continued increases

Table 3. Demographic characteristics of the inpatient COVID-19 negative encounters

Characteristics

Overall No med Any med

p-valueN= 59,906 N= 47,115 N= 12,791

78.65% 21.35%

Age group <.0001

18–29 6,380 (10.65) 4,858 (10.31) 1,522 (11.90)

30–39 7,383 (12.32) 5,533 (11.74) 1,850 (14.46)

40–49 6,767 (11.30) 5,395 (11.45) 1,372 (10.73)

50–59 9,759 (16.29) 7,891 (16.75) 1,868 (14.60)

≥60 29,617 (49.44) 23,438 (49.75) 6,179 (48.31)

Gender 0.3598

Female 32,673 (54.54) 25,651 (54.44) 7,022 (54.90)

Male 27,233 (45.46) 21,464 (45.56) 5,769 (45.10)

Race 0.1227

White 33,505 (55.93) 26,437 (56.11) 7,068 (55.26)

Black 25,461 (42.50) 19,962 (42.37) 5,499 (42.99)

Other 319 (0.53) 245 (0.52) 74 (0.58)

Unknown/Missing 621 (1.04) 471 (1.00) 150 (1.17)

Ethnicity 0.1144

Not Hispanic or Latino 58,349 (97.40) 45,913 (97.45) 12,436 (97.22)

Hispanic or Latino 1,260 (2.10) 963 (2.04) 297 (2.32)

Unknown/Missing 297 (0.50) 239 (0.51) 58 (0.45)

Residence <.0001

Rural 11,862 (19.80) 9,682 (20.55) 2,180 (17.04)

Urban 48,044 (80.20) 37,433 (79.45) 10,611 (82.96)

# of comorbidities <.0001

0 5,132 (8.57) 4,173 (8.86) 959 (7.50)

1 4,348 (7.26) 3,641 (7.73) 707 (5.53)

≥2 50,426 (84.18) 39,301 (83.42) 11,125 (86.98)

Length of stay (days) <.0001

0–2 18,305 (30.56) 16,189 (34.36) 2,116 (16.54)

3–6 24,897 (41.56) 19,708 (41.83) 5,189 (40.57)

7–13 11,372 (18.98) 8,174 (17.35) 3,198 (25.00)

14–28 4,209 (7.03) 2,564 (5.44) 1,645 (12.86)

29þ 1,123 (1.87) 480 (1.02) 643 (5.03)
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were seen with 27.3% increase in July-September and 45.5%
increase in October–December 2020.10 This population-based data
indicated the severity of illness of those being admitted to the
hospital, and suggests likely cognitive or motivational biases
driving antimicrobial prescribing in “sick” patients.11

COVID-19 diagnosis influenced receipt of antimicrobials;
34.9% of patients with COVID-19 diagnosis received antimicro-
bials compared to 21.4% of those without COVID-19 diagnosis
(p< 0.0001). There is significant misuse of antimicrobials in
hospitalized patients with viral infections. There is significantly
high use of broad-spectrum, hospital-onset antibiotics with
vancomycin and cefepime being extremely high use in frequency
compared to the COVID-negative cohort (Figure 1). This trend of
antimicrobials used for hospital-onset infections was described
early in the pandemic in SC previously; it is concerning that it
continued through 2022.6 Also alarming is the high use of
azithromycin compared to the COVID-negative cohort, as well as a
smaller though meaningful difference in doxycycline between the
cohorts (Figure 1). Each individual healthcare system provided
guidelines for treatment of COVID-19 patients in SC, particularly
early in the pandemic, though generally, they were in line with the
National Institutes of Health guidelines due to rapid changes.
Throughout the pandemic, there have been significant concerns
about empiric antimicrobial prescribing that may have been due to
the diversion of stewardship efforts away from core activities
during the pandemic.12 Also note that aggressive stewardship
efforts have occurred around patients with COVID-19, with 82%
of respondents in a survey reporting monitoring antimicrobial use
in COVID-19.13 Baseline stewardship activities are critical, not just
in monitoring in COVID-19 patients but in all patients. Ongoing
work is necessary to continue to guard against inappropriate and
unnecessary antimicrobial use in viral infections, though obviously
secondary or superinfections would require treatment.

These models were an attempt to also better understand
disparities in prescribing antimicrobials that may have been
exacerbated during the last few years. There is a dearth of data
regarding racial or ethnic differences in antimicrobial use to
further explore why those categorized as Black race received more
antibiotics in this inpatient cohort, though there are well-
established reports of structural racism affecting social

determinants of health and population health in the United
States.14,15 Black patients are at higher risk for having obesity,
diabetes, hypertension, and cardiovascular disease than Whites;
they also have less access to primary care and have historically
received inadequate care even with similar conditions and
insurance as White patients.16,17 Additionally, racial and ethnic
disparities in healthcare access have been widely seen during the
COVID-19 pandemic. The quality of medication prescribing and
access to appropriate medications, including stewardship for
appropriate antimicrobial use, is a critical aspect of achieving
pharmacoequity across all races and ethnicities.17 Notably, race
and ethnicity are limited as to how the EMR and intake healthcare
workers collect this data and must be further explored to better
understand how different social groups experience medical care
including antimicrobials. This may explain the differences seen in
the different models with those categorized as Black—in some
models, it is a significant variable, while not in others; namely an
overall higher odds of antimicrobial use in the category of Black
race, which was not demonstrated after adjustments for
comorbidities (OR: 1.03 [0.98, 1.08], p= 0.2289) and length of
stay (OR: 1.01 [0.96, 1.05], p= 0.7735) in model 3 (Figure 2,
Table S7).

Additional disparities may exist in residence, generally
categorized as urban or rural. There are noted disparities in
health for rural residents, exacerbated by the pandemic including
crumbling hospital infrastructures with diminished access to ICU
beds, infectious diseases specialists, and specialized care.18 Rural
patients are traditionally shown to be prescribed more antibiotics for
common conditions.19,20 The Healthcare Cost and Utilization Project
describes the overall number of hospitalization and in-hospital deaths
for patients in rural areas decreased by 19.4% in the April-June 2020
(second quarter) time frame, when compared to historical data;
deaths increased by 14.3% and 71.4% in the third and fourth quarters
of 2020, respectively.21 Urban residents increased the odds of receipt
of antimicrobials by 25% in this cohort; this relationship disappeared
when adjusting for COVID-19 status and comorbidities. This may
reflect the urban nature of this healthcare system data, and different
relationships may be seen in other geographic locations. This also
could be an ecologic fallacy seen in this particular cohort but not on an
individual level and is worth additional analyses.

Figure 1. Top 10 frequencies of medication prescription
by COVID-19 ICD-10 code.
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Table 4. Odds ratio from the GLMM models among overall population

Model 1 Model 2 Model 3.a

OR P-value OR P-value OR P-value

COVID status

Negative Ref. Ref. Ref.

Positive 1.998 (1.865,2.140) <0.0001 2.028 (1.893,2.174) <0.0001 2.053 (1.915,2.200) <0.0001

Age group

18–29 Ref. Ref.

30–39 1.081 (0.986,1.185) 0.0976 1.039 (0.947,1.141) 0.4169

40–49 0.825 (0.748,0.910) 0.0001 0.727 (0.658,0.804) <0.0001

50–59 0.776 (0.710,0.849) <0.0001 0.664 (0.604,0.729) <0.0001

≥60 0.872 (0.809,0.941) 0.0004 0.724 (0.667,0.786) <0.0001

Gender

Female Ref. Ref.

Male 1.029 (0.984,1.075) 0.2081 1.027 (0.983,1.074) 0.2282

Race

White Ref. Ref.

Black 1.060 (1.013,1.108) 0.011 1.028 (0.983,1.075) 0.2289

Other 1.214 (0.913,1.615) 0.1826 1.239 (0.926,1.659) 0.1492

Unknown/Missing 1.123 (0.907,1.389) 0.2868 1.155 (0.930,1.434) 0.1924

Ethnicity

Not Hispanic or Latino Ref. Ref.

Hispanic or Latino 1.045 (0.891,1.227) 0.5866 1.071 (0.913,1.258) 0.3993

Unknown/Missing 0.917 (0.680,1.238) 0.5728 0.952 (0.704,1.287) 0.7474

Residence

Rural Ref. Ref.

Urban 1.253 (1.183,1.328) <0.0001 1.268 (1.197,1.344) <0.0001

# of comorbidity

0 Ref.

1 0.933 (0.837,1.040) 0.2120

≥2 1.548 (1.426,1.681) <0.0001

Model 4.a Model 3.b Model 4.b

OR P-value OR P-value OR P-value

COVID status*

Negative Ref. Ref. Ref.

Positive 1.438 (1.101,1.878) 0.0077 1.694 (1.577,1.819) <0.0001 2.184 (1.809,2.637) <0.0001

Age group**

18–29 Ref. Ref. Ref.

30–39 1.040 (0.945,1.144) 0.4225 1.109 (1.007,1.222) 0.0350 1.111 (1.009,1.224) 0.0318

40–49 0.715 (0.645,0.793) <0.0001 0.780 (0.705,0.864) <0.0001 0.779 (0.704,0.863) <0.0001

50–59 0.648 (0.589,0.714) <0.0001 0.720 (0.657,0.790) <0.0001 0.721 (0.657,0.791) <0.0001

≥60 0.706 (0.650,0.768) <0.0001 0.784 (0.723,0.849) <0.0001 0.783 (0.723,0.849) <0.0001

Gender

Female Ref. Ref. Ref.

Male 1.028 (0.984,1.075) 0.2153 0.951 (0.909,0.995) 0.0299 0.952 (0.910,0.996) 0.0318

Race

White Ref. Ref. Ref.

Black 1.027 (0.982,1.075) 0.2398 1.007 (0.961,1.054) 0.7735 1.006 (0.961,1.054) 0.7929

(Continued)
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Table 4. (Continued )

Model 4.a Model 3.b Model 4.b

OR P-value OR P-value OR P-value

Other 1.235 (0.923,1.652) 0.1563 1.204 (0.898,1.616) 0.2152 1.210 (0.902,1.623) 0.2043

Unknown/Missing 1.167 (0.941,1.449) 0.1598 1.181 (0.948,1.472) 0.1374 1.173 (0.942,1.462) 0.1546

Ethnicity

Not Hispanic or Latino Ref. Ref. Ref.

Hispanic or Latino 1.079 (0.919,1.266) 0.3522 1.053 (0.895,1.239) 0.5352 1.053 (0.895,1.240) 0.5318

Unknown/Missing 0.950 (0.703,1.285) 0.7398 1.033 (0.768,1.388) 0.8314 1.026 (0.762,1.380) 0.8676

Residence

Rural Ref. Ref. Ref.

Urban 1.269 (1.198,1.345) <0.0001 1.270 (1.197,1.346) <0.0001 1.272 (1.200,1.349) <0.0001

# of comorbidity

0 Ref. Ref.

1 0.933 (0.837,1.040) 0.2085 NA 0.933 (0.837,1.040) 0.2120

≥2 1.549 (1.427,1.681) <0.0001 NA 1.548 (1.426,1.681) <0.0001

Length of stay

0–2 Ref. Ref.

3–6 NA 1.951 (1.849,2.059) <0.0001 2.020 (1.911,2.135) <0.0001

7–13 NA 3.058 (2.880,3.248) <0.0001 3.093 (2.905,3.293) <0.0001

14–28 NA 5.259 (4.878,5.670) <0.0001 5.091 (4.703,5.512) <0.0001

29þ NA 11.070 (9.787,12.522) <0.0001 10.765 (9.445,12.270) <0.0001

Interaction between age and positivity

18–29 Ref.

30–39 1.015 (0.707,1.456) 0.9377 NA NA

40–49 1.412 (0.995,2.003) 0.0531 NA NA

50–59 1.536 (1.110,2.124) 0.0096 NA NA

≥60 1.531 (1.156,2.028) 0.0030 NA NA

Among negatives

Age group

18–29 Ref.

30–39 1.040 (0.945,1.144) 0.4225 NA NA

40–49 0.715 (0.645,0.793) <0.0001 NA NA

50–59 0.648 (0.589,0.714) <0.0001 NA NA

≥60 0.706 (0.650,0.768) <0.0001 NA NA

Among positives

Age group

18–29 Ref.

30–39 1.055 (0.742,1.499) 0.7656 NA NA

40–49 1.010 (0.719,1.418) 0.9549 NA NA

50–59 0.995 (0.726,1.366) 0.9775 NA NA

≥60 1.082 (0.821,1.426) 0.5763 NA NA

Interaction between LOS and positivity

0–2 Ref.

3–6 NA NA 0.574 (0.459,0.717) <0.0001

7–13 NA NA 0.791 (0.631,0.993) 0.0433

14–28 NA NA 1.167 (0.894,1.524) 0.2557

29þ NA NA 1.129 (0.752,1.695) 0.5583

(Continued)
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Frailer patients, as one could generalize those with more
comorbid conditions, have significantly higher utilization of
antibiotics—1.5 odds of receiving antibiotics if ≥2 comorbid
conditions. Both DM2 and obesity subgroup analyses had 22 or
26% utilization of antibiotics, respectively; these subgroups also
showed higher odds of antimicrobial use in male patients than
female patients, which bears further exploration. Regardless of
gender, the number of comorbid conditions increasing antimicro-
bial use is consistent with other studies from early in COVID-19,
March-June 2020, showing patients more likely to have received
antibacterial therapy if they were older, had lower bodymass index,
more severe illness, lobar infiltrate, or were admitted to a for-profit
hospital.22 Additionally, an Italian survey shows that there is
significant variation in prescriber practices depending on their
own prescribing habits, and ASP principles remain at risk of being
overlooked due to personal preferences.23 This is worth exploring
further, as this may be limited by the binary nature of receipt of
antimicrobials without the clinical context of short-term empiric
use compared to ongoing treatment use.

Length of stay significantly impacted antimicrobial use but is
unclear if this is confounding, in light of the known increase in
healthcare onset infections during 2020 and 202124,25. We
attempted to categorize the LOS to capture common durations
of antimicrobial prescriptions. If patients were in hospital >29
days, their odds of receiving antimicrobials were 11.07. Longer
LOS, critical care stay, and receipt of mechanical ventilation
contribute to incidence of hospital-onset antimicrobial-resistant
infections among inpatients with COVID-19.25 Longer LOS not
only increases odds for healthcare-associated infection but a
hospital-onset antimicrobial-resistant one and therefore is a
reminder about the safety of healthcare in the United States and
the threat of antimicrobial resistance.

There are significant limitations in this data. First, there is a
concern in using administrative data, regarding the accuracy of the
data, and regarding appropriate input to ensure the final data is
accurate. Antimicrobial use is more dynamic than just receipt or

non-receipt, but the use of claims data in this only allows for more
binary outcomes. This is an overall limitation to the utilization of
machine learning in administrative data sets in infectious diseases.
There was also no ability to extract microbiologic data to help
assess appropriateness of antimicrobial prescribing. This study
also was only inclusive of one major medical system in SC and
these data may not be extrapolated or applicable to other states or
regions. While we theoretically had access to antimicrobial start/
stop data, there were noted inaccuracies in the dataset on closer
examination. Additionally, due to the concern for being able to
identify patients, the exact date of health care visit was shifted
by 1–365 days. Therefore, no inferences can be made about timing
during the COVID-19 pandemic e.g. different “waves” or
“surges.”

As such, ecologic or population studies such as this are subject
to “ecological correlation,”whichmay be fallacies (ecologic fallacy)
in misattributing population-level behaviors when there are
differences on an individual level.26 This may explain why some
variables changed in significance in the different models as we
attempted to drill down on specific group characteristics.
Antimicrobial use is incredibly complex, and additional studies
with more individual-level data should be undertaken to better
understand which populations receive antimicrobials.

There are significant relationships around antimicrobial
prescribing that need to be reassessed and addressed since the
COVID-19 pandemic has changed medical practices, along with
more healthcare-associated infections and ongoing concerns about
worsening antimicrobial resistance. A renewed focus on anti-
microbial stewardship principles to ensure antimicrobial use is
appropriate is critical, while addressing both population-based
needs and more individual practices.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/ash.2023.496.
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