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Abstract
We show that framed deformation rings of mod p representations of the absolute Galois group of a p-adic local
field are complete intersections of expected dimension. We determine their irreducible components and show that
they and their special fibres are normal and complete intersection. As an application, we prove density results of
loci with prescribed p-adic Hodge theoretic properties.
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1. Introduction

Let p denote any prime number, let F be a finite extension of Q𝑝 and let 𝐺𝐹 denote its absolute Galois
group. Let L be a another finite extension of Q𝑝 with ring of integers O, uniformizer 𝜛 and residue
field 𝑘 = O/𝜛. Fix a continuous representation 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘) and denote by 𝐷�

𝜌
: 𝔄O → Sets the

functor from the category 𝔄O of local Artinian O-algebras with residue field k to the category of sets,
such that for (𝐴,𝔪𝐴) ∈ 𝔄O, 𝐷�

𝜌
(𝐴) is the set of continuous representations 𝜌𝐴 : 𝐺𝐹 → GL𝑑 (𝐴), such

that 𝜌𝐴 (mod 𝔪𝐴) = 𝜌. The functor 𝐷�
𝜌

of framed deformations of 𝜌 is pro-represented by a complete
local Noetherian O-algebra 𝑅�

𝜌
(with residue field k).

Our first main result completely settles a folklore conjecture on ring-theoretic properties of 𝑅�
𝜌

that
can be traced back to the foundational work of Mazur [37, Section 1.10]:

Theorem 1.1 (Corollary 3.38). The ring 𝑅�
𝜌

is a local complete intersection, flat over O and of relative
dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝]. In particular, every continuous representation 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘) has a
lift to characteristic zero.

Obstruction theory provides a presentation 𝑅�
𝜌
= O�𝑥1, . . . , 𝑥𝑟�/( 𝑓1, . . . , 𝑓𝑠) with r equal to the

dimension of the tangent space and s equal to dim𝐻2(𝐺𝐹 , ad 𝜌). The Euler–Poincaré characteristic
formula from local class field theory gives

𝑟 − 𝑠 = 𝑑2 + 𝑑2 [𝐹 : Q𝑝] .

Our theorem proves that dim 𝑅�
𝜌
/𝜛 is given by this cohomological quantity, the expected dimension in

the spirit of the Dimension Conjecture of Gouvêa from [27, Lecture 4]. Having the expected dimension
implies that 𝜛, 𝑓1, . . . , 𝑓𝑠 is a regular sequence and that 𝑅�

𝜌
is a local complete intersection. It also

implies (see [26, Lemma 7.5]) that the derived deformation ring of 𝜌 as introduced by Galatius and
Venkatesh in [26] (see also [12]) is homotopy discrete, which means the derived deformation theory of
𝜌 does not contain more information than the usual deformation theory of 𝜌. Theorem 1.1 is used in the
forthcoming work of Matthew Emerton, Toby Gee and Xinwen Zhu on derived stacks of global Galois
representations.

Our second main result completely describes the connected components of the space Spec 𝑅�
𝜌
[1/𝑝]

as envisioned in [8]. Let 𝜇 := 𝜇𝑝∞ (𝐹) ⊂ 𝐹× be the p-power torsion subgroup and suppose that L is
sufficiently large. Let 𝑅det 𝜌 denote the universal deformation ring of the one-dimensional representation
det 𝜌.

Theorem 1.2 (Corollaries 4.5, 4.15, 4.19, 4.21, Proposition 5.12). The natural map 𝑅det 𝜌 → 𝑅�
𝜌

,
induced by sending a deformation of 𝜌 to its determinant, is flat and induces a bijection of connected
components

𝜋0 (Spec 𝑅�𝜌 [1/𝑝]) → 𝜋0 (Spec 𝑅det 𝜌 [1/𝑝]). (1)

Labeling these components in a natural way by characters 𝜒 : 𝜇 → O×, the connected components
of Spec 𝑅�

𝜌
[1/𝑝] are in natural bijection with the irreducible components Spec 𝑅�,𝜒

𝜌
of Spec 𝑅�

𝜌
, and

the rings 𝑅�,𝜒
𝜌

and 𝑅
�,𝜒
𝜌
/𝜛 are normal domains and complete intersections.

As a consequence, we obtain the following useful Corollary.

Corollary 1.3 (Corollary 4.22). 𝑅�
𝜌

is reduced and 𝑅�
𝜌
[1/𝑝] is normal.

We would like to highlight the following result for the amusement of the reader.

Theorem 1.4 (Corollary 4.25). If 𝜌 is absolutely irreducible, then 𝑅
�,𝜒
𝜌

and 𝑅
�,𝜒
𝜌
/𝜛 are factorial,

except in the case 𝑑 = 2, 𝐹 = Q3 and 𝜌 � 𝜌(1).
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Let 𝜓 : 𝐺𝐹 → O× be a continuous character lifting det 𝜌. Let 𝑅�,𝜓
𝜌

be the quotient of 𝑅�
𝜌

parame-
terizing deformations with determinant equal to 𝜓.

Theorem 1.5 (Corollary 5.4, Theorem 5.6). The rings 𝑅�,𝜓
𝜌

, 𝑅�,𝜓
𝜌
/𝜛 are normal domains and complete

intersections of dimension dim 𝑅�
𝜌
−dim 𝑅det 𝜌 +1 and dim 𝑅�

𝜌
−dim 𝑅det 𝜌, respectively. Moreover, 𝑅�,𝜓

𝜌

is O-flat.

Our work builds in an essential way on the work of GB–Juschka [9] on the special fibres of the
deformation rings of pseudo-characters (i.e., pseudo-representations) of 𝐺𝐹 . The paper [9] draws its
inspiration from the work of Chenevier [16], who studied rigid analytic generic fibres of these rings. Our
results in turn imply that the rigid analytic spaces appearing in [16] are normal (Corollaries 4.27, 5.10).

The knowledge of irreducible components of 𝑅�
𝜌

allows us to refine the existing results on the Zariski
density of the locus with prescribed p-adic Hodge theoretic properties.

Theorem 1.6 (Theorem 6.1). Suppose that p does not divide 2𝑑. Let Σ be a subset of the maximal
spectrum of 𝑅�

𝜌
[1/𝑝] parameterizing any of the following sets of lifts of 𝜌 to characteristic zero:

(1) crystalline lifts with regular Hodge–Tate weights;
(2) potentially crystabelline lifts with fixed regular Hodge–Tate weights;
(3) potentially crystalline supercuspidal lifts with fixed regular Hodge–Tate weights.

Then Σ is Zariski dense in Spec 𝑅�
𝜌
[1/𝑝].

The assumption 𝑝 � 2𝑑 enters via our use of the patched module 𝑀∞ constructed in [14]. The
paper [14] is applicable whenever 𝜌 has a potentially diagonalisable lift. It has been proved recently
by Emerton–Gee [24], using the Emerton–Gee stack, that this holds for all 𝜌. The rest of our paper is
independent of [24]. We show that the action of 𝑅�

𝜌
on 𝑀∞ is faithful (Theorem 6.8), which allows us

to deduce Theorem 1.6 from [25].
Partial results towards Theorem 1.1 and also towards the more recent question solved by Theorem

1.2 appear in many places (e.g., [3], [8], [6], [20], [30], [40]) in special cases. However, these papers
either compute with equations defining the rings or impose assumptions on 𝜌 so that the deformation
theory of 𝜌 is essentially unobstructed, which leads to only one irreducible component. Although there
is some overlap in ideas with [30], the argument in our paper is rather different as we do not compute
with equations. We refer the reader to Section 6 for a more detailed discussion of the previous results on
Zariski density of specific loci in Spec 𝑅�

𝜌
and to Remark 6.10 for a detailed explanation of the relation

between Theorem 1.6 and our more recent results in [7].

Remark 1.7. In the theorems above, we work with framed deformation rings. Our results also carry
over to the versal deformation rings (which coincide with the universal deformation rings if 𝜌 has only
scalar endomorphisms) by exploiting the fact that framed deformation rings are formally smooth over
versal deformation rings (see, for example, [30, Lemma 2.1]) and using [11, Theorem 2.3.6, Corollary
2.2.23 (a)].

1.1. Complete intersection

We now give an overview of the proof of Theorem 1.1. To do so, we introduce two further key players.
The first are determinant laws, which we refer to as pseudo-characters throughout the paper, and their
deformations. Let 𝐷 : 𝑘 [𝐺𝐹 ] → 𝑘 be the pseudo-character attached to 𝜌 as defined in [18]. Let
𝐷ps : 𝔄O → Sets be the functor mapping (𝐴,𝔪𝐴) ∈ 𝔄O to the set 𝐷ps (𝐴) of continuous A-valued
d-dimensional pseudo-characters 𝐷 : 𝐴[𝐺𝐹 ] → 𝐴 with 𝐷 = 𝐷 (mod 𝔪𝐴). The functor 𝐷ps is pro-
representable by a complete local Noetherian O-algebra (𝑅ps,𝔪𝑅ps); see [18, Section 3.1]. The ring 𝑅ps

has been well understood in the recent work of GB–Juschka [9], who have determined the dimension
of its special fibre and showed that the absolutely irreducible locus is dense in the special fibre. In
particular, they show the following:
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Theorem 1.8 (GB–Juschka [9, Theorem 5.5.1(a)]). The ring 𝑅ps/𝜛 is equi-dimensional of dimension
1 + 𝑑2 [𝐹 : Q𝑝].

Mapping a lifting of 𝜌 to its associated pseudo-character induces a natural transformation 𝐷�
𝜌
→ 𝐷ps

and thus a map of local O-algebras 𝑅ps → 𝑅�
𝜌

. Our basic idea is to study 𝑅�
𝜌

by studying the fibres of
this map. Our initial observation was that the difference between the expected dimension of 𝑅�

𝜌
/𝜛 and

the dimension computed in Theorem 1.8 is 𝑑2 − 1, which is the dimension of PGL𝑑 . However, a fibre at
a point corresponding to an absolutely irreducible pseudo-character can be shown to be isomorphic to
PGL𝑑 . This led us naturally to study fibres at other points. In fact, it is technically more convenient to
introduce an intermediate ring 𝑅ps → 𝐴gen → 𝑅�

𝜌
, depending on 𝐷 and not on 𝜌 itself, such that 𝐴gen is

of finite type over 𝑅ps and 𝑅�
𝜌

is a completion of 𝐴gen at a maximal ideal. This is our second key player.
To describe 𝐴gen, let 𝐷𝑢 : 𝑅ps�𝐺𝐹� → 𝑅ps be the universal pseudo-character lifting 𝐷 and let

CH(𝐷𝑢) be the closed two-sided ideal of 𝑅ps�𝐺𝐹� defined in [18, Section 1.17], so that

𝐸 := 𝑅ps�𝐺𝐹�/CH(𝐷𝑢)

is the largest quotient of 𝑅ps�𝐺𝐹� for which the Cayley–Hamilton theorem for 𝐷𝑢 holds. Following
[18, Section 1.17], we will call such algebras Cayley–Hamilton 𝑅ps-algebras of degree d. By [50,
Proposition 3.6], the ring E is a finitely generated 𝑅ps-module. Now a construction of Procesi [44] gives
a commutative 𝑅ps-algebra 𝐴gen together with a homomorphism

𝑗 : 𝐸 → 𝑀𝑑 (𝐴gen)

of Cayley–Hamilton 𝑅ps-algebras satisfying the following universal property: if 𝑓 : 𝐸 → 𝑀𝑑 (𝐵) is
a map of Cayley–Hamilton 𝑅ps-algebras for a commutative 𝑅ps-algebra B, then there is a unique map
𝑓 : 𝐴gen → 𝐵 of 𝑅ps-algebras such that 𝑓 = 𝑀𝑑 ( 𝑓 ) ◦ 𝑗 . We give further details in Lemma 3.1 in the
main text. The superscript gen in 𝐴gen stands for generic matrices.

Since E is finitely generated as an 𝑅ps-module, the construction of Procesi shows that 𝐴gen is of
finite type over 𝑅ps. Moreover, one has an algebraic action of GL𝑑 on 𝑋gen := Spec 𝐴gen which,
for every 𝑅ps-algebra B and point 𝑓 : 𝐸 → 𝑀𝑑 (𝐵) in 𝑋gen (𝐵), is simply given by conjugation of
matrices. Wang-Erickson has studied the quotient stack [𝑋gen/GL𝑑] in his thesis [49], [50] and 𝑋gen is
isomorphic to Rep�

𝐷
= Rep�𝐸,𝐷𝑢 as defined in [50, Theorem 3.8]. It is an important observation that to

𝜋 : 𝑋gen → 𝑋ps := Spec 𝑅ps we can apply geometric invariant theory (GIT). As shown in [50, Theorem
2.20], the induced morphism 𝑋gen � 𝐺 → 𝑋ps is an adequate homeomorphism in the sense of [1,
Definition 3.3.1].

Our first important result on dimensions is for 𝑋gen := Spec 𝐴gen/𝜛.

Theorem 1.9 (Theorem 3.31, Lemma 3.23). We have

dim 𝑋gen [1/𝑝] ≤ dim 𝑋
gen ≤ 𝑑2 + 𝑑2 [𝐹 : Q𝑝] .

To prove the second inequality of Theorem 1.9, we decompose the base of the finite type morphism
�̄� : 𝑋gen → 𝑋

ps
= Spec 𝑅ps/𝜛 as a finite union 𝑋ps

=
⋃
𝑖𝑈𝑖 of locally closed subschemes𝑈𝑖 . The points

of the𝑈𝑖 correspond to semi-simple degree d representations of 𝐺𝐹 with certain (degree) conditions on
the irreducible constituents. The work [9] gives dimension estimates on the 𝑈𝑖 . We combine them with
bounds on the dimensions of the fibres at the closed points of 𝑈𝑖 , obtained using GIT, and with results
on �̄�−1 (𝑈𝑖) → 𝑈𝑖 from commutative algebra. In Subsection 3.2, we analyze in detail the dimensions of
the fibres of 𝜋 at points y of 𝑋ps valued either in finite fields containing k or local fields whose residue
fields contain k. The analysis at such points suffices for all results in this paper. The commutative algebra
results, used to analyze �̄�−1 (𝑈𝑖) → 𝑈𝑖 and to give the first inequality, are proved in Subsection 3.4. The
key technical improvement, working with 𝑋gen instead of Spec 𝑅�

𝜌
directly, is that the fibres are of finite

type over 𝜅(𝑦).
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We apply the bounds from Theorem 1.9 to the study of lifting rings of continuous residual represen-
tations 𝜌𝑥 : 𝐺𝐹 → GL𝑑 (𝜅(𝑥)), where x is a point of 𝑋gen whose residue field 𝜅(𝑥) is a finite or a local
field. We distinguish three cases:

(1) If 𝜅(𝑥) is a finite extension 𝑘 ′ of k, then we set Λ to be the ring of integers O′ of the unramified
extension 𝐿 ′ of L with residue field 𝑘 ′.

(2) If 𝜅(𝑥) is a finite extension of L, then we set Λ to be 𝜅(𝑥).
(3) If 𝜅(𝑥) is a local field that contains k and if 𝑘 ′ denotes its residue field, then we take as Λ a Cohen

ring of 𝜅(𝑥) (with the natural topology) tensored over the Witt vector ring 𝑊 (𝑘 ′) with O′.

Let 𝔄Λ be the category of local Artinian Λ-algebras (𝐴,𝔪𝐴) with residue field 𝜅(𝑥). We equip the
rings A with a natural topology, and we consider the functor 𝐷�𝜌𝑥 : 𝔄Λ → Sets such that 𝐷�𝜌𝑥 (𝐴) is the
set of continuous group homomorphisms 𝜌 : 𝐺𝐹 → GL𝑑 (𝐴), such that 𝜌 (mod 𝔪𝐴) = 𝜌𝑥 . In cases
(1) and (2), such functors occur in the work of Mazur and Kisin, respectively. The formulation in case
(3) appears to be new. In all cases, the functor 𝐷�𝜌𝑥 is pro-represented by a complete local Noetherian
Λ-algebra 𝑅�𝜌𝑥 with residue field 𝜅(𝑥). The arguments of Mazur and Kisin carry over to the case when
𝜅(𝑥) is a local field of characteristic p and yield a presentation

𝑅�𝜌𝑥 � Λ�𝑥1, . . . , 𝑥𝑟�/( 𝑓1, . . . , 𝑓𝑠) (2)

with 𝑟 = dim𝜅 (𝑥) 𝑍1 (𝐺𝐹 , ad 𝜌𝑥) and 𝑠 = dim𝜅 (𝑥) 𝐻2 (𝐺𝐹 , ad 𝜌𝑥); here, ad 𝜌𝑥 is the adjoint representa-
tion of 𝐺𝐹 on End𝜅 (𝑥) (𝜌𝑥) by conjugation. By a suitable version of Tate local duality results, one finds
𝑟 − 𝑠 = 𝑑2 + 𝑑2 [𝐹 : Q𝑝]. From this, Theorem 1.9 and some commutative algebra results that relate the
completion of 𝐴gen at x to the ring 𝑅�𝜌𝑥 , we deduce the following result.

Corollary 1.10 (Corollaries 3.38 and 3.44). For x as above, the following hold:

(1) 𝑅�𝜌𝑥 is a flat Λ-algebra of relative dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝] and is complete intersection;
(2) if char(𝜅(𝑥)) = 𝑝, then 𝑅�𝜌𝑥/𝜛 is complete intersection of dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝].

At first glance, one might expect that for closed points x of 𝑋gen, the residue field 𝜅(𝑥) is always
finite. However, as we show in Example 3.22, 𝜅(𝑥) can also be a local field of characteristic 0 or p. In
Subsection 3.5, we show that this exhausts all possibilities.

Corollary 1.10 gives us a handle on the completions of the local rings O𝑋gen ,𝑥 (resp. O𝑋gen
,𝑥) at

closed points 𝑥 ∈ 𝑋gen (resp. 𝑥 ∈ 𝑋gen), which allows us to deduce the following result.

Corollary 1.11 (Corollaries 3.40 and 3.45). The following hold:

(1) 𝐴gen is O-torsion free, equi-dimensional of dimension 1 + 𝑑2 + 𝑑2 [𝐹 : Q𝑝] and is locally complete
intersection;

(2) 𝐴gen/𝜛 is equi-dimensional of dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝] and is locally complete intersection.

We end Section 3 with a result on the density of (certain) absolutely irreducible points in 𝑅�
𝜌

and in
𝑅�
𝜌
/𝜛. This is motivated by and relies on similar results for 𝑅ps. A point x in 𝑋ps = Spec 𝑅ps is called

absolutely irreducible if the associated semisimple representation 𝜌𝑥 : 𝐺𝐹 → GL𝑑 (𝜅(𝑥)) (which is
unique up to isomorphism) is irreducible. It follows from the main theorem of [16] that the locus of
absolutely irreducible points is dense open in the generic fibre 𝑋ps [1/𝑝] = Spec 𝑅ps [1/𝑝], and this is
extremely useful because such points are regular on 𝑋ps [1/𝑝].

A key role in the study of the regular locus in the special fibre 𝑋
ps

= Spec 𝑅ps/𝜛 in [9] is played
by a class of absolutely irreducible points, which are called non-special. We extend this notion slightly
in Appendix A. We say that an absolutely irreducible point x in 𝑋

ps with finite or local residue field is
Kummer-reducible if there exists a degree p Galois extension 𝐹 ′ of 𝐹 (𝜁𝑝) such that 𝜌𝑥 |𝐺𝐹′ is reducible,
and Kummer-irreducible if not. If 𝜁𝑝 ∈ 𝐹, then 𝑥 ∈ 𝑋ps is Kummer-irreducible if and only if it is non-
special in the sense of [9, Section 5]. We show that if x is Kummer-irreducible, then𝐻2 (𝐺𝐹 , ad0 𝜌𝑥) = 0,
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where ad0 𝜌𝑥 is the subrepresentation of ad 𝜌𝑥 of trace zero matrices. Much more importantly for us,
we also show that the locus of Kummer-irreducible 𝑥 ∈ 𝑋ps is dense open. At these points, 𝑋ps is not
necessarily smooth, but it is relatively smooth over Spec 𝑅det 𝜌. Here we prove the following:

Proposition 1.12 (Proposition 3.55 and Corollaries 3.59 and 3.61). We have the following.

(1) The set of absolutely irreducible points 𝑥 ∈ Spec 𝑅�
𝜌
[1/𝑝] with 𝜅(𝑥) finite over L is dense in

Spec 𝑅�
𝜌
[1/𝑝].

(2) The set of Kummer-irreducible points 𝑥 ∈ Spec 𝑅�
𝜌
/𝜛 with 𝜅(𝑥) a local field is dense in Spec 𝑅�

𝜌
/𝜛.

In particular, every continuous representation 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘) has an absolutely irreducible lift to
characteristic zero.

1.2. Irreducible components

From here on, we assume that L contains F, so that, in particular, L contains all roots of unity contained
in F. We now give a more detailed overview of Theorem 1.2 on components of 𝑅�

𝜌
. The homomorphism

𝑅det 𝜌 → 𝑅�
𝜌

from that theorem is induced by the natural transformation 𝐷�
𝜌
→ 𝐷det 𝜌 that to a

representation assigns its determinant, and it induces the map (1) on components.
Via the Artin map 𝐹× → 𝐺ab

𝐹 from local class field theory, the inclusion 𝜇 ⊂ 𝐹× and the identification
of 𝑅det 𝜌 with the completed group ring of the pro-p completion of𝐺ab

𝐹 , the ring 𝑅det 𝜌 becomes an O[𝜇]-
algebra. It is well-known that 𝑅det 𝜌 is a power series ring overO[𝜇] in [𝐹 : Q𝑝]+1 formal variables. The
components of the étale L-algebra O[𝜇] [1/𝑝] = 𝐿 [𝜇] are in bijection with the characters 𝜒 : 𝜇→ O×.
Setting 𝑅

�,𝜒
𝜌

= 𝑅�
𝜌
⊗O [𝜇],𝜒 O, we obtain a decomposition Spec 𝑅�

𝜌
[1/𝑝] =

⊔
𝜒 Spec 𝑅�,𝜒

𝜌
[1/𝑝], where

𝜒 ranges over the characters 𝜇→ O×.
The main step in the proof of the bijectivity of the map (1) in Theorem 1.2 is to show that the rings 𝑅�,𝜒

𝜌

are normal by verifying Serre’s criterion for normality. We first present 𝑅�
𝜌

over 𝑅det 𝜌 (Proposition 4.3)
by imitating Kisin’s method of presenting global rings over local rings. Since 𝑅𝜒det 𝜌 := 𝑅det 𝜌 ⊗O [𝜇],𝜒 O
is formally smooth, by applying ⊗O [𝜇],𝜒O, we obtain a presentation of 𝑅�,𝜒

𝜌
over 𝑅𝜒det 𝜌 analogous

to the presentation (2). Since 𝑅
�,𝜒
𝜌

has the same dimension as 𝑅�
𝜌

, the presentation yields that 𝑅�,𝜒
𝜌

is complete intersection of expected dimension and hence satisfies Serre’s condition (S2). We then
show that 𝑋gen,𝜒 := Spec(𝐴gen ⊗O [𝜇],𝜒 O) and its special fibre 𝑋gen,𝜒 are regular in codimension 1 by
showing that the Kummer-irreducible locus in 𝑋gen,𝜒 (resp. absolutely irreducible locus in 𝑋gen,𝜒 [1/𝑝])
is regular, and its complement has codimension at least 2 if either 𝐹 ≠ Q𝑝 , or 𝑑 > 2 or 𝐷 is absolutely
irreducible. The case 𝐹 = Q𝑝 , 𝑑 = 2 and 𝐷 reducible requires an extra analysis of the reducible locus.
Since 𝑅�,𝜒

𝜌
is a completion of a local ring at a closed point of 𝑋gen,𝜒, we deduce that 𝑅�,𝜒

𝜌
is regular in

codimension 1. We thus deduce that 𝑅�,𝜒
𝜌

is normal. Since 𝑅�,𝜒
𝜌

is a local ring, it is an integral domain.
A similar argument works for the special fibre.

Theorem 1.5 on 𝑅
�,𝜓
𝜌

is proved by reduction to the results on 𝑅
�,𝜒
𝜌

where 𝜒 : O[𝜇] → O× is the
restriction of 𝜓 to 𝜇 via the Artin map. To give an idea of the proof, let X : 𝔄O → Sets be the functor,
which sends (𝐴,𝔪𝐴) to the groupX (𝐴) of continuous characters 𝜃 : 𝐺𝐹 → 1+𝔪𝐴 such that 𝜃 restricted
to 𝜇 is trivial, and let O(X ) be the complete local Noetherian O-algebra pro-representing X . Local class
field theory gives an isomorphism O(X ) � O�𝑦1, . . . , 𝑦 [𝐹 :Q𝑝 ]+1�. Let 𝜑𝑑 : O(X ) → O(X ) be the
morphism induced by the d-power map X → X , 𝜃 ↦→ 𝜃𝑑 . Our key technical result is Proposition 5.1,
which yields a natural isomorphism

𝑅
�,𝜒
𝜌
⊗O (X ) ,𝜑𝑑 O(X ) � 𝑅

�,𝜓
𝜌
⊗̂OO(X )

that comes from an analogous isomorphism of functors. It allows us to compare the sets of points x
with 𝜅(𝑥) finite or local at which 𝐻2(𝐺𝐹 , ad0𝜌𝑥) is non-zero on both sides. We also show that the
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map Spec 𝑅�,𝜒
𝜌
⊗O (X ) ,𝜑𝑑 O(X ) → Spec 𝑅�,𝜒

𝜌
induces a homeomorphism on special fibres, and a finite

covering on generic fibres. Then we use topological arguments to obtain the dimension of 𝑅�,𝜓
𝜌

and
bound the codimension of its singular locus from the analogous results on 𝑅

�,𝜒
𝜌

.
We also prove analogs of Theorem 1.2 (resp. Theorem 1.6) for spaces 𝑋gen,𝜒 and 𝑋gen,𝜒 for characters

𝜒 : 𝜇→ O× (resp. 𝑋gen,𝜓 , 𝑋gen,𝜓 for characters 𝜓 : 𝐺𝐹 → O× lifting det 𝜌); see Corollaries 4.6, 4.18,
4.26 (resp. Corollaries 5.8, 5.9). We expect that our results will be useful in the study of the geometry
of the Emerton–Gee stack and its derived versions.

It is natural to ask whether our results generalize to deformations valued in reductive groups other
than GL𝑑 . This question will be addressed in the forthcoming joint work of VP and Julian Quast.

1.3. Overview by section

In Section 2, we briefly review GIT. A key result that gets used later on is Lemma 2.2. In Section 3, we
introduce 𝑋gen and its special fibre 𝑋gen. In Subsection 3.2, we bound the dimensions of the fibres of the
map 𝑋gen → 𝑋ps. In Subsection 3.4, we combine this with results of [9] to bound the dimension of 𝑋gen

and 𝑋
gen. In Subsection 3.5, we relate the completions of local rings at closed points x of 𝑋gen, 𝑋gen

to the deformation theory of Galois representations 𝜌𝑥 : 𝐺𝐹 → GL𝑑 (𝜅(𝑥)) and prove Theorem 1.1. In
Section 3.6, we bound the maximally reducible semi-simple locus in 𝑋gen and 𝑋

gen. This computation
later on gets used only in the case 𝑑 = 2, 𝐹 = Q2 and 𝐷 is reducible. In Subsection 3.7, we prove the
Zariski density of the Kummer-irreducible locus in 𝑋

gen and absolutely irreducible locus in 𝑋gen [1/𝑝]
and also establish lower bounds for the dimension of their complements. These bounds are used to
establish normality later on. In Section 4, we present 𝑅�

𝜌
over 𝑅det 𝜌 and prove Theorem 1.2. In Section 5,

we prove Theorem 1.5. In Section 6, we prove Theorem 1.6. In Appendix A, we introduce the notion of
Kummer-irreducible points in Spec 𝑅ps/𝜛, which slightly generalizes the notion of non-special points
defined in [9]. This technical improvement is needed in Section 5 when 𝜁𝑝 ∉ 𝐹.

1.4. Notation

Let F be a finite extension of Q𝑝 and let 𝐺𝐹 be its absolute Galois group. Let L be another finite
extension of Q𝑝 , such that HomQ𝑝-alg(𝐹, 𝐿) has cardinality [𝐹 : Q𝑝]. Let O be the ring of integers in
L, 𝜛 a uniformiser, and k the residue field. We will denote by 𝜁𝑝 a primitive p-th root of unity in a fixed
algebraic closure of F. For a commutative ring R, we let 𝑃1𝑅 = {𝔭 ∈ Spec 𝑅 : dim 𝑅/𝔭 = 1}.

We fix a representation 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘) and assume that all its irreducible subquotients are
absolutely irreducible. We note that we may always achieve that after enlarging k, since the image of
𝜌 is a finite group. Let ad 𝜌 be the adjoint representation of 𝐺𝐹 and ad0 𝜌 the subspace of trace zero
endomorphisms, so that𝐺𝐹 acts on End𝑘 (𝜌) by conjugation. We will denote the dimension as a k-vector
space of cohomology groups 𝐻𝑖 (𝐺𝐹 , ad 𝜌) by ℎ𝑖 .

2. Geometric invariant theory

We first recall the setup of [47]. Let R be a Noetherian ring and let 𝑆 = Spec 𝑅. Let G be a reductive
group scheme over S, so that G is an affine group scheme over S, 𝐺 → 𝑆 is smooth and the geometric
fibres are connected reductive groups. In the application, 𝐺 = 𝑆 ×SpecZ GL𝑑 and 𝐺 = 𝑆 ×SpecZ G

𝑟
𝑚 so

that these conditions hold.
Let V be a free R-module of finite rank r endowed with a G-module structure, let �̌� = Hom𝑅 (𝑉, 𝑅)

and let Sym(�̌�) be the symmetric algebra. The G-module structure on V induces an action of G on
Spec(Sym(�̌�)) = A𝑟𝑆 . Let X be a closed G-invariant subscheme of Spec(Sym(�̌�)). The G-action on X
induces an action on B, the ring of functions on X. The GIT quotient 𝑋 � 𝐺 is represented by the ring
of invariants 𝐵𝐺 .
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Lemma 2.1. Every irreducible component Z of X, equipped with its reduced subscheme structure, is
G-invariant.

Proof. This fact is mentioned (and a proof is sketched) in [47, Section 4], but we give a full proof for
the convenience of the reader. We have to show that 𝜑(𝐺 ×𝑆 𝑍) ⊂ 𝑍 , where 𝜑 : 𝐺 ×𝑆 𝑋 → 𝑋 is the
action map. In terms of rings, this amounts to showing that the kernel of 𝜑♯ : 𝐵 → O(𝐺) ⊗𝑅 𝐵/𝔭 is
equal to 𝔭, where O(𝐺) is the ring of functions of G and 𝔭 is a prime of B such that 𝑍 = 𝑉 (𝔭). Since
the identity element in G maps Z to itself, ker 𝜑♯ is contained in 𝔭. Since Z is an irreducible component
of X, it is enough to show that O(𝐺) ⊗𝑅 𝐵/𝔭 is an integral domain, as then ker 𝜑♯ is a prime of B and
therefore has to equal to 𝔭.

Since 𝐺 → 𝑆 is geometrically connected and smooth, 𝐺 ×𝑆 𝜂 is integral for every geometric point 𝜂
of S. Thus, O(𝐺) ⊗𝑅 𝜅(𝔭) is an integral domain, where 𝜅(𝔭) is an algebraic closure of the fraction field
of 𝐵/𝔭. Since 𝐺 → 𝑆 is smooth, it is also flat. Thus, O(𝐺) ⊗𝑅 𝐵/𝔭 is a subring of O(𝐺) ⊗𝑅 𝜅(𝔭) and
hence is an integral domain. �

Let 𝑦 = Spec 𝜅 be a geometric point of 𝑋 �𝐺. We may identify the fibre 𝑋𝑦 with a closed G-invariant
subscheme of X.

Lemma 2.2. Let 𝑥 ∈ 𝑋𝑦 (𝜅) be such that the orbit 𝐺 · 𝑥 is closed in 𝑋𝑦; then

dim 𝑋𝑦 ≤ dim𝜅 𝑇𝑥 (𝑋𝑦).

Proof. Let Z be an irreducible component of 𝑋𝑦 such that dim 𝑍 = dim 𝑋𝑦 . By Lemma 2.1, Z is closed
in 𝑋𝑦 and G-invariant. Then by [47, Theorem 3], both Z and 𝑋𝑦 have a unique closed G-orbit; hence,
those orbits must be equal. Therefore, 𝑥 ∈ 𝑍 , so since Z is irreducible,

dim 𝑋𝑦 = dim 𝑍 ≤ dim𝜅 𝑇𝑥 (𝑍) ≤ dim𝜅 𝑇𝑥 (𝑋𝑦). �

3. 𝑹�
𝝆

is complete intersection

Let 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘) be a continuous representation. Let 𝐷�
𝜌

: 𝔄O → Sets be the functor from
the category of local Artinian O-algebras with residue field k to the category of sets, such that for
(𝐴,𝔪𝐴) ∈ 𝔄O, 𝐷�

𝜌
(𝐴) is the set of continuous representations 𝜌𝐴 : 𝐺𝐹 → GL𝑑 (𝐴) such that 𝜌𝐴

(mod 𝔪𝐴) = 𝜌. The functor 𝐷�
𝜌

is pro-represented by a complete local Noetherian O-algebra 𝑅�
𝜌

. The
main goal of this section is to establish inequalities

dim 𝑅�𝜌 ≤ 1 + 𝑑2 + 𝑑2 [𝐹 : Q𝑝], dim 𝑅�𝜌/𝜛 ≤ 𝑑2 + 𝑑2 [𝐹 : Q𝑝] . (3)

It is well known to the experts that these bounds imply that the rings 𝑅�
𝜌

and 𝑅�
𝜌
/𝜛 are complete inter-

section. Namely, the proof of [38, Proposition 21.1] shows that the tangent space to 𝐷�
𝜌

is 𝑍1 (𝐺𝐹 , ad 𝜌),
and it follows from the proof of Proposition 2 in [37, Section 1.6] that there is a presentation

𝑅�𝜌 � O�𝑥1, . . . , 𝑥𝑟�/( 𝑓1, . . . , 𝑓𝑠), (4)

where 𝑟 = dim𝑘 𝑍1 (𝐺𝐹 , ad 𝜌) = 𝑑2 − ℎ0 + ℎ1 and 𝑠 = ℎ2 and ℎ𝑖 = dim𝑘 𝐻𝑖 (𝐺𝐹 , ad 𝜌). The Euler–
Poincaré characteristic formula implies that 𝑟−𝑠 = 𝑑2+𝑑2 [𝐹 : Q𝑝]. Thus,𝜛, 𝑓1, . . . , 𝑓𝑠 can be extended
to a system of parameters in a regular ring O�𝑥1, . . . , 𝑥𝑟� and hence form a regular sequence.

Let 𝐷 : 𝑘 [𝐺𝐹 ] → 𝑘 be the determinant law attached to 𝜌 in the sense of [18], so that 𝐷 is equal to
the composition of the polynomial laws induced by 𝑘 [𝐺𝐹 ]

𝜌
−→ 𝑀𝑑 (𝑘) and 𝑀𝑑 (𝑘)

det−→ 𝑘 . In this paper,
we will refer to determinant laws as pseudo-characters. Let 𝐷ps : 𝔄O → Sets be the functor sending
an object (𝐴,𝔪𝐴) ∈ 𝔄O to the set 𝐷ps (𝐴) of continuous A-valued d-dimensional pseudo-characters
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of 𝐴[𝐺𝐹 ] which reduce to 𝐷 modulo 𝔪𝐴. The functor 𝐷ps is pro-representable by a complete local
Noetherian O-algebra (𝑅ps,𝔪𝑅ps) by [18, Proposition 3.3].

Mapping a deformation of 𝜌 to its determinant induces a natural transformation 𝐷�
𝜌
→ 𝐷ps and thus

a map of local O-algebras 𝑅ps → 𝑅�
𝜌

. The ring 𝑅ps has been well understood in the recent work of
GB–Juschka [9], who have determined its dimension and showed that the absolutely irreducible locus
is dense in the special fibre. Our basic idea is to study 𝑅�

𝜌
by studying the fibres of this map. In fact,

it is technically more convenient to introduce an intermediate ring 𝑅ps → 𝐴gen → 𝑅�
𝜌

(see the next
subsection), depending on 𝐷 and not on 𝜌 itself, such that 𝐴gen is of finite type over 𝑅ps and 𝑅�

𝜌
is a

completion of 𝐴gen at a maximal ideal. Since dim 𝑅�
𝜌
≤ dim 𝐴gen, it is enough to bound the dimension

of 𝐴gen. In fact, we first bound the dimension of its special fibre (Theorem 3.31).

3.1. Generic matrices

Let 𝐷𝑢 : 𝑅ps�𝐺𝐹� → 𝑅ps be the universal pseudo-character lifting 𝐷. Let CH(𝐷𝑢) be the Cayley–
Hamilton ideal, which is a closed two-sided ideal of 𝑅ps�𝐺𝐹� defined in [18, Section 1.17] in such a
way that

𝐸 := 𝑅ps�𝐺𝐹�/CH(𝐷𝑢)

is the largest quotient of 𝑅ps�𝐺𝐹� for which the Cayley–Hamilton theorem for 𝐷𝑢 holds. Following [18,
Section 1.17], we will call such algebras Cayley–Hamilton 𝑅ps-algebras of degree d. Then E is a finitely
generated 𝑅ps-module, [50, Proposition 3.6]. If 𝑓 : 𝐸 → 𝑀𝑑 (𝐵) is a homomorphism of 𝑅ps-algebras
for a commutative 𝑅ps-algebra B, then we say f is a homomorphism of Cayley–Hamilton algebras if
det ◦ 𝑓 : 𝐸 → 𝐵 is equal to the specialization of 𝐷𝑢 along 𝑅ps → 𝐵.

The superscript gen in 𝐴gen stands for generic matrices, and the following construction appears in
the work of Procesi [44]; Lemmas 3.1, 3.2, 3.4 are contained in [50, Theorem 3.8], but one needs to
translate from the language of groupoids and stacks used in op. cit. to access them.

Lemma 3.1. There is a finitely generated commutative 𝑅ps-algebra 𝐴gen together with a homomorphism
of Cayley–Hamilton 𝑅ps-algebras 𝑗 : 𝐸 → 𝑀𝑑 (𝐴gen), satisfying the following universal property: if
𝑓 : 𝐸 → 𝑀𝑑 (𝐵) is a map of Cayley–Hamilton 𝑅ps-algebras for a commutative 𝑅ps-algebra B, then
there is a unique map 𝑓 : 𝐴gen → 𝐵 of 𝑅ps-algebras such that 𝑓 = 𝑀𝑑 ( 𝑓 ) ◦ 𝑗 .

Proof. By writing down a generic 𝑑 × 𝑑-matrix for each 𝑅ps-generator of E and quotienting out by the
relations the generators satisfy in E, one obtains a commutative 𝑅ps-algebra C and a homomorphism of
𝑅ps-algebras 𝑗 : 𝐸 → 𝑀𝑑 (𝐶). More formally, C is a quotient of 𝑅ps ⊗Z Sym(𝑊), where W is a direct
sum of n copies of End(Std)∗, where Std is the standard representation of GL𝑑 over Z, n is the size of a
generating set of E as an 𝑅ps-module and Sym(𝑊) is the symmetric algebra over Z. If we were to only
require the maps to be 𝑅ps-algebras homomorphisms (i.e., if we did not impose the Cayley–Hamilton
condition), then the map 𝑗 : 𝐸 → 𝑀𝑑 (𝐶) would satisfy the required universal property. To ensure
that the Cayley–Hamilton condition is satisfied, we have to consider the quotient of C constructed
as follows. Let Λ𝑖 : 𝐸 → 𝑅ps, 0 ≤ 𝑖 ≤ 𝑑 be the coefficients of the characteristic polynomial of
𝐷𝑢; these are homogeneous polynomial laws satisfying 𝐷𝑢 (𝑡 − 𝑎) =

∑𝑛
𝑖=0(−1)𝑖Λ𝑖 (𝑎)𝑡𝑑−𝑖 in 𝑅ps [𝑡] as

explained in [18, Section 1.10]. For each 𝑎 ∈ 𝐸 , let 𝑐𝑖 ( 𝑗 (𝑎)) be the i-th coefficient of the characteristic
polynomial of the matrix 𝑗 (𝑎) ∈ 𝑀𝑑 (𝐶). Let I be the ideal of C generated by Λ𝑖 (𝑎) − 𝑐𝑖 ( 𝑗 (𝑎)) for all
𝑎 ∈ 𝐸 and 0 ≤ 𝑖 ≤ 𝑑 and let 𝐴gen := 𝐶/𝐼. Since [18, Corollary 1.14] and [49, 1.1.9.15] imply that
the coefficients of the characteristic polynomial determine pseudo-characters uniquely, the composition
𝐸 → 𝑀𝑑 (𝐶) → 𝑀𝑑 (𝐴gen) is a map of Cayley–Hamilton algebras, and the universal property of
𝑗 : 𝐸 → 𝑀𝑑 (𝐶) implies the universal property for 𝑗 : 𝐸 → 𝑀𝑑 (𝐴gen). Since E is finitely generated as
𝑅ps-module, C and hence 𝐴gen are of finite type over 𝑅ps. �

https://doi.org/10.1017/fmp.2023.25 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.25


10 G. Böckle, A. Iyengar and V. Pa𝑠k�̄�nas

Let us make a connection to GIT as described in Section 2. If E is generated by n generators as an
𝑅ps-module, then as explained in the proof of Lemma 3.1, 𝐴gen is a quotient of 𝑅ps ⊗Z Sym(𝑊). The
group 𝐺 := GL𝑑 acts on W by conjugation, and this induces an action of GL𝑑 on 𝑋gen := Spec 𝐴gen.
For every 𝑅ps-algebra B, a point in 𝑋gen (𝐵) corresponds to an n-tuple of 𝑑 × 𝑑-matrices with entries in
B satisfying certain relations, and GL𝑑 (𝐵) acts on 𝑋gen (𝐵) by conjugating the matrices. The scheme
𝑋gen is isomorphic to Rep�

𝐷
= Rep�𝐸,𝐷𝑢 as defined in [50, Theorem 3.8].

The GIT quotient 𝑋gen �𝐺 is represented by the ring of invariants (𝐴gen)𝐺 . The map 𝑅ps → 𝐴gen is
G-invariant and induces a homomorphism 𝑅ps → (𝐴gen)𝐺 . It follows from [50, Theorem 2.20] that the
induced map

𝑋gen � 𝐺 → 𝑋ps := Spec 𝑅ps (5)

is an adequate homeomorphism in the sense of [1, Definition 3.3.1] (i.e., an integral, universal homeo-
morphism which is a local isomorphism around points with characteristic zero residue field). We denote
by 𝑋

gen and 𝑋
ps the special fibres of 𝑋gen and 𝑋ps, respectively. The same argument shows that

𝑋
gen

� 𝐺 → 𝑋
ps

is an adequate homeomorphism.
We equip 𝑅ps with the 𝔪𝑅ps -adic topology. Since the ring is Noetherian and the residue field is finite,

𝑅ps is a compact ring with respect to this topology.

Lemma 3.2. Let B be a topological 𝑅ps-algebra. If 𝑓 : 𝐸 → 𝑀𝑑 (𝐵) is any (not a priori continuous)
homomorphism of 𝑅ps-algebras, then the composition 𝐺𝐹 → 𝐸×

𝑓
−→ GL𝑑 (𝐵) defines a continuous

representation of 𝐺𝐹 .

Proof. Since 𝑅ps is a compact ring [2, Corollary 1.10] implies that for every finitely generated 𝑅ps-
module M there is a unique Hausdorff topology on M making M into a topological 𝑅ps-module.

We equip 𝑅ps�𝐺𝐹� with its projective limit topology, E with the quotient topology, and its group of
units 𝐸× with the subspace topology via the embedding 𝐸× ↩→ 𝐸 × 𝐸 , 𝑥 ↦→ (𝑥, 𝑥−1). Since the map
𝐺𝐹 → 𝑅ps�𝐺𝐹� is continuous, the map 𝐺𝐹 → 𝐸× is also continuous. Moreover, since CH(𝐷𝑢) is a
closed ideal, the topology on E is Hausdorff.

Since E is a finitely generated 𝑅ps-module, its topology coincides with 𝔪𝑅ps -adic topology (this is
also proved in [50, Proposition 3.6]). Let 𝑀 := 𝑓 (𝐸) ⊂ 𝑀𝑑 (𝐵), let 𝜏1 be the subspace topology on
M and let 𝜏2 be be the unique Hausdorff topology on M such that the action of 𝑅ps is continuous. We
claim that the identity map (𝑀, 𝜏2) → (𝑀, 𝜏1) is continuous. We will now prove the claim. Since B is a
topological 𝑅ps-algebra, the action of 𝑅ps on 𝑀𝑑 (𝐵), and hence on M, is continuous with respect to 𝜏1.
Since M is a finitely generated 𝑅ps-module, we may pick a continuous surjection 𝜑 : (𝑅ps)𝑛 � 𝑀 for
some 𝑛 ≥ 1. Since 𝑅ps is Noetherian, the kernel of 𝜑 is finitely generated and hence a closed submodule
of (𝑅ps)𝑛. Thus, the quotient topology on M induced via 𝜑 is Hausdorff and therefore must coincide
with 𝜏2, which proves the claim.

The same argument shows that 𝜏2 coincides with the quotient topology via 𝐸 � 𝑀 , and the
claim implies that the map 𝑓 : 𝐸 → 𝑀𝑑 (𝐵) is continuous and hence induces a continuous group
homomorphism 𝐸× → 𝑀𝑑 (𝐵)× = GL𝑑 (𝐵). �

Lemma 3.3. The composition 𝑅ps [𝐺𝐹 ] → 𝑅ps�𝐺𝐹�� 𝐸 is surjective.

Proof. Since 𝑅ps [𝐺𝐹 ] is dense in 𝑅ps�𝐺𝐹�, its image will be dense in E for the topologies introduced
in the proof of Lemma 3.2. The image is also closed, as it is an 𝑅ps-submodule of E. Hence, the map is
surjective. �

The representation 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘) induces a map of 𝑅ps-algebras 𝐸 → 𝑀𝑑 (𝑘) and thus a
homomorphism of 𝑅ps-algebras 𝐴gen → 𝑘 . It follows from the universal property of 𝐴gen that 𝑅�

𝜌
is
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isomorphic to the completion of 𝐴gen with respect to the kernel of this map; see Proposition 3.34 for a
more precise statement. Conversely, we have the following Lemma.

Lemma 3.4. Let 𝑥 ∈ 𝑋gen be a closed point above the unique closed point of 𝑋ps and let 𝜌𝑥 : 𝐺𝐹 →
GL𝑑 (𝜅(𝑥)) be the representation obtained by composing

𝐺𝐹 → 𝑅ps�𝐺𝐹� → 𝐸
𝑗
−→ 𝑀𝑑 (𝐴gen) → 𝑀𝑑 (𝜅(𝑥)).

Then the pseudo-character associated to 𝜌𝑥 is equal to 𝐷 ⊗𝑘 𝜅(𝑥). In particular, 𝜌𝑥 and 𝜌 ⊗𝑘 𝜅(𝑥) have
the same semi-simplification.

Proof. Since 𝐷𝑢 ⊗𝑅ps 𝑘 = 𝐷, the first part follows immediately from the definition of 𝐴gen. The second
part follows from [18, Theorem 2.12]. Note that since we have assumed that all irreducible subquotients
of 𝜌 are absolutely irreducible, it is enough to prove that 𝜌𝑥 and 𝜌 have the same semi-simplification
after extending scalars to the algebraic closure of k. �

Remark 3.5. We note that one needs to impose the Cayley–Hamilton condition in the definition of 𝐴gen

for Lemma 3.4 to hold. For example, if 𝐷 = 𝜒1 + 𝜒2, where 𝜒1, 𝜒2 : 𝐺𝐹 → 𝑘× are distinct characters,
then 𝐸 ⊗𝑅ps 𝑘 � 𝑘 × 𝑘 by Equation (8) in the proof of [5, Lemma 1.4.3], let 𝜋1 : 𝐸 → 𝑘 be the map
obtained by projecting to the first component. Then the map 𝐸 → 𝑀2 (𝑘), 𝑎 ↦→ diag(𝜋1 (𝑎), 𝜋1 (𝑎)) is
a map of 𝑅ps-algebras, and hence induces a map of 𝑅ps-algebras 𝑥 : 𝐶 → 𝑘 , where C is the algebra
introduced in the proof of Lemma 3.1. The representation 𝜌𝑥 obtained by specializing 𝑗 : 𝐸 → 𝑀2 (𝐶)
at x is isomorphic to 𝜒1 + 𝜒1; hence, 𝜌𝑥 is not equal to 𝜒1 + 𝜒2.

3.2. Bounding the dimension of the fibres

Let 𝔭 be a prime ideal of 𝑅ps such that dim 𝑅ps/𝔭 ≤ 1. Its residue field 𝜅(𝔭) is either k or a local field
by Lemma 3.17 below. Let 𝜅 be an algebraic closure 𝜅(𝔭) equipped with its natural topology and let
𝑦 : 𝑅ps → 𝜅 denote the corresponding homomorphism. The goal of this subsection (Proposition 3.15)
is to bound the dimension of the fibre

𝑋
gen
𝑦 := 𝑋gen ×𝑋ps ,𝑦 Spec 𝜅.

Let 𝐷𝑦 be the specialization of the universal pseudo-character along 𝑦 : 𝑅ps → 𝜅 and let

𝐸𝑦 := 𝐸 ⊗𝑅ps ,𝑦 𝜅 � (𝑅ps�𝐺𝐹� ⊗𝑅ps ,𝑦 𝜅)/CH(𝐷𝑦), (6)

where the last isomorphism follows from [18, Section 1.22] or [49, Lemma 1.1.8.6].
Since E is a finitely generated 𝑅ps-module, 𝐸𝑦 is a finite dimensional 𝜅-algebra. It follows from the

proof of Lemma 3.2 that the natural map 𝐺𝐹 → 𝐸×𝑦 is continuous for the topology on 𝐸𝑦 induced by
the topology on 𝜅. Thus, if W is an 𝐸𝑦-module on a finite dimensional 𝜅-vector space, then the induced
𝐺𝐹 -action on W is continuous.

Since 𝜅 is algebraically closed, we may write1

𝐷𝑦 =
𝑟∏
𝑖=1

𝐷𝑖 ,

where each 𝐷𝑖 is an irreducible pseudo-character2 of dimension 𝑑𝑖 . We define an equivalence relation
on the set {𝐷𝑖 : 1 ≤ 𝑖 ≤ 𝑟} by 𝐷𝑖 ∼ 𝐷 𝑗 if 𝐷𝑖 = 𝐷 𝑗 (𝑚) for some 𝑚 ∈ Z. Let k be the number of the
equivalence classes and let 𝑛𝑖 be the number of elements in the i-th equivalence class.

1We follow the convention of [18], so that a pseudo-character of a direct sum of representations is a product of their pseudo-
characters; the papers [9] and [50] refer to a direct sum instead.

2We refer the reader to [9, Section 4.1] for the fundamentals of pseudo-characters.
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Moreover, for 1 ≤ 𝑖 ≤ 𝑟 , we fix representations 𝜌𝑖 : 𝐺𝐹 → GL𝑑𝑖 (𝜅) such that 𝐷𝑖 is the pseudo-
character associated to 𝜌𝑖 . These representations are uniquely determined up to an isomorphism by [18,
Theorem 2.12], but by 𝜌𝑖 , we really mean a group homomorphism into GL𝑑𝑖 (𝜅) and not the equivalence
class.

If V is a continuous representation of 𝐺𝐹 on a finite dimensional 𝜅-vector space such that its semi-
simplification is isomorphic to ⊕𝑟𝑖=1𝜌𝑖 , then the pseudo-character associated to V is equal to 𝐷𝑦 and
the action of 𝐺𝐹 on V extends to an action of 𝑅ps�𝐺𝐹� and then to an action of 𝑅ps�𝐺𝐹� ⊗𝑅ps ,𝑦 𝜅,
which factors through the Cayley–Hamilton quotient. It follows from (6) that V and any 𝐺𝐹 -invariant
subquotient of V is an 𝐸𝑦-module. In particular, we may apply this to 𝑉 = ⊕𝑟𝑖=1𝜌𝑖 to deduce that each
𝜌𝑖 is an 𝐸𝑦-module.

Lemma 3.6. If 𝑖 ≠ 𝑗 , then3

Hom𝐸𝑦 (𝜌𝑖 , 𝜌 𝑗 ) = Hom𝐺𝐹 (𝜌𝑖 , 𝜌 𝑗 ) and Ext1𝐸𝑦
(𝜌𝑖 , 𝜌 𝑗 ) = Ext1𝐺𝐹

(𝜌𝑖 , 𝜌 𝑗 ),

where Ext1𝐺𝐹
(𝜌𝑖 , 𝜌 𝑗 ) is computed in the category of continuous representations of 𝐺𝐹 on finite dimen-

sional 𝜅-vector spaces.

Proof. It follows from Lemma 3.3 that the natural map 𝜅 [𝐺𝐹 ] → 𝐸𝑦 is surjective. This implies
the assertion about Hom spaces and gives an inclusion Ext1𝐸𝑦

(𝜌𝑖 , 𝜌 𝑗 ) ⊂ Ext1𝐺𝐹
(𝜌𝑖 , 𝜌 𝑗 ). To prove the

reverse inclusion, consider an extension 0 → 𝜌 𝑗 → 𝑊 → 𝜌𝑖 → 0 of 𝐺𝐹 -representations and let
𝑉 = 𝑊 ⊕

⊕
𝑙≠𝑖, 𝑗 𝜌𝑙 . As explained above, the 𝐺𝐹 -action on V will factor through the action of 𝐸𝑦 .

Hence, W is a representation of 𝐸𝑦 , which implies that Ext1𝐸𝑦
(𝜌𝑖 , 𝜌 𝑗 ) = Ext1𝐺𝐹

(𝜌𝑖 , 𝜌 𝑗 ). �

Since (5) is an adequate homeomorphism, there is a unique point 𝑦′ ∈ 𝑋gen � 𝐺 above y and
𝑋

gen
𝑦′ → 𝑋

gen
𝑦 is a homeomorphism. The group G acts on 𝑋

gen
𝑦 . Moreover, 𝑋gen

𝑦 is of finite type over 𝜅
and 𝑋

gen
𝑦 (𝜅) is in bijection with the set of continuous representations 𝜌 : 𝐺𝐹 → GL𝑑 (𝜅) such that the

semi-simplification of 𝜌 is isomorphic to 𝜌1 ⊕ . . . ⊕ 𝜌𝑟 .

Lemma 3.7. The fibre 𝑋gen
𝑦 is connected, and the unique closed G-orbit in 𝑋gen

𝑦 corresponds to the semi-
simple representations. If the 𝜌𝑖 are pairwise non-isomorphic, then its dimension is equal to 𝑑2 − 𝑟 .

Proof. It follows from [47, Theorem 3] that 𝑋gen
𝑦′ (and hence 𝑋gen

𝑦 , by the remark in the paragraph above)
contains a unique closed G-orbit. Thus, it is enough to show that the closure of every G-orbit will contain
a semi-simple representation. If 𝑥 ∈ 𝑋gen

𝑦 (𝜅), then after conjugation we may assume that x corresponds
to a representation 𝜌 : 𝐺𝐹 → GL𝑑 (𝜅) such that the image of 𝜌 is block-upper-triangular, and the blocks
on the diagonal are given by diag(𝜌𝜎 (1) (𝑔), . . . , 𝜌𝜎 (𝑟 ) (𝑔)) for some permutation 𝜎 ∈ 𝑆𝑟 . By extending
scalars to 𝜅 [𝑇], conjugating 𝜌 by diag(𝑇𝑟−1 id𝑑𝜎 (1) , 𝑇𝑟−2 id𝑑𝜎 (2) , . . . , id𝑑𝜎 (𝑟 ) ) and specializing at 𝑇 = 0,
we see that the closure of the G-orbit will contain a semi-simple representation. The action of G on 𝑋

gen
𝑦

leaves the connected components invariant by Lemma 2.1. Hence, every connected component of 𝑋gen
𝑦

will contain the closed point corresponding to the representation 𝑔 ↦→ diag(𝜌1 (𝑔), . . . , 𝜌𝑟 (𝑔)). Thus
𝑋

gen
𝑦 is connected.
The stabilizer of a semi-simple representation with distinct irreducible factors in GL𝑑 is isomorphic

to G𝑟𝑚: a copy of G𝑚 is embedded as scalar matrices inside of each block. Hence, the dimension of the
closed G-orbit is given by dim GL𝑑 − dimG𝑟𝑚 = 𝑑2 − 𝑟 . �

In order to analyze 𝑋
gen
𝑦 , we introduce the following notation. We fix a permutation 𝜎 ∈ 𝑆𝑟 and

write P for the block-upper-triangular parabolic subgroup of GL𝑑 with the i-th diagonal block of size
𝑑𝜎 (𝑖) × 𝑑𝜎 (𝑖) . We write N for its unipotent radical and L for its Levi subgroup consisting of block

3We do not assume that V is multiplicity free so that 𝜌𝑖 and 𝜌 𝑗 might be isomorphic as𝐺𝐹 -representations even if 𝑖 ≠ 𝑗. Note,
however, that the statement of the lemma might not hold if 𝑖 = 𝑗. For example, if V is irreducible, then 𝐸𝑦 = 𝑀𝑑 (𝜅) is a semi-
simple algebra, but Ext1𝐺𝐹

(𝜌1 , 𝜌1) is non-zero. The proof uses that the pseudo-character associated to 𝜌𝑖 ⊕ 𝜌 𝑗 is a factor of 𝐷𝑦 .
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diagonal matrices. We let 𝑍𝐿 � G𝑟𝑚 denote the centre of L. Finally, we denote their Lie algebras by 𝔭,
𝔫, 𝔩 and 𝔷𝐿 , respectively, and write 𝔤 for the Lie algebra of GL𝑑 . We have

dim𝔤 = 𝑑2, dim 𝔩 =
𝑟∑
𝑖=1

𝑑2
𝑖 , dim 𝔷𝐿 = 𝑟, (7)

dim 𝔫 =
1
2
(dim𝔤 − dim 𝔩) =

∑
1≤𝑖< 𝑗≤𝑟

𝑑𝑖𝑑 𝑗 . (8)

Remark 3.8. We note that although 𝔭, 𝔫, 𝔩 and 𝔷𝐿 depend on 𝜎, their dimensions do not.

Let 𝜌𝜎 : 𝐺𝐹 → GL𝑑 (𝜅) be the representation 𝑔 ↦→ diag(𝜌𝜎 (1) (𝑔), . . . , 𝜌𝜎 (𝑟 ) (𝑔)). It follows from a
calculation with block-upper-triangular matrices that 𝔭 can be given an associative 𝜅-algebra structure
such that the inclusion 𝔭 ⊂ 𝔤 = 𝑀𝑑 (𝜅) is an inclusion of Cayley–Hamilton algebras.

Lemma 3.9. There exists a closed subscheme 𝑋gen
𝑦,𝜎 ⊂ 𝑋

gen
𝑦 representing the functor sending a 𝜅-algebra

B to the set of homomorphisms of Cayley–Hamilton 𝜅-algebra 𝜑 : 𝐸𝑦 → 𝔭⊗𝜅 𝐵 such that the projection
onto the ith diagonal block is 𝜌𝜎 (𝑖) ⊗𝜅 𝐵 for 1 ≤ 𝑖 ≤ 𝑟 .

Proof. The universal map 𝑗 : 𝐸 → 𝑀𝑑 (𝐴gen) induces a map

𝑗𝑦 : 𝐸𝑦 → 𝑀𝑑 (𝐴gen ⊗𝑅ps ,𝑦 𝜅).

Let 𝐼𝜌,𝜎 be the ideal of 𝐴gen ⊗𝑅ps ,𝑦 𝜅 generated by the matrix entries of 𝑗𝑦 (𝑎) for all 𝑎 ∈ 𝐸𝑦 , which
lie below the diagonal blocks of P, and by all the elements on the block diagonal of the matrices
( 𝑗𝑦 (𝑎) − 𝜌𝜎 (𝑎)) for all 𝑎 ∈ 𝐸𝑦 . Let

𝑋
gen
𝑦,𝜎 := Spec((𝐴gen ⊗𝑅ps ,𝑦 𝜅)/𝐼𝜌,𝜎).

Then 𝑋
gen
𝑦,𝜎 is a closed subscheme of 𝑋gen

𝑦 , and its defining ideal 𝐼𝜌,𝜎 was constructed precisely so that a
B-point of 𝑋gen

𝑦 factors through 𝑋
gen
𝑦,𝜎 if and only if it lands in𝔭⊗𝜅 𝐵 and matches the 𝜌𝑖 on the diagonals

for 1 ≤ 𝑖 ≤ 𝑟 . �

The adjoint action (i.e., via conjugation) of 𝑍𝐿𝑁 on 𝔭 induces an action of 𝑍𝐿𝑁 on 𝑋
gen
𝑦,𝜎 .

Lemma 3.10. The unique closed 𝑍𝐿-orbit in 𝑋
gen
𝑦,𝜎 is the singleton {𝜌𝜎}.

Proof. This is the same proof as in Lemma 3.7 and uses the same diagonal matrix trick to kill off the
unipotent part. �

Proposition 3.11. Let 𝑥 ∈ 𝑋gen
𝑦,𝜎 be the point corresponding to the representation 𝜌𝜎 . Then

dim𝑇𝑥 (𝑋gen
𝑦,𝜎) = dim 𝔫 + (dim 𝔫) [𝐹 : Q𝑝] +

∑
1≤𝑖< 𝑗≤𝑟

dim Hom𝐺𝐹 (𝜌𝜎 (𝑖) , 𝜌𝜎 ( 𝑗) (1))

≤ dim 𝔫 + (dim 𝔫) [𝐹 : Q𝑝] +
𝑘∑
𝑖=1

(
𝑛𝑖
2

)
.

(9)

Proof. Using Lemma 3.9 and the decomposition 𝔭 = 𝔩 ⊕ 𝔫, we may identify 𝑇𝑥 (𝑋gen
𝑦,𝜎) with the space

of 𝜅-algebra homomorphisms 𝜑 : 𝐸𝑦 → 𝑀𝑑 (𝜅 [𝜀]), which can be written as 𝜑 = 𝜌𝜎 + 𝜀𝛽, where 𝛽 is a
𝜅-linear map 𝛽 : 𝐸𝑦 → 𝔫. If 𝛽 : 𝐸𝑦 → 𝔫 is any 𝜅-linear map, then 𝜑 := 𝜌𝜎 + 𝜀𝛽 is a homomorphism
of 𝜅-algebras if and only if

𝛽(𝑎𝑎′) = 𝜌𝜎 (𝑎)𝛽(𝑎′) + 𝛽(𝑎)𝜌𝜎 (𝑎′), ∀𝑎, 𝑎′ ∈ 𝐸𝑦 . (10)
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For 1 ≤ 𝑖 ≤ 𝑟 , we let 1𝑖 ∈ 𝑀𝑑 (𝜅) be the block diagonal matrix with the identity matrix on the i-th block
and zeros everywhere else. Since 𝜌𝜎 (𝑔) commutes with 1𝑖 for all i, we have an isomorphism

𝑇𝑥 (𝑋gen
𝑦,𝜎) �

⊕
1≤𝑖< 𝑗≤𝑟

𝑉𝑖 𝑗 ,

where 𝑉𝑖 𝑗 is the space of functions 𝛽 : 𝐸𝑦 → 1𝑖𝔫1 𝑗 satisfying (10). We may identify 1𝑖𝔫1 𝑗 with
Hom𝜅 (𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) ). Then 𝑉𝑖 𝑗 is precisely the space of 1-cocycles for the Hochschild cohomology of
𝐸𝑦 with values in Hom𝜅 (𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) ). Thus,

dim𝜅 𝑉𝑖 𝑗 = dim𝜅 𝐻𝐻1 (𝐸𝑦 ,Hom𝜅 (𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) )) + dim𝜅 Hom𝜅 (𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) )
− dim𝜅 𝐻𝐻0 (𝐸𝑦 ,Hom𝜅 (𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) ))
= dim𝜅 Ext1𝐸𝑦

(𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) ) + 𝑑𝑖𝑑 𝑗 − dim𝜅 Hom𝐸𝑦 (𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) )

= 𝑑𝑖𝑑 𝑗 + [𝐹 : Q𝑝]𝑑𝑖𝑑 𝑗 + dim𝜅 Ext2𝐺𝐹
(𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) ),

(11)

where the first equality follows from [15, Proposition IX.4.4.1], the second from [15, Corollary IX.4.4.4]
and the third from Lemma 3.6 together with the local Euler–Poincaré characteristic formula in this
context4 (see [9, Theorem 3.4.1 (c)]). Thus,

dim𝜅 𝑇𝑥 (𝑋gen
𝑦,𝜎) = dim 𝔫 + (dim 𝔫) [𝐹 : Q𝑝] +

∑
1≤𝑖< 𝑗≤𝑟

dim𝜅 Ext2𝐺𝐹
(𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) ).

It follows from the local duality (see [9, Theorem 3.4.1 (b)]) that

dim𝜅 Ext2𝐺𝐹
(𝜌𝜎 ( 𝑗) , 𝜌𝜎 (𝑖) ) = dim𝜅 Hom𝐺𝐹 (𝜌𝜎 (𝑖) , 𝜌𝜎 ( 𝑗) (1)).

Thus, if this term is non-zero, then it is equal to 1 and 𝜌𝜎 (𝑖) and 𝜌𝜎 ( 𝑗) belong to the same equivalence
class. �

Remark 3.12. If char(𝜅) = 𝑝 and 𝜁𝑝 ∈ 𝐹, then 𝐷𝑖 ∼ 𝐷 𝑗 if and only if 𝐷𝑖 = 𝐷 𝑗 and the bound is sharp
in this case.

Corollary 3.13. dim 𝑋
gen
𝑦,𝜎 ≤ dim𝜅 𝑇𝑥 (𝑋gen

𝑦,𝜎) ≤ dim 𝔫 + (dim 𝔫) [𝐹 : Q𝑝] +
∑𝑘
𝑖=1

(
𝑛𝑖
2

)
.

Proof. This follows from Lemma 3.10 and Lemma 2.2 applied with 𝐺 = 𝑍𝐿 and 𝑋 = 𝑋
gen
𝑦,𝜎 , noting that

𝑋
gen
𝑦,𝜎 � 𝑍𝐿 is a singleton. �

Lemma 3.14. If 𝑓 : 𝑋 → 𝑌 is a finite type and dominant morphism of Noetherian Jacobson universally
catenary schemes, then dim𝑌 ≤ dim 𝑋 .

Proof. Passing to reduced subschemes does not affect Krull dimension, so we may assume that X and
Y are both reduced.

First, assume X and Y are irreducible. Pick dense open affines 𝑈 ⊂ 𝑌 , 𝑉 ⊂ 𝑋 such that 𝑓 (𝑉) ⊂ 𝑈.
Since f is dominant, [48, Tag 0CC1] implies that 𝐴 := O𝑌 (𝑈) ↩→ 𝐵 := O𝑋 (𝑉) is injective. Since A is
an integral domain, Noether normalization [48, Tag 07NA] implies that the map factors as

𝐴 ↩→ 𝐴[𝑥1, . . . , 𝑥𝑚] ↩→ 𝐵′ ↩→ 𝐵,

4The results in [9, Theorem 3.4.1] on local Tate duality and a local Euler–Poincaré characteristic formula, when the coefficient
field 𝜅 is a local field, are based on the work of Nekovář [41].
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with 𝐵′ finite over 𝐴[𝑥1, . . . , 𝑥𝑚] and 𝐵′𝑔 � 𝐵𝑔 for some non-zero 𝑔 ∈ 𝐴. Then [48, Tag 0DRT] and
[35, 13.C, Theorem 20] imply that

dim 𝑋 = dim 𝐵 = dim 𝐵𝑔 = dim 𝐵′𝑔 = dim 𝐵′ = dim 𝐴 + 𝑚 = dim𝑌 + 𝑚,

so dim𝑌 ≤ dim 𝑋 .
For the general case, we argue as in the proof of [48, Tag 01RM]. Write 𝑋 =

⋃
𝑗 𝑍 𝑗 as the union of

its irreducible components. Because f is dominant, we have 𝑌 =
⋃
𝑗 𝑓 (𝑍 𝑗 ). Clearly, the 𝑓 (𝑍 𝑗 ) have to

be irreducible, and so the irreducible components of Y have to be among them. The 𝑍 𝑗 and 𝑓 (𝑍 𝑗 ) are
again Noetherian, Jacobson and universally catenary, and hence by the case already treated, we have

dim𝑌 = max
𝑗

dim 𝑓 (𝑍 𝑗 ) ≤ max
𝑗

dim 𝑍 𝑗 = dim 𝑋. �

Proposition 3.15. dim 𝑋
gen
𝑦 ≤ dim𝔤 − 𝑟 + (dim 𝔫) [𝐹 : Q𝑝] +

∑𝑘
𝑖=1

(
𝑛𝑖
2

)
.

Proof. We want to apply Lemma 3.14 to∐
𝜎∈𝑆𝑟

𝐺 ×𝑍𝐿𝜎 𝑁𝜎 𝑋
gen
𝑦,𝜎 → 𝑋

gen
𝑦 , (12)

where the actions of 𝑍𝐿𝜎𝑁𝜎 on 𝑋
gen
𝑦,𝜎 and of G on 𝑋

gen
𝑦 are given by conjugation.

If 𝑥 ∈ 𝑋gen
𝑦 (𝜅) and 𝜑 : 𝐸𝑦 → 𝑀𝑑 (𝜅) is the corresponding 𝜅-algebra homomorphism, then there will

exist 𝜎 ∈ 𝑆𝑟 such that 𝜅𝑑 will admit a filtration by subspaces 0 = 𝑉0 ⊂ 𝑉1 ⊂ . . . ⊂ 𝑉𝑟 = 𝑉 , which is
invariant under the action of 𝐸𝑦 via 𝜑, satisfying𝑉𝑖/𝑉𝑖−1 � 𝜌𝜎 (𝑖) for 1 ≤ 𝑖 ≤ 𝑟 . Thus, there is 𝑔 ∈ 𝐺 (𝜅)
such that 𝑔𝜑𝑔−1 will lie in 𝑋

gen
𝑦,𝜎 (𝜅), and hence, (12) induces a surjection on 𝜅-points. But (12) is also

a map of finite type 𝜅-schemes and therefore is a dominant map of Noetherian Jacobson universally
catenary schemes, so we can apply Lemma 3.14.

The fibre bundles 𝐺 ×𝑍𝐿𝜎 𝑁𝜎 𝑋
gen
𝑦,𝜎 have dimension equal to

dim𝐺 + dim 𝑋
gen
𝑦,𝜎 − dim(𝑍𝐿𝜎𝑁𝜎) = dim𝔤 − 𝑟 + dim 𝑋

gen
𝑦,𝜎 − dim 𝔫.

The bound in Corollary 3.13 gives the required assertion. �

Corollary 3.16. If 𝑟 = 1, then 𝑋
gen
𝑦 is smooth of dimension dim𝔤 − 1.

Proof. If 𝑟 = 1 then 𝐸𝑦 � 𝑀𝑑 (𝜅) and thus has a unique irreducible representation 𝜌 (up to isomorphism).
Thus, all the points in 𝑋

gen
𝑦 (𝜅) lie in the same G-orbit. Fix such a point x. Since the G-stabiliser of x is

equal to 𝑍𝐺 , we obtain dim 𝑋
gen
𝑦 = dim𝐺 − dim 𝑍𝐺 = dim𝔤 − 1.

Since 𝐸𝑦 is semi-simple, we have Ext1𝐸𝑦
(𝜌, 𝜌) = 0, and thus an argument as in the proof of Proposition

3.11 gives us

dim𝜅 𝑇𝑥 (𝑋gen
𝑦 ) = dim𝜅 End𝜅 (𝜌) − dim𝜅 End𝐸𝑦 (𝜌) = dim 𝑋

gen
𝑦 .

Thus, x is a smooth point of 𝑋gen
𝑦 , and since G acts transitively on 𝑋

gen
𝑦 (𝜅), all the points in 𝑋

gen
𝑦 (𝜅) are

smooth. Since 𝑋gen
𝑦 is of finite type over 𝜅, we deduce that 𝑋gen

𝑦 is smooth. �

3.3. Commutative algebra preparations

Lemma 3.18 is the key result of this section, and it will be applied repeatedly with 𝑅 = 𝑅ps and 𝑆 = 𝐴gen

or their reductions modulo 𝜛.
We will start with some general commutative algebra lemmas. For a ring R, we set

𝑃1𝑅 = {𝔭 ∈ Spec 𝑅 : dim 𝑅/𝔭 = 1}.
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Lemma 3.17. Let (𝑅,𝔪𝑅) be a complete local Noetherian O-algebra with finite residue field 𝑘 ′. If
𝔭 ∈ 𝑃1𝑅, then 𝜅(𝔭) is either a finite extension of L or a local field of characteristic p. Moreover, 𝑅/𝔭
is contained in the ring of integers O𝜅 (𝔭) of 𝜅(𝔭), and the quotient topology on 𝑅/𝔭 induced by the
𝔪𝑅-adic topology on R coincides with the subspace topology induced by the topology on O𝜅 (𝔭) .

Proof. It follows from Cohen’s structure theorem that if char(𝑅/𝔭) = 0, then O ⊂ 𝑅/𝔭 and 𝑅/𝔭 is a
finitely generated O-module. Thus, 𝜅(𝔭) is a finite extension of L, and 𝑅/𝔭 is contained in the integral
closure of O in 𝜅(𝔭), which is equal to O𝜅 (𝔭) . If char(𝑅/𝔭) = 𝑝, then 𝑅/𝔭 is finite over a subring
isomorphic to 𝑘 ′�𝑡�, and the same argument carries over. Moreover, O𝜅 (𝔭) is a finitely generated 𝑅/𝔭-
module, and this implies that the topologies coincide. �

Lemma 3.18. Let (𝑅,𝔪𝑅) be a complete local Noetherian ring and 𝜑 : 𝑅 → 𝑆 a ring map of finite type.
Let U be a non-empty open subscheme of 𝑈max := (Spec 𝑅) \ {𝔪𝑅}, let V (resp. 𝑉max) be the preimage
of U (resp. 𝑈max) in Spec 𝑆, let Z (resp. 𝑍max) be the closure of V (resp. 𝑉max) in Spec 𝑆 and let Y be the
preimage of {𝔪𝑅} in Spec 𝑆. Then

(1) V is Jacobson;
(2) the set of closed points of V is 𝑉 ∩ {closed points of 𝑉max};
(3) if x is a closed point of V, then its image y in Spec 𝑅 is a closed point of U and the field extension

𝜅(𝑥)/𝜅(𝑦) is finite;
(4) the set of closed points of U is 𝑈 ∩ 𝑃1𝑅;
(5) if every irreducible component of Spec 𝑆 meets Y nontrivially, then dim 𝑍 = dim𝑉 + 1;
(6) dim𝑉 ≤ dim𝑈 +max𝑦∈𝑈∩𝑃1𝑅 dim 𝜑−1 ({𝑦}).

Proof. We summarize the situation in the following diagram.

𝑍 (max)

𝑉(max) Spec 𝑆 𝑌

𝑈(max) Spec 𝑅 {𝔪𝑅}

•
cl

◦

𝜑

◦

We will first prove parts (1), (2) and (3). If 𝑅 = 𝑆 and if𝑈 = 𝑈max, then (1) follows from [48, Tag 02IM]
and both (2) and (3) hold trivially. If 𝑅 = 𝑆 and if U is arbitrary, then𝑈 = 𝑉 and (1), (2) follow from the
previous case together with [48, Tag 005W] and (3) holds trivially. The case of general 𝜑 now follows
from [48, Tag 00GB] together with [48, Tag 01P4] because the map 𝑉 → 𝑈 induced from 𝜑 is of finite
type.

Part (4) follows from (2) applied with 𝑆 = 𝑅, using that 𝔪𝑅 is the unique maximal ideal of R, so that
the set of closed points of 𝑈max is equal to 𝑃1𝑅.

For (5), note first that since V is open in Spec 𝑆, the set of generic points of V is a subset of the set
of generic points of Spec 𝑆. Thus, Z is union of irreducible components of Spec 𝑆. Let 𝑍 ′ = Spec 𝑆′ be
an irreducible component of Z with the induced reduced subscheme structure so that 𝑆′ is a domain, let
𝑉 ′ = 𝑍 ′ ∩𝑉 and let 𝑅′ be the image of R in 𝑆′. The rings 𝑅′ and 𝑆′ are excellent and hence universally
catenary by [48, Tag 07QW]. If 𝔮 ∈ Spec 𝑆′ and 𝔭 = 𝔮 ∩ 𝑅′, then

dim 𝑆′𝔮 = dim 𝑅′𝔭 + trdeg𝑅′𝑆′ − trdeg𝜅 (𝔭) 𝜅(𝔮)
= dim 𝑅′ + trdeg𝑅′𝑆′ − dim 𝑅′/𝔭 − trdeg𝜅 (𝔭) 𝜅(𝔮),

(13)
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where trdeg stands for transcendence degree, the first equality is [48, Tag 02IJ] and the second is
[36, Theorem 31.4]. It follows from (13) that

dim 𝑆′𝔮 ≤ dim 𝑅′ + trdeg𝑅′𝑆′, (14)

and the equality in (14) holds if and only if 𝔮 maps to the maximal ideal of 𝑅′ and 𝔮 is a maximal ideal
of 𝑆′. Since 𝑍 ′ ∩ 𝑌 is non-empty by assumption, such 𝔮 exists and so

dim 𝑆′ = dim 𝑅′ + trdeg𝑅′𝑆′.

Let 𝔮 be a closed point of 𝑉 ′ and let 𝔭 = 𝔮 ∩ 𝑅′. Since 𝑉 ′ is open in 𝑍 ′, we have O𝑉 ′,𝔮 = 𝑆′𝔮′ . It follows
from (3) that trdeg𝜅 (𝔭) 𝜅(𝔮) = 0 and dim 𝑅/𝔭 = 1. Thus, (13) gives us

dimO𝑉 ′,𝔮 = dim 𝑅′ + trdeg𝑅′𝑆′ − 1.

Since this holds for all closed points of 𝑉 ′, we deduce that

dim𝑉 ′ = dim 𝑅′ + trdeg𝑅′𝑆′ − 1.

This implies part (5).
Let x be a closed point of V and let y be its image in U. Then y is also a closed point of U. We have

dimO𝑉 ,𝑥 ≤ dimO𝑈,𝑦 + dim(O𝑉 ,𝑥 ⊗O𝑈,𝑦 𝜅(𝑦)) ≤ dim𝑈 + dim 𝜑−1 ({𝑦}),

where the first inequality is given by [36, Theorem 15.1 (i)]. Since

dim𝑉 = max
𝑥

dimO𝑉 ,𝑥 ,

where the maximum is taken over all closed points x of V, we get (6). �

Remark 3.19. We caution the reader that the equality dim 𝑍 = dim𝑉 + 1 might fail if one drops
the assumption that Y meets every irreducible component nontrivially. For example, if 𝑅 = Z𝑝 and
𝑆 = Z𝑝 [𝑥]/(𝑝𝑥 − 1) = Q𝑝 , then Y is empty and 𝑉max = 𝑍max = Spec 𝑆.

Remark 3.20. Here is another cautionary example. If R and S are as in Lemma 3.18, 𝔮 is a prime of
S and S is a domain, then it need not be true that dim 𝑆𝔮 + dim 𝑆/𝔮 = dim 𝑆. For example, if 𝑅 = Z𝑝 ,
𝑆 = Z𝑝 [𝑥] and𝔮 = (𝑝𝑥−1), then 𝑆/𝔮 = Q𝑝 and 𝑆𝔮 is a DVR, so that dim 𝑆𝔮+dim 𝑆/𝔮 = 1 and dim 𝑆 = 2.
We also note that 𝔮 is a closed point of Spec 𝑆, but it does not map to a closed point of Spec 𝑅. Further,
if 𝔮′ = (𝑝, 𝑥), then 𝑆/𝔮′ = F𝑝 and 𝑝, 𝑥 is a regular sequence of parameters in 𝑆𝔮′ , and thus dim 𝑆𝔮′ = 2.
Thus, 𝔮 and 𝔮′ are closed points of an irreducible scheme, but their local rings have different dimensions.

Lemma 3.21. Let Y be the preimage of {𝔪𝑅ps } in 𝑋gen, let W be a closed non-empty GL𝑑-invariant
subscheme of 𝑋gen and let Z be an irreducible component of W. Then 𝑌 ∩ 𝑍 is non-empty. Moreover, if
x is a closed point of Z, then the following hold:

(1) if 𝑥 ∈ 𝑌 , then dimO𝑍,𝑥 = dim 𝑍;
(2) if 𝑥 ∉ 𝑌 , then dimO𝑍,𝑥 = dim 𝑍 − 1.

Proof. By Lemma 2.1, each irreducible component Z of W is GL𝑑-invariant. The image of Z in 𝑋ps is
closed by Corollary 2 (ii) to [47, Proposition 9], and is nonempty and so must contain 𝔪𝑅ps because 𝑋ps

has a unique closed point. Therefore, 𝑌 ∩ 𝑍 is nonempty.
The claims about dimO𝑍,𝑥 follows from the proof of part (5) in Lemma 3.18. �

Example 3.22. Let us illustrate Lemma 3.21 with a concrete example. Let 𝐷 be the pseudo-character
of the 2-dimensional trivial representation of the group Γ := Z𝑝 . It follows from [18, Theorem 1.15]
that 𝑅ps � O�𝑡, 𝑑� and
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𝐸 �
𝑅ps�𝑇�

((1 + 𝑇)2 − (2 + 𝑡) (1 + 𝑇) + 1 + 𝑑)
,

where the map Γ→ 𝑅ps�Γ�� 𝐸 sends a fixed topological generator 𝛾 of Γ to 1 + 𝑇 . Then E is a free
𝑅ps-module with basis 1 + 𝑇, 1 and so

𝐴gen =
𝑅ps [𝑥11, 𝑥12, 𝑥21, 𝑥22]

(𝑥11 + 𝑥22 − (2 + 𝑡), 𝑥11𝑥22 − 𝑥12𝑥21 − (1 + 𝑑))
,

and 𝑗 : 𝐸 → 𝑀2 (𝐴gen) sends 1 + 𝑇 to the matrix
( 𝑥11 𝑥12
𝑥21 𝑥22

)
. Let 𝑥 : 𝐴gen → 𝐿 be the homomor-

phism corresponding to the representation 𝜌 : 𝐸 → 𝑀2 (𝐿), such that 𝜌(𝛾) =
( 1 𝑝−1

0 1
)
. Then x is a

closed point of 𝑋gen with residue field L; thus, it does not map to the closed point in 𝑋ps. Indeed,
𝐴gen/(𝑥11 − 1, 𝑥21, 𝑥22 − 1) � O[𝑥12], so we are in the situation considered in Remark 3.20.

Lemma 3.23. Let W be a closed nonempty GL𝑑-invariant subscheme of 𝑋gen and write𝑊 [1/𝑝] and 𝑊
for the generic and special fibre. Then dim𝑊 [1/𝑝] ≤ dim𝑊 . In particular, dim 𝑋gen [1/𝑝] ≤ dim 𝑋

gen
.

Proof. We may assume that 𝑊 [1/𝑝] is nonempty, and using Lemma 2.1, we may further assume that
W is irreducible. Lemma 3.21 implies that there is a closed point 𝑥 ∈ 𝑊 , which maps to the closed point
in 𝑋ps. Lemma 3.18 (5) implies that dim𝑊 [1/𝑝] = dim𝑊 − 1.

Since W is irreducible and 𝑊 [1/𝑝] ≠ ∅, the local ring O𝑊 ,𝑥 is a domain, and multiplication by 𝜛
is injective. Since char(𝜅(𝑥)) = 𝑝, 𝜛 cannot be a unit in O𝑊 ,𝑥 . Thus, dimO𝑊 ,𝑥 = dimO𝑊 ,𝑥 − 1. It
follows from Lemma 3.21 that dim𝑊 = dim𝑊 − 1. �

3.4. Bounding the dimension of the space

The main result of this subsection is Theorem 3.31, which bounds the dimension of 𝑋gen. As explained
earlier, this is an intermediate step in bounding the dimension of 𝑅�

𝜌
.

Recall that 𝐷 : 𝐺𝐹 → 𝑘 is the specialization of the universal pseudo-character 𝐷𝑢 : 𝐺𝐹 → 𝑅ps

at the maximal ideal of 𝑅ps. We may write 𝐷 =
∏𝑚
𝑖=1 𝐷𝑖 , where 𝐷𝑖 are absolutely irreducible pseudo-

characters. Let P be an (unordered) partition of the set {1, . . . , 𝑚} into r disjoint subsets Σ 𝑗 , and
let Σ = (Σ1, . . . , Σ𝑟 ) be an ordering of the subsets in P . For each 1 ≤ 𝑗 ≤ 𝑟 , let 𝐷 ′𝑗 =

∏
𝑖∈Σ 𝑗

𝐷𝑖 ,
and let 𝑑 𝑗 be the dimension of 𝐷 ′𝑗 . We define an equivalence relation on the set of pseudo-characters
{𝐷 ′𝑗 : 1 ≤ 𝑗 ≤ 𝑟} by 𝐷

′
𝑗 ∼ 𝐷

′
𝑗′ if 𝐷 ′𝑗 = 𝐷

′
𝑗′ (𝑡) for some 𝑡 ∈ Z. Let 𝑘 ′ be the number of the equivalence

classes, 𝑛′𝑖 be the number of elements in the i-th equivalence class, and 𝑐𝑖 be the dimension of the
pseudo-characters in the i-th equivalence class. We have

𝑘′∑
𝑖=1

𝑛′𝑖 = 𝑟,
𝑘′∑
𝑖=1

𝑐𝑖𝑛
′
𝑖 = 𝑑.

We define

𝑙P :=
𝑟∑
𝑗=1

𝑑2
𝑗 =

𝑘′∑
𝑖=1

𝑛′𝑖𝑐
2
𝑖 , 𝑝P := 𝑙P + 𝑛P =

𝑟∑
𝑗=1

𝑑2
𝑗 +

∑
1≤ 𝑗< 𝑗′ ≤𝑟

𝑑 𝑗𝑑 𝑗′ , (15)

where

𝑛P =
1
2
(𝑑2 − 𝑙P ) =

∑
1≤ 𝑗< 𝑗′ ≤𝑟

𝑑 𝑗𝑑 𝑗′ =
∑

1≤𝑖<𝑖′≤𝑘′
𝑐𝑖𝑐𝑖′𝑛

′
𝑖𝑛
′
𝑖′ +

𝑘′∑
𝑖=1

𝑐2
𝑖

(
𝑛′𝑖
2

)
. (16)

The notation is motivated by (7) and (8); see also Remark 3.8.
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For each 1 ≤ 𝑗 ≤ 𝑟 , let 𝑅ps
𝑗 be the universal deformation ring of 𝐷

′
𝑗 and let 𝑋ps

𝑗 := 𝑅
ps
𝑗 . The

functor FΣ, which sends a local Artinian O-algebra (𝐴,𝔪𝐴) with residue field k to the set of ordered
r-tuples (𝐷1, . . . , 𝐷𝑟 ) of pseudo-characters with each 𝐷𝑖 , a deformation of 𝐷 ′𝑖 to A is represented by
the completed tensor product

𝑅
ps
Σ := 𝑅

ps
1 ⊗̂O . . . ⊗̂O 𝑅

ps
𝑟 .

We let 𝑋ps
Σ := Spec 𝑅ps

Σ and denote by 𝑋
ps
Σ := Spec 𝑅ps

Σ /𝜛 its special fibre. By mapping an r-tuple of
pseudo-characters to their product, we obtain a map

𝜄Σ : 𝑋ps
Σ → 𝑋

ps
.

Lemma 3.24. The map 𝑅ps → 𝑅
ps
Σ is finite.

Proof. By topological Nakayama’s lemma, it is enough to show that the fibre ring 𝐶 := 𝑘 ⊗𝑅ps 𝑅
ps
Σ is a

finite dimensional k-vector space. Let F be the closed subfunctor of FΣ defined by C. If (𝐴,𝔪𝐴) is a
local Artinian k-algebra, then F (𝐴) is in bijection with the set of r-tuples (𝐷1, . . . , 𝐷𝑟 ), each 𝐷𝑖 lifting
𝐷
′
𝑖 to A such that

∏𝑟
𝑖=1 𝐷𝑖 = (

∏𝑟
𝑖=1 𝐷

′
𝑖) ⊗𝑘 𝐴.

Since C is a complete local Noetherian ring, it is enough to show that its Krull dimension is 0.
If this is not the case, then there is 𝔭 ∈ Spec𝐶 such that dim𝐶/𝔭 = 1. Let (𝐷1,𝑦 , . . . , 𝐷𝑟 ,𝑦) be the
specialization of the universal object of FΣ along 𝑦 : 𝑅ps

Σ → 𝜅(𝔭). It follows from [18, Corollary 1.14]
that the coefficients of the polynomials 𝐷𝑖,𝑦 (𝑡 − 𝑎), for all 𝑎 ∈ 𝐸 and 1 ≤ 𝑖 ≤ 𝑟 will generate a dense
subring of 𝑅ps

Σ /𝔭. Since 𝑅ps
Σ /𝔭 is a complete local k-algebra of dimension 1, there will exist 𝑎 ∈ 𝐸 and

index i such that the coefficients of 𝐷𝑖,𝑦 (𝑡 − 𝑎) will generate a transcendental extension of k inside 𝜅(𝔭).
Since 𝔭 ∈ Spec𝐶, we have

𝑟∏
𝑖=1

𝐷𝑖,𝑦 (𝑡 − 𝑎) =
𝑟∏
𝑖=1

𝐷
′
𝑖 (𝑡 − 𝑎).

Thus, all the roots of 𝐷𝑖,𝑦 (𝑡 − 𝑎) in the algebraic closure of 𝜅(𝔭) are algebraic over k. Since
𝐷𝑖,𝑦 (𝑡 − 𝑎) is a monic polynomial, we conclude that all the coefficients are also algebraic over k,
giving a contradiction. �

Let 𝑋ps
P be the scheme theoretic image of 𝜄Σ. We note that 𝑋ps

P depends only on P and not on the
chosen ordering Σ. It follows from Lemma 3.24 that

dim 𝑋
ps
P = dim 𝑋

ps
Σ =

𝑟∑
𝑖=1

dim 𝑋
ps
𝑖 = 𝑟 + 𝑙P [𝐹 : Q𝑝], (17)

where the last equality is obtained by applying [9, Theorem 5.4.1(a)] to each 𝑋
ps
𝑖 .

We define a partial order on the set of partitions of {1, . . . , 𝑚} by P ≤ P ′ if P ′ is a refinement of
P . The partition Pmin consisting of one part is the minimal element, and the partition Pmax consisting
of m parts is the maximal element with respect to this partial ordering. If P ≤ P ′, then 𝑋

ps
P′ is a closed

subscheme of 𝑋ps
P and 𝑋

ps
Pmin = 𝑋

ps. Let

𝑈P := 𝑋
ps
P \ ({𝔪𝑅ps } ∪

⋃
P<P′

𝑋
ps
P′ ),

let𝑉P be the preimage of𝑈P in 𝑋gen and let 𝑍P be the closure of𝑉P in 𝑋gen. Let 𝑋gen
P be the preimage of

𝑋
ps
P in 𝑋

gen. Then 𝑋
gen
P is closed in 𝑋

gen and contains 𝑉P ; hence, we are in the situation of Lemma 3.18
with Spec 𝑅 = 𝑋

ps
P and Spec 𝑆 = 𝑍P . Note that Lemma 3.21 implies that every irreducible component
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of 𝑋gen
P contains a closed point mapping to 𝔪𝑅ps . Thus, the condition in part (5) of Lemma 3.18 is

satisfied, and hence, dim 𝑍P = dim𝑉P + 1; the same conclusion applies to closures of various loci
considered below. Moreover, we have

𝑋
gen
P = 𝑌 ∪

⋃
P≤P′

𝑍P′ , (18)

where Y is the preimage of {𝔪𝑅ps } in 𝑋
gen.

We will also need a variant of the situation above. Let us assume that 𝑟 > 1 and let i and j be distinct
indices with 1 ≤ 𝑖, 𝑗 ≤ 𝑟 . Let F 𝑖 𝑗Σ be a subfunctor of FΣ parameterizing the deformations (𝐷1, . . . , 𝐷𝑟 )
of the ordered r-tuple (𝐷 ′1, . . . , 𝐷

′
𝑟 ) such that 𝐷𝑖 = 𝐷 𝑗 (1). Then F 𝑖 𝑗Σ is a closed subfunctor of FΣ, and

we let 𝑅ps,𝑖 𝑗
Σ be the quotient of 𝑅ps

Σ representing it. If 𝐷 ′𝑖 ≠ 𝐷
′
𝑗 (1), then 𝑅ps,𝑖 𝑗

Σ is the zero ring; otherwise,
it follows from Equation (17) and another application of [9, Theorem 5.4.1(a)] that

dim 𝑅
ps,𝑖 𝑗
Σ /𝜛 = dim 𝑅

ps
Σ /𝜛 − dim 𝑅

ps
𝑖 /𝜛 ≤ 𝑟 + 𝑙P [𝐹 : Q𝑝] − (1 + 𝑑2

𝑖 [𝐹 : Q𝑝])

≤ 𝑟 + 𝑙P [𝐹 : Q𝑝] − (1 + [𝐹 : Q𝑝]).

Let 𝑋ps,𝑖 𝑗
P be the scheme theoretic image of Spec 𝑅ps,𝑖 𝑗

Σ in 𝑋
ps under 𝜄Σ. Then

dim 𝑋
ps,𝑖 𝑗
P ≤ 𝑟 + 𝑙P [𝐹 : Q𝑝] − (1 + [𝐹 : Q𝑝]). (19)

Let 𝑈𝑖 𝑗P := 𝑈P ∩ 𝑋
ps,𝑖 𝑗
P , let 𝑉 𝑖 𝑗P be the preimage of 𝑈𝑖 𝑗P in 𝑋

gen and let 𝑍 𝑖 𝑗P be the closure of 𝑉 𝑖 𝑗P in 𝑋
gen.

Lemma 3.25. If y is a geometric closed point of 𝑈P , then

dim 𝑋
gen
𝑦 ≤ 𝑑2 − 𝑟 + 𝑛P [𝐹 : Q𝑝] +

𝑘′∑
𝑖=1

(
𝑛′𝑖
2

)
.

If we additionally assume that 𝑦 ∉ 𝑈𝑖 𝑗P for any 𝑖 ≠ 𝑗 , then

dim 𝑋
gen
𝑦 ≤ 𝑑2 − 𝑟 + 𝑛P [𝐹 : Q𝑝] .

Proof. We may write 𝐷𝑦 = 𝐷1 + . . . + 𝐷𝑟 with 𝐷𝑖 lifting 𝐷
′
𝑖 . We note that all the 𝐷𝑖 are absolutely

irreducible since otherwise, 𝑦 ∈ 𝑋ps
P′ for some P ′ > P . Let k and 𝑛𝑖 be the numbers defined in Section

3.2. Proposition 3.15 implies that

dim 𝑋
gen
𝑦 ≤ 𝑑2 − 𝑟 + 𝑛P [𝐹 : Q𝑝] +

𝑘∑
𝑖=1

(
𝑛𝑖
2

)
.

If 𝐷𝑖 = 𝐷 𝑗 (𝑚) for some 𝑚 ∈ Z, then also 𝐷
′
𝑖 = 𝐷

′
𝑗 (𝑚). This implies that

𝑘∑
𝑖=1

(
𝑛𝑖
2

)
≤
𝑘′∑
𝑖=1

(
𝑛′𝑖
2

)
,

which implies the first assertion. We note that if 𝑎𝑖 , . . . , 𝑎𝑠 are positive integers, then

𝑠∑
𝑖=1

(
𝑎𝑖
2

)
≤

(∑𝑠
𝑖=1 𝑎𝑖
2

)
.
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If 𝑦 ∉ 𝑈
𝑖 𝑗
P for any 𝑖 ≠ 𝑗 , then 𝐷𝑖 ≠ 𝐷 𝑗 (1) for any 𝑖 ≠ 𝑗 , and the Hom terms in (9) vanish. The

assertion follows from Proposition 3.15 using this improved bound. �

Proposition 3.26. dim 𝑍
𝑖 𝑗
P ≤ 𝑑2 + 𝑝P [𝐹 : Q𝑝] +

∑𝑘′
𝑖=1

(
𝑛′𝑖
2

)
− (1 + [𝐹 : Q𝑝]).

Proof. It follows from Lemma 3.18 (5) that the closure of 𝑈𝑖 𝑗P has dimension dim𝑈
𝑖 𝑗
P + 1. Thus,

dim𝑈
𝑖 𝑗
P + 1 ≤ dim 𝑋

ps,𝑖 𝑗
P ≤ 𝑟 + 𝑙P [𝐹 : Q𝑝] − (1 + [𝐹 : Q𝑝]),

where the last inequality is (19). Parts (5) and (6) of Lemma 3.18 together with Lemma 3.25 imply that

dim 𝑍
𝑖 𝑗
P ≤ (𝑟 + 𝑙P [𝐹 : Q𝑝] − (1 + [𝐹 : Q𝑝])) + (𝑑2 − 𝑟 + 𝑛P [𝐹 : Q𝑝] +

𝑘′∑
𝑖=1

(
𝑛′𝑖
2

)
),

which imply the assertion. �

Proposition 3.27. Let 𝛿P = max{0,
∑𝑘′
𝑖=1

(
𝑛′𝑖
2

)
− (1 + [𝐹 : Q𝑝])}. Then

dim 𝑍P ≤ 𝑑2 + 𝑝P [𝐹 : Q𝑝] + 𝛿P .

Proof. Let 𝑈 ′P := 𝑈P \
⋃
𝑖≠ 𝑗 𝑈

𝑖 𝑗
P , let 𝑉 ′P be the preimage of 𝑈 ′P in 𝑋

gen and let 𝑍 ′𝑃 denote the closure
of 𝑉 ′P in 𝑋

gen. If y is a closed point of𝑈 ′P , then dim 𝑋
gen
𝑦 ≤ 𝑑2 − 𝑟 + 𝑛P [𝐹 : Q𝑝] by Lemma 3.25. Thus,

Lemma 3.18 implies that

dim 𝑍 ′P ≤ dim 𝑋
ps
P + (𝑑2 − 𝑟 + 𝑛P [𝐹 : Q𝑝]) = 𝑑2 + 𝑝P [𝐹 : Q𝑝] . (20)

Since 𝑍P = 𝑍 ′P ∪
⋃
𝑖≠ 𝑗 𝑍

𝑖 𝑗
P , we have dim 𝑍P = max𝑖≠ 𝑗 {dim 𝑍 ′P , dim 𝑍

𝑖 𝑗
P }, and the assertion follows

from Proposition 3.26. �

Proposition 3.28. dim 𝑍Pmin ≤ 𝑑2 + 𝑑2 [𝐹 : Q𝑝].
Proof. In this case, 𝑟 = 1, so 𝑍P = 𝑍 ′P , and the assertion follows from (20). �

Lemma 3.29. Assume that P ≠ Pmin. If 𝑑 = 2, then

𝑑2 + 𝑑2 [𝐹 : Q𝑝] − dim 𝑍P ≥ [𝐹 : Q𝑝],

and

𝑑2 + 𝑑2 [𝐹 : Q𝑝] − dim 𝑍P ≥ 1 + [𝐹 : Q𝑝],

otherwise.
Proof. Proposition 3.27 implies that

𝑑2 + 𝑑2 [𝐹 : Q𝑝] − dim 𝑍P ≥ 𝑛P [𝐹 : Q𝑝] − 𝛿P .

If 𝑑 > 2, then 𝑛P ≥ 2, and if 𝑑 = 2, then 𝑛P = 1, which implies the assertion if 𝛿P = 0. Let us assume
that 𝛿P ≠ 0. Then using (16), we may write

𝑛P [𝐹 : Q𝑝] − 𝛿P =
∑

1≤𝑖< 𝑗≤𝑘′
𝑐𝑖𝑐 𝑗𝑛

′
𝑖𝑛
′
𝑗 [𝐹 : Q𝑝] +

𝑘′∑
𝑖=1
(𝑐2
𝑖 [𝐹 : Q𝑝] − 1)

(
𝑛′𝑖
2

)
+ 1 + [𝐹 : Q𝑝],

which implies the assertion. �
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Lemma 3.30. Let Y be the preimage of {𝔪𝑅ps } in 𝑋
gen. Then

dim𝑌 ≤ 𝑑2 + 𝑛Pmax [𝐹 : Q𝑝] + 𝑛Pmax − 1.

In particular, 𝑑2 + 𝑑2 [𝐹 : Q𝑝] − dim𝑌 ≥ 1 + 𝑙Pmax [𝐹 : Q𝑝] ≥ 1 + 2[𝐹 : Q𝑝].
Proof. Proposition 3.15 implies that

dim𝑌 ≤ 𝑑2 − 𝑚 + 𝑛Pmax [𝐹 : Q𝑝] +
𝑘′∑
𝑖=1

(
𝑛′𝑖
2

)
.

As already explained in the proof of Lemma 3.29, we have
∑𝑘′
𝑖=1

(
𝑛′𝑖
2

)
≤ 𝑛Pmax . This implies the

assertion. �

Theorem 3.31. dim 𝑋
gen ≤ 𝑑2 + 𝑑2 [𝐹 : Q𝑝].

Proof. Since 𝑋
ps
= {𝔪𝑅ps } ∪

⋃
P 𝑈P , we have 𝑋

gen
= 𝑌 ∪

⋃
P 𝑍P . Since these are closed in 𝑋

gen, we
have

dim 𝑋
gen

= max
P
{dim𝑌, dim 𝑍P } ≤ 𝑑2 + 𝑑2 [𝐹 : Q𝑝],

by Proposition 3.28 and Lemmas 3.29 and 3.30. �

Theorem 3.31 is the main input to Corollary 3.38, which proves Theorem 1.1. The missing ingredient
is a description of the relationship between 𝑋gen and 𝑅�

𝜌
, which is the subject of the next subsection.

3.5. Completions at maximal ideals and deformation problems

Let 𝑌 ⊂ 𝑋gen be the preimage of the closed point of 𝑋ps, let x be either a closed point of Y or a closed
point of 𝑋gen \ 𝑌 and let y be its image in Spec 𝑅ps. It follows from Lemmas 3.17 and 3.18 that 𝜅(𝑥) is
a finite extension of 𝜅(𝑦) and there are the following possibilities:
(1) if 𝑥 ∈ 𝑌 , then 𝜅(𝑥) is a finite extension of k;
(2) if 𝑥 ∈ 𝑋gen [1/𝑝], then 𝜅(𝑥) is a finite extension of L;
(3) if 𝑥 ∈ 𝑋gen \ 𝑌 , then 𝜅(𝑥) is a local field of characteristic p.

The universal property of 𝐴gen gives us a continuous Galois representation

𝜌𝑥 : 𝐺𝐹 → GL𝑑 (𝜅(𝑥)).

In this section, we want to relate the completion of the local ringO𝑋gen ,𝑥 to a deformation problem for 𝜌𝑥 .
We will introduce some notation to formulate the deformation problem for 𝜌𝑥 . More generally, let

𝜌 : 𝐺𝐹 → GL𝑑 (𝜅) be a continuous representation, where 𝜅 is either a finite extension of k, a finite
extension of L or a local field of characteristic p containing k equipped with natural topology. We first
define a ring of coefficients Λ over which the deformation problem is defined.
(1) If 𝜅 is a finite field, then pick an unramified extension 𝐿 ′ of L with residue field 𝜅 and let Λ := O𝐿′

denote the ring of integers in 𝐿 ′.
(2) If 𝜅 is a finite extension of L, then let Λ := 𝜅, let Λ0 be the ring of integers in Λ and let 𝑡 = 𝜛.
(3) If 𝜅 is a local field of characteristic p, then let O𝜅 be the ring of integers in 𝜅 and let 𝑘 ′ be its residue

field. Since char(𝜅) = 𝑝, by choosing a uniformizer, we obtain an isomorphism O𝜅 � 𝑘 ′�𝑡�. Let
𝐿 ′ be an unramified extension of L with residue field 𝑘 ′, let Λ0 := O𝐿′�𝑡� and let Λ be the p-adic
completion of Λ0 [1/𝑡]. Then Λ is a complete DVR with uniformiser 𝜛 and residue field 𝜅. We equip
Λ0 with its (𝜛, 𝑡)-adic topology. This induces a topology on Λ0 [1/𝑡] and Λ0 [1/𝑡]/𝑝𝑛Λ0 [1/𝑡] for
all 𝑛 ≥ 1. We equip Λ = lim←−−𝑛 Λ

0 [1/𝑡]/𝑝𝑛Λ0 [1/𝑡] with the projective limit topology.
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Remark 3.32. In case (3), if Λ′ is an O-algebra, which is a complete DVR with uniformiser 𝜛 and
residue field 𝜅, then it follows from [10, Ch. IX, §2.3, Prop. 4] that Λ′ is non-canonically isomorphic to
Λ. We will refer to Λ′ (and Λ) as an O-Cohen ring of 𝜅.

Let 𝔄Λ be the category of local Artinian Λ-algebras with residue field 𝜅. Let (𝐴,𝔪𝐴) ∈ 𝔄Λ.

(1) In case (1), A is a finite O/𝜛𝑛-module for some 𝑛 ≥ 1, and we just put the discrete topology on A.
(2) In case (2), A is a finite dimensional L-vector space, and we put the p-adic topology on A.
(3) In case (3), A is a Λ0 [1/𝑡]/𝜛𝑛Λ0 [1/𝑡]-module of finite length for some 𝑛 ≥ 1, and we put the

induced topology on A.

Let 𝐷�𝜌 (𝐴) be the set of continuous group homomorphisms 𝜌𝐴 : 𝐺𝐹 → GL𝑑 (𝐴), such that 𝜌𝐴
(mod 𝔪𝐴) = 𝜌.

Proposition 3.33. The functor 𝐷�𝜌 : 𝔄Λ → Sets is pro-represented by a complete local Noetherian
Λ-algebra 𝑅�𝜌 . Moreover, there is a presentation

𝑅�𝜌 � Λ�𝑥1, . . . , 𝑥𝑟�/( 𝑓1, . . . , 𝑓𝑠) (21)

with 𝑟 = dim𝜅 𝑍1 (𝐺𝐹 , ad 𝜌) and 𝑠 = dim𝜅 𝐻2(𝐺𝐹 , ad 𝜌).

Proof. If 𝜅 is a finite field, then this is a well-known consequence of the obstruction theory due to
Mazur, [37, Section 1.6]. (We revisit the argument in the proof of Proposition 4.3.) If 𝜅 is a local field,
then essentially the same argument works, except that one has to work harder to justify why the 2-
cocycle constructed out of an obstruction to lifting is continuous. Lecture 6 in [21] contains a very nice
exposition of the result if 𝜅 is a finite extension of L. The same argument works if 𝜅 is a local field of
characteristic p. �

If we let ℎ𝑖 := dim𝜅 𝐻𝑖 (𝐺𝐹 , ad 𝜌), then

𝑟 − 𝑠 = dim𝜅 (ad 𝜌) − ℎ0 + ℎ1 − ℎ2 = 𝑑2 + 𝑑2 [𝐹 : Q𝑝], (22)

where the last equality follows from Euler–Poincaré characteristic formula, which by [9,
Theorem 3.4.1(c)] holds in all of the three settings under consideration.

Proposition 3.34. Let 𝔮 be the kernel of the map

Λ ⊗O 𝐴gen → 𝜅(𝑥), 𝜆 ⊗ 𝑎 ↦→ �̄��̄�,

where �̄� and �̄� denote the images of 𝜆 and a in 𝜅(𝑥). Then the completion of (Λ ⊗O 𝐴gen)𝔮 with respect
to the maximal ideal is naturally isomorphic to 𝑅�𝜌𝑥 .

Proof. We will prove the proposition, when 𝜅(𝑥) is a local field of characteristic p. The other cases are
similar and are left to the reader.

Let 𝐵 be the completion of (Λ ⊗O 𝐴gen)𝔮. It follows from Lemma 3.36 below that 𝐵/𝜛𝐵 (and hence
𝐵) is Noetherian. Thus, 𝐵/𝔮𝑛𝐵 ∈ 𝔄Λ for all 𝑛 ≥ 1. The composition

Λ ⊗O 𝐸
id ⊗ 𝑗
−→ Λ ⊗O 𝑀𝑑 (𝐴gen) → 𝑀𝑑 (𝐵/𝔮𝑛𝐵)

induces a continuous representation 𝐺𝐹 → GL𝑑 (𝐵/𝔮𝑛𝐵) by Lemma 3.2, which is a deformation of 𝜌𝑥
to 𝐵/𝔮𝑛𝐵, and hence a map of local Λ-algebras 𝑅�𝜌𝑥 → 𝐵/𝔮𝑛𝐵. By passing to the projective limit over
n, we obtain a continuous representation �̂� : 𝐺𝐹 → GL𝑑 (𝐵) and a map of local Λ-algebras 𝑅�𝜌𝑥 → 𝐵.

Let (𝐴,𝔪𝐴) ∈ 𝔄Λ and let 𝜌 : 𝐺𝐹 → GL𝑑 (𝐴) be a continuous representation such that 𝜌
(mod 𝔪𝐴) = 𝜌𝑥 . We claim that there is a unique homomorphism of local Λ-algebras 𝜑 : 𝐵→ 𝐴, such
that 𝜌 is equal to the composition GL𝑑 (𝜑) ◦ �̂�. The claim implies that the map 𝑅�𝜌𝑥 → 𝐵 constructed
above is an isomorphism.
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The proof of the claim is based on [31, Proposition 9.5]. Following its proof, we may construct an
ascending chain of local open Λ0-subalgebras 𝐴0

𝑛 of A for 𝑛 ≥ 1, such that for all n, the following
hold: 𝐴0

𝑛 [1/𝑡] = 𝐴, the image of 𝐴0
𝑛 under the projection 𝑏 : 𝐴 → 𝜅(𝑥) is equal to O𝜅 (𝑥) and⋃

𝑛≥1 𝐴
0
𝑛 = 𝑏−1(O𝜅 (𝑥) ). Let 𝑀 ∈ GL𝑑 (𝜅(𝑥)) be a matrix such that the image of 𝐺𝐹 under 𝑀𝜌𝑥𝑀

−1

is contained in GL𝑑 (O𝜅 (𝑥) ). Let 𝑥 ′ ∈ 𝑋gen correspond to the representation 𝑀𝜌𝑥𝑀
−1. Then 𝜅(𝑥 ′) =

𝜅(𝑥) and the image of 𝑥 ′ : 𝐴gen → 𝜅(𝑥) is contained in O𝜅 (𝑥) . Let 𝑧 ∈ 𝑋gen be the composition

𝑧 : 𝐴gen 𝑥′−→ O𝜅 (𝑥) → 𝑘 ′, where 𝑘 ′ is the residue field of O𝜅 (𝑥) , let 𝑀 ∈ GL𝑑 (𝐴) be a matrix
lifting M and let 𝜌′ := 𝑀𝜌𝑀−1. Since 𝐺𝐹 is compact, 𝜌′(𝐺𝐹 ) will be contained in some GL𝑑 (𝐴0

𝑛)
for 𝑛 � 0. We may consider 𝜌′ : 𝐺𝐹 → GL𝑑 (𝐴0

𝑛) as a deformation of 𝜌𝑧 to 𝐴0
𝑛. Since the pseudo-

character of 𝜌𝑧 is equal to 𝐷 ⊗𝑘 𝑘 ′ by Lemma 3.4, the pseudo-character of 𝜌′ : 𝐺𝐹 → GL𝑑 (𝐴0
𝑛) is a

deformation of 𝐷 ⊗𝑘 𝑘 ′ to 𝐴0
𝑛 and hence induces a map of local O-algebras 𝑅ps → 𝐴0

𝑛. Thus, 𝜌′ factors
through the map Λ0 ⊗O 𝑅ps�𝐺𝐹� → 𝑀𝑑 (𝐴0

𝑛), which will factor through the Cayley–Hamilton quotient
(Λ0 ⊗O 𝑅ps�𝐺𝐹�)/CH(Λ0 ⊗O 𝐷𝑢) → 𝑀𝑑 (𝐴0

𝑛). It follows from [18, Section 1.22] or [49, Lemma
1.1.8.6] that

Λ0 ⊗O 𝐸 � (Λ0 ⊗O 𝑅ps�𝐺𝐹�)/CH(Λ0 ⊗O 𝐷𝑢).

After inverting t and conjugating by 𝑀−1, we obtain a map ofΛ0 [1/𝑡]-algebrasΛ0 [1/𝑡]⊗O𝐸 → 𝑀𝑑 (𝐴),
such that if we compose this map with the map induced by 𝐺𝐹 → 𝑅ps�𝐺𝐹� → 𝐸 , then we get back
𝜌. Since A is an Artinian Λ-algebra, 𝜛𝑛Λ0 [1/𝑡] will be mapped to zero for 𝑛 � 0, and thus the map
extends to a map of Λ-algebras 𝛼 : Λ ⊗O 𝐸 → 𝑀𝑑 (𝐴). The universal property of 𝑗 : 𝐸 → 𝑀𝑑 (𝐴gen)
implies that there is a unique map of Λ-algebras 𝜑 : 𝐵→ 𝐴, such that 𝑀𝑑 (𝜑) ◦ (id ⊗ 𝑗) = 𝛼.

It remains to show the uniqueness of the map 𝜑, which is equivalent to showing that there is at most
one map of Λ ⊗O 𝑅ps-algebras 𝛼 : Λ ⊗O 𝐸 → 𝑀𝑑 (𝐴) such that the composition with 𝐺𝐹 → Λ ⊗O 𝐸
gives 𝜌. It follows from the Cayley–Hamilton theorem in 𝑀𝑑 (𝐴) and [18, Corollary 1.14] that the map
Λ ⊗O 𝑅ps → Λ ⊗O 𝐸

𝛼−→ 𝐴 is uniquely determined by 𝜌. Thus, 𝛼 is uniquely determined on the image
of Λ⊗O 𝑅ps [𝐺𝐹 ] in Λ⊗O 𝐸 . The map 𝑅ps [𝐺𝐹 ] → 𝐸 is surjective, since the image is dense and closed
as E is a finitely generated 𝑅ps-module; hence, 𝛼 is uniquely determined by 𝜌. �

The following Lemma is a mild generalization of [9, Lemma 3.3.5].
Lemma 3.35. Let R be a complete local Noetherian k-algebra with residue field k, let A be a finitely
generated R-algebra, let 𝔭 ∈ Spec 𝐴 such that its image in Spec 𝑅 lies in 𝑃1𝑅, and let 𝔮 be the kernel of
the map

𝐵 := 𝜅(𝔭) ⊗𝑘 𝐴→ 𝜅(𝔭), 𝑥 ⊗ 𝑎 ↦→ 𝑥(𝑎 + 𝔭).

Then �̂�𝔮 � �̂�𝔭�𝑇�. In particular, 𝐴𝔭 is regular (resp. complete intersection) if and only if �̂�𝔮 is.
Proof. Let 𝔭′ be the image of 𝔭 in Spec 𝑅. Since by assumption 𝔭′ ∈ 𝑃1𝑅, the residue field 𝜅(𝔭′) is a
local field of characteristic p. Since A is finitely generated over R, 𝜅(𝔭) is a finite extension of 𝜅(𝔭′) and
thus is also a local field of characteristic p. The proof of [9, Lemma 3.3.4] goes through verbatim by
replacing R with A everywhere. �

Lemma 3.36. Let R be a complete local Noetherian O-algebra with residue field k, let A be a finitely
generated R-algebra, let 𝔭 ∈ Spec 𝐴 such that 𝜅(𝔭) is a local field of characteristic p and let 𝔮 be the
kernel of the map

𝐵 := Λ ⊗O 𝐴→ 𝜅(𝔭), 𝜆 ⊗ 𝑎 ↦→ �̄�(𝑎 + 𝔭).

Then �̂�𝔮 � �̂�𝔭�𝑇�. In particular, 𝐴𝔭 is regular (resp. complete intersection) if and only if �̂�𝔮 is.
Proof. We first observe that �̂�𝔮 is flat over �̂�𝔭. This can be seen as follows. Since Λ is O-flat, B is A-flat.
Since 𝐵𝔮 is B-flat and �̂�𝔮 is 𝐵𝔮-flat, we conclude that �̂�𝔮 is A-flat. Thus, �̂�𝔮 ⊗𝐴 �̂�𝔭 is �̂�𝔭-flat. This ring
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is isomorphic to �̂�𝔮 ⊗𝐴𝔭 �̂�𝔭. Since the map 𝐴𝔭/𝔭𝑛𝐴𝔭 → �̂�𝔭/𝔭𝑛 �̂�𝔭 is an isomorphism for all 𝑛 ≥ 1, �̂�𝔮

is a completion of �̂�𝔮 ⊗𝐴𝔭 �̂�𝔭 at 𝔮, which implies the claim.
It follows from Lemma 3.35 that the map 𝐴→ 𝐵, 𝑎 ↦→ 1 ⊗ 𝑎 induces a map of local rings �̂�𝔭 → �̂�𝔮,

such that �̂�𝔮/𝜛 � ( �̂�𝔭/𝜛)�𝑇�. By choosing 𝑏 ∈ �̂�𝔮, which maps to T under this isomorphism, we
obtain a map 𝜑 : �̂�𝔭�𝑇� → �̂�𝔮, which induces an isomorphism modulo 𝜛. Thus, 𝜑 is a homomor-
phism of pseudo-compact �̂�𝔭-modules, which induces an isomorphism after applying ⊗�̂�𝔭 𝜅. Thus,
(coker 𝜑) ⊗�̂�𝔭 𝜅 = 0, and since �̂�𝔮 is �̂�𝔭-flat, (ker 𝜑) ⊗�̂�𝔭 𝜅 = 0. Topological Nakayama’s lemma5 for
pseudo-compact modules implies that coker 𝜑 and ker 𝜑 are both zero. �

Lemma 3.37. Let R be a complete local Noetherian O-algebra with residue field k, let A be a finitely
generated R-algebra and let 𝔭 ∈ Spec 𝐴 such that 𝜅(𝔭) is either a finite extension of L or a finite
extension of k. Let 𝔮 be the kernel of the map

𝐵 := Λ ⊗O 𝐴→ 𝜅(𝔭), 𝜆 ⊗ 𝑎 ↦→ �̄�(𝑎 + 𝔭).

Then �̂�𝔮 � �̂�𝔭.

Proof. The completion of Λ ⊗O Λ with respect to the kernel of Λ ⊗O Λ → Λ, 𝑥 ⊗ 𝑦 ↦→ 𝑥𝑦 is just Λ
(and that is why we do not get an extra variable T like in Lemma 3.35; see [9, Lemma 3.3.5].) The rest
of the proof is the same as the proof of Lemma 3.35. �

Corollary 3.38. Let x be either a closed point of Y or a closed point of 𝑋gen \𝑌 . Then the following hold:

(1) 𝑅�𝜌𝑥 is a flat Λ-algebra of relative dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝] and is complete intersection;
(2) if char(𝜅(𝑥)) = 𝑝, then 𝑅�𝜌𝑥/𝜛 is complete intersection of dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝].

Proof. Let us assume that 𝜅(𝑥) is a finite extension of k. It follows from Proposition 3.34 and Lemma
3.37 that 𝑅�𝜌𝑥/𝜛 � Ô𝑋gen

,𝑥 , the completion of the local ring of 𝑋gen at x with respect to the maximal
ideal. We have dim Ô𝑋gen

,𝑥 = dimO𝑋gen
,𝑥 ≤ dim 𝑋

gen, and thus by Theorem 3.31, we obtain the bound

dim 𝑅�𝜌𝑥/𝜛 ≤ dim 𝑋
gen ≤ 𝑑2 + 𝑑2 [𝐹 : Q𝑝] = 𝑟 − 𝑠,

where the last equality is (22). It follows from (21) that dim 𝑅�𝜌𝑥/𝜛 ≥ 𝑟−𝑠 and dim 𝑅�𝜌𝑥 ≥ 1+𝑟−𝑠. Thus,
the lower bounds of the dimensions are equalities, and 𝜛, 𝑓1, . . . , 𝑓𝑠 are a part of system of parameters
in Λ�𝑥1, . . . , 𝑥𝑟�. Thus, they form a regular sequence in Λ�𝑥1, . . . , 𝑥𝑟� and so 𝑅�𝜌𝑥 and 𝑅�𝜌𝑥/𝜛 are
complete intersections of the claimed dimensions. Moreover, since Λ is a DVR with uniformiser 𝜛,
flatness is equivalent to 𝜛-torsion equal to zero, and hence, 𝑅�𝜌𝑥 is flat over Λ.

Let us assume that 𝜅(𝑥) is a local field of characteristic p. Proposition 3.34 and Lemma 3.35 imply that
𝑅�𝜌𝑥/𝜛 � Ô𝑋gen

,𝑥�𝑇�, and Lemma 3.21 applied with𝑊 = 𝑋
gen implies that dim Ô𝑋gen

,𝑥 ≤ dim 𝑋
gen−1.

Thus, dim 𝑅�𝜌𝑥/𝜛 ≤ dim 𝑋
gen, and the same argument as above goes through.

If 𝜅(𝑥) is a finite extension of L, then Proposition 3.34 and Lemma 3.37 imply that

𝑅�𝜌𝑥 � Ô𝑋gen ,𝑥 = Ô𝑋gen [1/𝑝],𝑥 .

Corollary 3.23 implies that dim 𝑅�𝜌𝑥 ≤ dim 𝑋gen [1/𝑝] ≤ dim 𝑋
gen. Then the same argument goes

through. �

Corollary 3.39. Let x be either a closed point in Y or a closed point in 𝑋gen \ 𝑌 and let Ô𝑋gen ,𝑥 be the
completion with respect to the maximal ideal of the local ring at x. If 𝜅(𝑥) is a finite extension of k or L,
then Ô𝑋gen ,𝑥 � 𝑅�𝜌𝑥 . If 𝜅(𝑥) is a local field of characteristic p, then 𝑅�𝜌𝑥 � Ô𝑋gen ,𝑥�𝑇�.

5Lemma 0.3.3 in Exposé 𝑉 𝐼 𝐼𝐵 in SGA3.
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Proof. If 𝜅(𝑥) is a finite extension of k or L, then the assertion follows from Proposition 3.34 and
Lemma 3.37. If 𝜅(𝑥) is a local field of characteristic p, then the assertion follows from Proposition 3.34
and Lemma 3.36. �

Corollary 3.40. The following hold:

(1) 𝐴gen is O-torsion free, is equi-dimensional of dimension 1+𝑑2+𝑑2 [𝐹 : Q𝑝] and is locally complete
intersection;

(2) 𝐴gen/𝜛 is equi-dimensional of dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝] and is locally complete intersection.

Proof. Let us prove (1) as the proof of (2) is identical. Corollary 3.39 together with Corollary 3.38
implies that the local rings at closed points of 𝑋gen are O-torsion free and complete intersection. This
implies that 𝐴gen is O-torsion free and 𝐴gen is locally complete intersection by [48, Tag 09Q5].

Let Z be an irreducible component of 𝑋gen. Lemma 3.21 implies that there is a closed point 𝑥 ∈ 𝑍
such that x maps to the closed point of 𝑋ps. Moreover, dim 𝑍 = dimO𝑍,𝑥 . Since O𝑋gen ,𝑥 is complete
intersection, it is equi-dimensional, and thus, dimO𝑍,𝑥 = dimO𝑋gen ,𝑥 = 𝑑2 + 𝑑2 [𝐹 : Q𝑝] + 1, where
the last equality follows from Corollaries 3.38 and 3.39. �

Proposition 3.41. Let 𝑥 ∈ 𝑃1𝑅
�
𝜌

, where 𝑅�
𝜌

is the framed deformation ring of 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘 ′), where
𝑘 ′ is finite extension of k. Let 𝜌𝑥 : 𝐺𝐹 → GL𝑑 (𝜅(𝑥)) be the representation obtained by specializing the
universal framed deformation of 𝜌 at x. Let 𝔮 be the kernel of the map

Λ ⊗O 𝑅�𝜌 → 𝜅(𝑥), 𝜆 ⊗ 𝑎 ↦→ �̄��̄�,

where Λ is the ring defined at the beginning of the subsection. Then the completion of (Λ ⊗O 𝑅�
𝜌
)𝔮 with

respect to the maximal ideal is naturally isomorphic to 𝑅�𝜌𝑥 .

Proof. The proof is similar to the proof of Proposition 3.34, but easier, since the setting is much closer
to the setting of [31, Proposition 9.5] or [9, Theorem 3.3.1], where an analogous result is proved for
versal deformation rings. We leave the details to the reader. �

Let x be a closed point of 𝑋gen \ 𝑌 , so that 𝜅(𝑥) is a local field. Since 𝐺𝐹 is compact, there
is a matrix 𝑀 ∈ GL𝑑 (𝜅(𝑥)), such that the image of 𝑀𝜌𝑥𝑀

−1 is contained in GL𝑑 (O𝜅 (𝑥) ). Let 𝑥 ′ :
𝐴gen → O𝜅 (𝑥) be the 𝑅ps-algebra homomorphism corresponding to the representation 𝐸 → 𝑀𝑑 (O𝜅 (𝑥) ),
𝑎 ↦→ 𝑀𝜌𝑥 (𝑎)𝑀−1. We will denote the corresponding Galois representation by 𝜌0

𝑥′ : 𝐺𝐹 → GL𝑑 (O𝜅 (𝑥) )

and let 𝜌𝑥′ be the composition 𝜌𝑥′ : 𝐺𝐹
𝜌0
𝑥′−→ GL𝑑 (O𝜅 (𝑥) ) → GL𝑑 (𝜅(𝑥)). We note that 𝜅(𝑥 ′) = 𝜅(𝑥) and

letΛ be the coefficient ring defined at the beginning of the subsection. Let 𝑘 ′ be the residue field ofO𝜅 (𝑥)
and let 𝜌𝑧 : 𝐺𝐹 → GL𝑑 (𝑘 ′) be the representation corresponding to 𝑧 : 𝐴gen 𝑥′−→ O𝜅 (𝑥) → 𝑘 ′. Then 𝜌0

𝑥′

is a deformation of 𝜌𝑧 to O𝜅 (𝑥) ; thus, the map 𝑥 ′ : 𝐴gen → O𝜅 (𝑥) factors through 𝑥 ′ : 𝑅�𝜌𝑧 → O𝜅 (𝑥) .

Corollary 3.42. There is an isomorphism of local Λ-algebras between 𝑅�𝜌𝑥 , 𝑅�𝜌𝑥′ and the completion
of (Λ ⊗O 𝑅�𝜌𝑧 )𝔮 with respect to the maximal ideal, where 𝔮 is as in Proposition 3.41 with respect to
𝑥 ′ : 𝑅�𝜌𝑧 → O𝜅 (𝑥) .

Proof. Let 𝑀 be any lift of M to 𝑀𝑑 (Λ). Since Λ is a local ring, det 𝑀 is a unit in Λ and hence
𝑀 ∈ GL𝑑 (Λ). Conjugation by 𝑀 induces an isomorphism between the deformation problems for 𝜌𝑥
and 𝜌𝑥′ and hence between the deformation rings. Proposition 3.41 implies that these rings are also
isomorphic to the completion of (Λ ⊗O 𝑅�𝜌𝑧 )𝔮. �

Remark 3.43. Corollary 3.42 enables us to study local properties of 𝑋gen by studying the completions
of local rings at closed points above 𝔪𝑅ps . For example, if we could show that 𝑅�𝜌𝑧 is regular, we could
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conclude that the local ring at 𝑥 ′, (𝑅�𝜌𝑧 )𝑥′ is regular, and hence that the completion �(𝑅�𝜌𝑧 )𝑥′ is regular. If
𝜅(𝑥) is a local field of characteristic p, then Proposition 3.34, Corollary 3.42 and Lemma 3.36 imply that

Ô𝑋gen ,𝑥�𝑇� � 𝑅�𝜌𝑥 � 𝑅�𝜌𝑥′ �
�(𝑅�𝜌𝑧 )𝑥′�𝑇�.

If 𝜅(𝑥) is a finite extension of L, then Proposition 3.34, Corollary 3.42 and Lemma 3.37 imply that

Ô𝑋gen ,𝑥 � 𝑅�𝜌𝑥 � 𝑅�𝜌𝑥′ �
�(𝑅�𝜌𝑧 )𝑥′ .

Thus, in both cases we can deduce that Ô𝑋gen ,𝑥 , and hence O𝑋gen ,𝑥 , are regular. Thus, if we can show
that 𝑅�𝜌𝑧 is regular for all closed points 𝑧 ∈ 𝑋gen above 𝔪𝑅ps , then we can conclude that O𝑋gen ,𝑥 is regular
for all closed points 𝑥 ∈ 𝑋gen, and thus 𝑋gen is regular.

Of course, one may also reverse the logic of this argument: if 𝑋gen is regular, then all its local rings
and their completions are regular, and hence, 𝑅�𝜌𝑧 is regular for all closed points 𝑧 ∈ 𝑋gen above 𝔪𝑅ps .

Corollary 3.44. Let 𝜌 : 𝐺𝐹 → GL𝑑 (𝜅) be a continuous representation with 𝜅 a local field. Then the
conclusion of Corollary 3.38 holds for 𝑅�𝜌 .

Proof. After conjugation, we may assume that 𝜌(𝐺𝐹 ) ⊂ GL𝑑 (O𝜅 ). Let 𝜌 be the representation obtained
by reducing the matrix entries modulo a uniformizer of O𝜅 and let 𝐷 be the associated pseudo-character.
Corollary 3.38 applies to 𝑅�

𝜌
. Since 𝜌 corresponds to an 𝑥 ∈ 𝑃1𝑅

�
𝜌

, Proposition 3.41 together with
Lemmas 3.37, 3.36 allows us to bound the dimension of 𝑅�𝜌 from above. Then the proof of Corollary
3.38 carries over. �

Corollary 3.45. Every representation 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘) can be lifted to characteristic zero.

Proof. It follows from Corollary 3.38 that 𝑅�
𝜌
[1/𝑝] is non-zero. We may obtain a lift by specializing

the universal framed deformation along any O-algebra homomorphism 𝑥 : 𝑅� → Q𝑝 . �

3.6. Bounding the maximally reducible semi-simple locus

Writing 𝐷 =
∏𝑚
𝑖=1 𝐷𝑖 with 𝐷𝑖 absolutely irreducible pseudo-characters, we now take P = Pmax and

consider the finite (by Lemma 3.24) 𝑅ps-algebra 𝑅
ps
Σ , where Σ amounts to some choice of ordering of

{1, . . . , 𝑚}. Note that if 𝜌𝑖 : 𝐺𝐹 → GL𝑑 (𝑘) is an (absolutely irreducible) representation with pseudo-
character 𝐷𝑖 , then

𝑅
ps
Σ � 𝑅𝜌1 ⊗̂O · · · ⊗̂O 𝑅𝜌𝑚 ,

where 𝑅𝜌𝑖 denotes the universal deformation ring of 𝜌𝑖 . So let 𝜌univ
𝑖 : 𝐺𝐹 → GL𝑑𝑖 (𝑅𝜌𝑖 ) denote a

representative of the strict equivalence class of the universal representation for each 𝑖 = 1, . . . , 𝑚. If we
let M denote the universal invertible matrix in GL𝑑 (OGL𝑑 (GL𝑑)), then the representation

𝑀 × diag(𝜌univ
1 , . . . , 𝜌univ

𝑚 ) × 𝑀−1 : 𝐺𝐹 → GL𝑑 (𝑅ps
Σ ⊗O OGL𝑑 (GL𝑑))

gives rise to a map of Cayley–Hamilton algebras 𝐸 → 𝑀𝑑 (𝑅ps
Σ ⊗O OGL𝑑 (GL𝑑)), which satisfies the

universal property of 𝐴gen and so defines a map of 𝑅ps-schemes

GL𝑑 ×O𝑋ps
Σ → 𝑋gen,

which descends to a map of 𝑅ps-schemes

𝜂Σ : GL𝑑/𝑍𝐿 ×O 𝑋
ps
Σ → 𝑋gen,
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where 𝐿 := 𝐿Σ denotes the standard Levi subgroup of GL𝑑 with blocks corresponding to Σ, and 𝑍𝐿
denotes its center.

Definition 3.46. The maximally reducible semi-simple locus 𝑋mrs ⊂ 𝑋gen is the scheme-theoretic image
of 𝜂Σ : GL𝑑/𝑍𝐿 ×O 𝑋

ps
Σ → 𝑋gen.

Lemma 3.47. Let 𝑥 ∈ 𝑋gen and let y be the image of x in 𝑋ps. If y lies in 𝑋
ps
Pmax

and 𝜌𝑥 is semi-simple,
then 𝑥 ∈ 𝑋mrs. Moreover, such points are dense in 𝑋mrs.

Proof. We first note that if 𝑥 ∈ 𝑋gen maps to 𝑋ps
Pmax

and 𝜌𝑥 is semi-simple, then 𝜌𝑥 � 𝜌1⊕ . . .⊕ 𝜌𝑚, with
each 𝜌𝑖 an irreducible representation of 𝐺𝐹 lifting 𝜌𝑖 . By conjugating by an element of ℎ ∈ GL𝑑 (𝜅(𝑥)),
we may ensure that ℎ−1𝜌𝑥 (𝑔)ℎ = diag(𝜌1(𝑔), . . . , 𝜌𝑚 (𝑔)) for all 𝑔 ∈ 𝐺𝐹 , and this implies that 𝑥 ∈ 𝑋mrs.

Since 𝜂Σ is a map of affine schemes, it is affine and hence quasi-compact; see [48, Tag 01S5].
It follows from [48, Tag 01R8] that the set theoretic image of 𝜂Σ is dense in 𝑋mrs. �

Proposition 3.48. dim 𝑋mrs ≤ 1 + 𝑑2 + [𝐹 : Q𝑝]
∑𝑚
𝑖=1 𝑑

2
𝑖 .

Proof. The open subscheme 𝑈max = 𝑋ps \ {𝔪𝑅ps } ⊂ 𝑋
ps is Jacobson by Lemma 3.18, as is 𝑉max :=

𝑋mrs ×𝑋ps 𝑈max. Let 𝑍max denote the closure of𝑉max in 𝑋mrs. The formation of scheme-theoretic images
commutes with restriction to opens, so the map

(GL𝑑/𝑍𝐿 ×O 𝑋
ps
Σ ) ×𝑋ps 𝑈max → 𝑉max

is a dominant map of Jacobson Noetherian excellent schemes. Applying Lemma 3.14, we see that

dim𝑉max ≤ dim((GL𝑑/𝑍𝐿 ×O 𝑋
ps
Σ ) ×𝑋ps 𝑈max).

Since 𝑋mrs is by definition a nonempty closed GL𝑑-invariant subscheme of 𝑋gen, Lemma 3.21 implies
that every irreducible component of 𝑋mrs has a point in common with the preimage of 𝔪𝑅ps in 𝑋mrs.
Therefore, Lemma 3.18 (5) implies that

dim 𝑍max = dim𝑉max + 1.

Furthermore, GL𝑑/𝑍𝐿 is flat over SpecO with geometrically irreducible fibres, so the projection
GL𝑑/𝑍𝐿 ×O 𝑋

ps
Σ → 𝑋

ps
Σ is a flat (and hence open) map with irreducible fibres. It follows from

[48, Tag 037A] that this map induces a bijection between the sets of irreducible components. Since 𝑅ps
Σ

is a local ring, we deduce that GL𝑑/𝑍𝐿 ×O 𝑋
ps
Σ satisfies the assumptions of Lemma 3.18 (5), and thus,

Lemma 3.18 (5) implies that

dim GL𝑑/𝑍𝐿 ×O 𝑋
ps
Σ = dim((GL𝑑/𝑍𝐿 ×O 𝑋

ps
Σ ) ×𝑋ps 𝑈max) + 1.

Since dim 𝑋
ps
Σ = 1 +

∑𝑚
𝑖=1(1 + 𝑑2

𝑖 [𝐹 : Q𝑝]) and the relative dimension of GL𝑑/𝑍𝐿 over O is 𝑑2 −𝑚, we
get that

dim 𝑍max ≤ dim GL𝑑/𝑍𝐿 ×O 𝑋
ps
Σ = 1 + 𝑑2 + [𝐹 : Q𝑝]

𝑚∑
𝑖=1

𝑑2
𝑖 .

Let 𝑌mrs be the scheme theoretic image of GL𝑑/𝑍𝐿 ×O {𝔪𝑅ps } → 𝑌 . Since Y is of finite type over
k, the same argument as above shows that

dim𝑌mrs ≤ dim(GL𝑑/𝑍𝐿 ×O {𝔪𝑅ps }) = 𝑑2 − 𝑚.
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Now 𝑍max ∪𝑌mrs is a closed subscheme of 𝑋gen containing the image of 𝜂Σ. It follows from Lemma
3.47 that 𝑍max ∪ 𝑌mrs will contain 𝑋mrs. Hence,

dim 𝑋mrs ≤ max{dim 𝑍max, dim𝑌mrs} = dim 𝑍max. �

Corollary 3.49. dim 𝑋
mrs

= dim 𝑋mrs − 1 ≤ 𝑑2 + [𝐹 : Q𝑝]
∑𝑚
𝑖=1 𝑑

2
𝑖 .

Proof. It follows from Corollary 3.38 that 𝑅ps
Σ is O-torsion free, which implies that GL𝑑/𝑍𝐿 ×O 𝑋

ps
Σ

is flat over SpecO, and the same applies for 𝑋mrs. (Here, we are simply saying that a subring of O-
torsion free ring is O-torsion free.) Thus, for all 𝑥 ∈ 𝑋

mrs, 𝜛 is a regular element in O𝑋mrs ,𝑥 and so
dimO𝑋mrs

,𝑥 = dimO𝑋mrs ,𝑥 − 1. This implies dim 𝑋
mrs

= dim 𝑋mrs − 1, and the inequality follows from
Proposition 3.48. �

Remark 3.50. One could study the closure of the reducible semi-simple locus corresponding to more
general partitions using a similar argument. We do not pursue this here, since we need the bound only
for 𝑑 = 2 and 𝐹 = Q2 when we apply it to Case 3 in the proof of Proposition 4.13 below.

3.7. Density of the irreducible locus

Let us first unravel the definitions of 𝑈Pmin and 𝑉Pmin in Section 3.4. We have that 𝑈Pmin is an open
subscheme of 𝑋ps such that the closed points of 𝑈Pmin are in bijection with 𝔭 ∈ 𝑃1 (𝑅ps/𝜛), such that
the specialization of the universal pseudo-character along 𝑅ps → 𝜅(𝔭) is absolutely irreducible. Now
𝑉Pmin is the preimage of 𝑈Pmin in 𝑋

gen, so that it is an open subscheme of 𝑋gen and its closed points are
in bijection 𝔮 ∈ 𝑋gen, which map to 𝑃1 (𝑅ps/𝜛) in 𝑋

ps, such that the representation

𝐸
𝑗
→ 𝑀𝑑 (𝐴gen) → 𝑀𝑑 (𝜅(𝔮))

is absolutely irreducible.

Proposition 3.51. 𝑉Pmin is dense in 𝑋
gen.

Proof. We have

𝑋
gen \𝑉Pmin = 𝑌 ∪

⋃
Pmin<P

𝑍P ,

and it follows from Lemmas 3.29, 3.30 that 𝑋gen \ 𝑉Pmin has positive codimension in 𝑋
gen. Since 𝑋 is

equi-dimensional by Corollary 3.40, we conclude that𝑉Pmin is dense in 𝑋gen. In particular, the inequality
in Proposition 3.28 is an equality. �

We will now prove a stronger version of the above result. Following [9, Definition 5.1.2], we call
𝑦 ∈ 𝑈Pmin special if either 𝜁𝑝 ∉ 𝐹 and 𝐷𝑦 = 𝐷𝑦 (1) or 𝜁𝑝 ∈ 𝐹 and the restriction 𝐷𝑦 to 𝐺𝐹 ′ is
reducible for some degree p Galois extension 𝐹 ′ of F. Otherwise, y is called non-special. According to
[9, Lemma 5.1.3], there is a closed subscheme 𝑈spcl of 𝑈Pmin such that the closed points of 𝑈spcl are
precisely the closed special points of 𝑈Pmin . Let 𝑉 spcl denote the preimage of 𝑈spcl in 𝑋

gen and let 𝑍spcl

denote the closure of 𝑉 spcl.
Similarly, let 𝑈Kirr ⊂ 𝑈Pmin be the Kummer-irreducible locus defined in Appendix A. Let 𝑈Kred

denote its complement in 𝑈Pmin , let 𝑉Kred be the preimage of 𝑈Kred in 𝑋
gen and let 𝑍Kred denote the

closure of 𝑉Kred. We have 𝑉 spcl ⊆ 𝑉Kred with equality if 𝜁𝑝 ∈ 𝐹, and thus, 𝑍spcl ⊆ 𝑍Kred.

Lemma 3.52. We have

dim 𝑋
gen − dim 𝑍spcl ≥ 1

2
[𝐹 : Q𝑝]𝑑2, dim 𝑋

gen − dim 𝑍Kred ≥ [𝐹 : Q𝑝]𝑑.
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Proof. It follows from [9, Theorem 5.4.1 (a)] that the dimension of the Zariski closure of 𝑈spcl in 𝑋
ps

is at most 1 + 1
2 [𝐹 : Q𝑝]𝑑2. If 𝑦 ∈ 𝑈spcl, then its fibre 𝑋

gen
𝑦 has dimension 𝑑2 − 1 by Corollary 3.16.

Thus, Lemma 3.18 implies that

dim 𝑍spcl ≤ 𝑑2 + 1
2
[𝐹 : Q𝑝]𝑑2.

Since dim 𝑋
gen

= 𝑑2 + 𝑑2 [𝐹 : Q𝑝] by Corollary 3.40, the assertion follows. Similarly, Proposition A.9
implies that the dimension of the closure of 𝑈Kred in 𝑋

ps is at most 1 + (𝑑2 − 𝑑) [𝐹 : Q𝑝]. The same
argument gives the required bound for the codimension of 𝑍Kred. �

Let 𝑈n-spcl := 𝑈Pmin \𝑈spcl and let 𝑉n-spcl the preimage of 𝑈n-spcl in 𝑋
gen. Let 𝑉Kirr be the preimage

of 𝑈Kirr in 𝑋
gen. We have an inclusion 𝑉Kirr ⊂ 𝑉n-spcl, and the subschemes coincide if 𝜁𝑝 ∈ 𝐹.

Proposition 3.53. 𝑉Kirr is Zariski dense in 𝑋
gen. Moreover, the following hold:

(1) if 𝑑 = 2, then dim 𝑋
gen − dim(𝑋gen \𝑉Kirr) ≥ [𝐹 : Q𝑝];

(2) if 𝑑 > 2, then dim 𝑋
gen − dim(𝑋gen \𝑉Kirr) ≥ 1 + [𝐹 : Q𝑝].

(3) if 𝑑 > 1 is arbitrary but 𝐷 is absolutely irreducible (i.e., 𝑚 = 1), then

dim 𝑋
gen − dim(𝑋gen \𝑉Kirr) ≥ 𝑑 [𝐹 : Q𝑝] .

Proof. Since 𝑉Pmin is dense in 𝑋
gen by Proposition 3.51, we have 𝑋

gen
= 𝑍Pmin = 𝑍Kred ∪ 𝑍Kirr, where

𝑍Kirr is the closure of 𝑉Kirr. Since dim 𝑍Kred < dim 𝑋
gen by Lemma 3.52 and 𝑋

gen is equi-dimensional,
we get that 𝑋gen

= 𝑍Kirr. Moreover,

𝑋
gen \𝑉Kirr = 𝑌 ∪ 𝑍Kred ∪

⋃
Pmin<P

𝑍P ,

and claims (1) and (2) follow from the dimension estimates in Lemmas 3.30, 3.29, 3.52. If 𝐷 is absolutely
irreducible, then {P : Pmin < P} = ∅, and claim (3) follows from Lemmas 3.30 and 3.52. �

We now want to transfer the density results from 𝑋
gen to 𝑅�

𝜌
/𝜛.

Lemma 3.54. Let 𝐴→ 𝐵 be a flat ring homomorphism, let U be an open subscheme of Spec 𝐴 and let
V be the preimage of U in Spec 𝐵. If U is dense in Spec 𝐴, then V is dense in Spec 𝐵.

Proof. Let 𝔮 be a minimal prime of B and let 𝔭 be its image in Spec 𝐴. Since the map is flat, it satisfies
going down, and so 𝔭 is a minimal prime of A. Since U is dense, it will contain 𝔭; hence, V will contain
𝔮. Thus, V contains all the minimal primes of B and so is dense in Spec 𝐵. �

Proposition 3.55. Let (Spec(𝑅�
𝜌
/𝜛))Kirr be the preimage of 𝑉Kirr in Spec(𝑅�

𝜌
/𝜛). Then

(Spec(𝑅�
𝜌
/𝜛))Kirr is dense in Spec(𝑅�

𝜌
/𝜛).

Proof. The map 𝐴gen/𝜛 → 𝑅�
𝜌
/𝜛 is flat since it is a localization followed by a completion. The

assertion follows from Lemma 3.54 and Proposition 3.53. �

Remark 3.56. Since (Spec(𝑅�
𝜌
/𝜛))Kirr is also the preimage of𝑈Kirr in Spec 𝑅�

𝜌
/𝜛, we may characterise

it as an open subscheme of Spec 𝑅�
𝜌
/𝜛, such that its closed points are in bijection with 𝑥 ∈ 𝑃1 (𝑅�𝜌/𝜛),

which map to 𝑃1 (𝑅ps/𝜛) in Spec 𝑅ps and for which the representation

𝜌𝑥 : 𝐺𝐹 → GL𝑑 (𝑅�𝜌/𝜛) → GL𝑑 (𝜅(𝑥))

remains absolutely irreducible after restriction to 𝐺𝐹 ′ for all degree p Galois extensions 𝐹 ′ of 𝐹 (𝜁𝑝).
Lemma A.2 implies that 𝐻2(𝐺𝐹 , ad0𝜌𝑥) = 0 for such x.
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We will now prove similar results for the generic fibres. For each partition P as in Section 3.4, let
𝑋

ps
P be the scheme theoretic image of 𝑋ps inside 𝑋

ps
Σ and let 𝑋gen

P be the preimage of 𝑋ps
P in 𝑋gen. We

warn the reader that, contrary to our usual notational conventions, it is not clear that 𝑋ps
P considered in

Section 3.4 is the special fibre of 𝑋ps
P . However, the following still holds.

Lemma 3.57. dim 𝑋
gen
P [1/𝑝] ≤ dim 𝑋

gen
P .

Proof. Let 𝔞P be the 𝑅ps-annihilator of 𝑅ps
Σ and let 𝔟P be the 𝑅ps-annihilator of 𝑅ps

Σ /𝜛. We may write

𝑋
gen
P = Spec 𝐴gen/𝔞P 𝐴gen, 𝑋

gen
P = Spec 𝐴gen/𝔟P 𝐴gen.

Since 𝑅
ps
Σ is a finite 𝑅ps-module by Lemma 3.24, we have

√
𝔟P =

√
(𝔞P , 𝜛). In particular, the special

fibre of 𝑋gen
P has dimension equal to dim 𝑋

gen
P . The assertion follows from Lemma 3.23. �

Proposition 3.58. Let

𝑉 irr := 𝑋gen [1/𝑝] \
⋃

Pmin<P
𝑋

gen
P [1/𝑝] .

Then 𝑉 irr is an open dense subset of 𝑋gen [1/𝑝]. Moreover, the following hold:

(1) if 𝑑 = 2, then dim 𝑋gen [1/𝑝] − dim(𝑋gen [1/𝑝] \𝑉 irr) ≥ [𝐹 : Q𝑝];
(2) if 𝑑 > 2, then dim 𝑋gen [1/𝑝] − dim(𝑋gen [1/𝑝] \𝑉 irr) ≥ 1 + [𝐹 : Q𝑝];
(3) if 𝑑 > 1 is arbitrary but 𝐷 is absolutely irreducible (i.e., 𝑚 = 1), then 𝑋gen [1/𝑝] = 𝑉 irr.

Proof. It follows from Corollary 3.40 that dim 𝑋gen [1/𝑝] = 𝑑2 + 𝑑2 [𝐹 : Q𝑝] = dim 𝑋
gen. Lemmas 3.57

and 3.29 together with (18) imply that for P > Pmin we have

dim 𝑋gen [1/𝑝] − dim 𝑋
gen
P [1/𝑝] ≥ dim 𝑋

gen − dim 𝑋
gen
P . (23)

It follows from (18) that 𝑋gen \ 𝑉Kirr = 𝑌 ∪ 𝑍Kred ∪
⋃

Pmin<P 𝑋
gen
P . Thus, it follows from (23) and the

definition of 𝑉 irr that

dim 𝑋gen [1/𝑝] − dim(𝑋gen [1/𝑝] \𝑉 irr) ≥ dim 𝑋
gen − dim(𝑋gen \𝑉Kirr), (24)

and the lower bounds for the codimension of 𝑋gen [1/𝑝] \𝑉 irr follow from Proposition 3.53.
Thus, the dimension of the closure of 𝑉 irr is equal to dim 𝑋gen [1/𝑝]. Since 𝐴gen is O-torsion free

and equi-dimensional by Corollary 3.40 (1), 𝑋gen [1/𝑝] is equi-dimensional, and so 𝑉 irr is dense in
𝑋gen [1/𝑝].

If 𝐷 is absolutely irreducible, then 𝜌𝑥 is absolutely irreducible for all closed points 𝑥 ∈ 𝑋gen [1/𝑝]
and so 𝑋gen [1/𝑝] = 𝑉 irr. �

Corollary 3.59. Let (Spec 𝑅�
𝜌
[1/𝑝])irr be the preimage of𝑉 irr in Spec 𝑅�

𝜌
[1/𝑝]. Then (Spec 𝑅�

𝜌
[1/𝑝])irr

is dense in Spec 𝑅�
𝜌
[1/𝑝].

Proof. As explained in the proof of Proposition 3.55, the map 𝐴gen → 𝑅�
𝜌

is flat. Hence, the localization
𝐴gen [1/𝑝] → 𝑅�

𝜌
[1/𝑝] is also flat. The assertion follows from Lemma 3.54 and Proposition 3.58. �

Remark 3.60. Similarly to Remark 3.56, we may characterize (Spec 𝑅�
𝜌
[1/𝑝])irr as an open subscheme

of Spec 𝑅�
𝜌
[1/𝑝] such that its closed points correspond to maximal ideals 𝔭 of 𝑅�

𝜌
[1/𝑝] for which the

representation

𝜌𝔭 : 𝐺𝐹 → GL𝑑 (𝑅�𝜌 [1/𝑝]) → GL𝑑 (𝜅(𝔭))

is absolutely irreducible.
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Corollary 3.61. The characteristic zero lift of 𝜌 in Corollary 3.45 may be chosen to be absolutely
irreducible.

Proof. It follows from Corollary 3.45 that Spec 𝑅�
𝜌
[1/𝑝] is nonempty, and Corollary 3.59 implies

that (Spec 𝑅�
𝜌
[1/𝑝])irr is nonempty. A closed point in (Spec 𝑅�

𝜌
[1/𝑝])irr gives the desired lift of 𝜌 to

characteristic zero. �

Corollary 3.62. Let Σ ⊂ m-Spec 𝑅�
𝜌
[1/𝑝] be dense in Spec 𝑅�

𝜌
[1/𝑝]. Then

Σirr := Σ ∩ (Spec 𝑅�𝜌 [1/𝑝])
irr

is also dense in Spec 𝑅�
𝜌
[1/𝑝].

Proof. It follows from the proof of Proposition 3.58 that Σ \ Σirr is contained in a closed subset of
Spec 𝑅�

𝜌
[1/𝑝] of positive codimension. Since Spec 𝑅�

𝜌
[1/𝑝] is equi-dimensional, Σirr is dense. �

4. Irreducible components

The aim of this section is to determine the irreducible components of Spec 𝑅�
𝜌

for any 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘)
and study their geometry. It is instructive to consider first the one-dimensional case. Let �̄� : 𝐺𝐹 → 𝑘×

denote any continuous character and write 𝜓univ : 𝐺𝐹 → GL1(𝑅�̄�) for its universal deformation. Local
class field theory gives a group homomorphism

𝜇→ 𝐹×
Art𝐹−→ 𝐺ab

𝐹

𝜓univ

−→ GL1(𝑅�̄�),

where 𝜇 := 𝜇𝑝∞ (𝐹) is the subgroup of p-power roots of unity in F. We note that 𝜇 is a finite cyclic
p-group. The map induces a homomorphism of O-algebras O[𝜇] → 𝑅�̄� , where O[𝜇] is the group
algebra of 𝜇 over O.

Lemma 4.1. 𝑅�̄� � O[𝜇]�𝑦1, . . . , 𝑦 [𝐹 :Q𝑝 ]+1�.

Proof. It follows from local class field theory that the pro-p completion of 𝐺ab
𝐹 is isomorphic to

𝜇𝑝∞ (𝐹) × Z
[𝐹 :Q𝑝 ]+1
𝑝 , and the assertion follows from [27, Proposition 3.13]. �

It follows immediately from Lemma 4.1 that the set of irreducible components of Spec 𝑅�̄� is in
bijection with the group of characters 𝜒 : 𝜇 → O×, and the irreducible component corresponding to 𝜒
is given by 𝑅�̄� ⊗O [𝜇],𝜒 O, which is formally smooth over O.

Let us return to the general case 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘). Mapping a deformation of 𝜌 to its determinant
induces a natural map 𝑅det 𝜌 → 𝑅�

𝜌
, which makes 𝑅�

𝜌
into an O[𝜇]-algebra by applying the above

discussion to �̄� = det 𝜌. The algebra O[𝜇] [1/𝑝] is semi-simple and its maximal ideals are in bijection
with characters 𝜒 : 𝜇→ O×. We thus have

𝑅�𝜌 [1/𝑝] �
∏

𝜒:𝜇→O×
𝑅
�,𝜒
𝜌
[1/𝑝], (25)

where 𝑅
�,𝜒
𝜌

:= 𝑅�
𝜌
⊗O [𝜇],𝜒 O. So our goal is to show that the rings 𝑅�,𝜒

𝜌
are O-torsion free integral

domains, which we do by showing in Corollary 4.19 that they are normal. Since we already know that 𝑅�
𝜌

is O-torsion free by Corollary 3.38, this implies that the map 𝑅det 𝜌 → 𝑅�
𝜌

induces a bijection between
the sets of irreducible components, which answers affirmatively a question raised by GB–Juschka in
[8]. Along the way, we will also determine the irreducible components of 𝐴gen and 𝑅ps.
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Warning 4.2. We emphasize that 𝑅�,𝜒
𝜌

is not a ‘fixed determinant deformation ring’ in the usual sense
but is rather constructed by fixing the value of the determinant only on the subgroup Art𝐹 (𝜇) ⊂ 𝐺ab

𝐹 :
the ring 𝑅

�,𝜒
𝜌

represents the closed subfunctor 𝐷�,𝜒
𝜌
⊂ 𝐷�

𝜌
given by

𝐷
�,𝜒
𝜌
(𝐴) = {𝜌𝐴 ∈ 𝐷�𝜌 (𝐴) : det 𝜌𝐴(Art𝐹 (𝑥)) = 𝜒(𝑥),∀𝑥 ∈ 𝜇}.

Proposition 4.3. There is an isomorphism

𝑅det 𝜌�𝑥1, . . . , 𝑥𝑟�/( 𝑓1, . . . , 𝑓𝑡 )
�−→ 𝑅�𝜌 ,

where 𝑟 := dim𝑘 𝑍1 (𝐺𝐹 , ad0 𝜌) and 𝑡 := dim𝑘 𝐻2 (𝐺𝐹 , ad0𝜌) such that the elements 𝑓1, . . . , 𝑓𝑡 form a
regular sequence in 𝑅det 𝜌�𝑥1, . . . , 𝑥𝑟�. Moreover,

𝑟 − 𝑡 = (𝑑2 − 1) ( [𝐹 : Q𝑝] + 1).

Proof. This argument is a modification of Kisin’s method of presenting global deformation rings over
local ones in [32, Section 4]. Kisin’s argument is an important refinement of Mazur’s obstruction theory
in [37, Section 1.6].

The exact sequence 0 → ad0 𝜌 → ad 𝜌 tr→ 𝑘 → 0 of Galois representations induces an exact
sequence of abelian groups:

0→ 𝑍1 (𝐺𝐹 , ad0 𝜌) → 𝑍1 (𝐺𝐹 , ad 𝜌)
𝑍 1 (tr)
−→ 𝑍1 (𝐺𝐹 , 𝑘),

and hence, 𝑟 = dim𝑘 ker(𝑍1 (tr)). The map 𝑍1 (tr) : 𝑍1 (𝐺𝐹 , ad 𝜌) → 𝑍1 (𝐺𝐹 , 𝑘) is the induced map on
Zariski tangent spaces of the map of deformation rings 𝑅det 𝜌 → 𝑅�

𝜌
, and thus lifts to a surjection

𝜙 : 𝑅 := 𝑅det 𝜌�𝑥1, . . . , 𝑥𝑟�� 𝑅�𝜌 .

We set 𝐽 := ker 𝜙. By Nakayama’s lemma, we need to show that dim𝑘 𝐽/�̃�𝐽 ≤ 𝑡.
The module 𝐽/�̃�𝐽 appears as the kernel in the sequence

0→ 𝐽/�̃�𝐽 → 𝑅/�̃�𝐽 → 𝑅/𝐽 � 𝑅�𝜌 → 0. (26)

In view of the above sequence, we shall construct a homomorphism

𝛼 : Hom𝑘 (𝐽/�̃�𝐽, 𝑘) → ker(𝐻2(tr) : 𝐻2(𝐺𝐹 , ad 𝜌) → 𝐻2 (𝐺𝐹 , 𝑘))

and show that the kernel of 𝛼 injects into coker(𝐻1(tr)). This will imply the existence of the presentation
in the statement of the Proposition, since then

dim𝑘 𝐽/�̃�𝐽 ≤ dim𝑘 ker(𝐻2 (tr)) + dim𝑘 coker(𝐻1 (tr)) = dim𝑘 𝐻2(𝐺𝐹 , ad0𝜌), (27)

where the last equality comes from the long exact cohomology sequence that arises from 0→ ad0𝜌 →
ad 𝜌 → 𝑘 → 0.

Fix 𝑢 ∈ Hom𝑘 (𝐽/�̃�𝐽, 𝑘). The pushout under u of the sequence (26) yields

0→ 𝐼𝑢 → 𝑅𝑢
𝜙𝑢→ 𝑅�𝜌 → 0,

where 𝐼𝑢 = 𝑘 . The surjection of profinite groups GL𝑑 (𝑅𝑢) � GL𝑑 (𝑅�𝜌 ) has a continuous section by
[45, Proposition 2.2.2] (which is not necessarily a group homomorphism). Thus, there is a continuous
function �̃�𝑢 : 𝐺𝐹 → GL𝑑 (𝑅𝑢) such that the diagram of sets
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𝐺𝐹 GL𝑑 (𝑅𝑢)

GL𝑑 (𝑅�𝜌 )

𝜌𝑢

𝜌�
GL𝑑 (𝜙𝑢)

commutes. The kernel 1+𝑀𝑑 (𝐼𝑢) of GL𝑑 (𝜙𝑢) can be identified with ad 𝜌 ⊗𝑘 𝐼𝑢 , and so the set-theoretic
lift yields a continuous 2-cocycle

𝑐𝑢 ∈ 𝑍2 (𝐺𝐹 , ad 𝜌) ⊗𝑘 𝐼𝑢

given by 1 + 𝑐𝑢 (𝑔1, 𝑔2) = �̃�𝑢 (𝑔1𝑔2) �̃�𝑢 (𝑔2)−1 �̃�𝑢 (𝑔1)−1. The class

[𝑐𝑢] ∈ 𝐻2(𝐺𝐹 , ad 𝜌) ⊗𝑘 𝐼𝑢

is independent of the chosen lifting since any other lift �̃�′𝑢 gives rise to a class 𝑐′𝑢 ∈ 𝑍2 (𝐺𝐹 , ad 𝜌) ⊗𝑘 𝐼𝑢 ,
which differs from 𝑐𝑢 by a coboundary in 𝐵2(𝐺𝐹 , ad 𝜌) ⊗𝑘 𝐼𝑢 , so the representation 𝜌� can be lifted
to a homomorphism 𝐺𝐹 → GL𝑑 (𝑅𝑢) if and only if [𝑐𝑢] = 0. The existence of the homomorphisms
𝑅det 𝜌 → 𝑅𝑢 → 𝑅�

𝜌
together with the universality of 𝑅det 𝜌 imply that the image of [𝑐𝑢] in 𝐻2 (𝐺𝐹 , 𝑘)

is zero. We define 𝛼 as the homomorphism 𝑢 ↦→ [𝑐𝑢].
To analyze the kernel of 𝛼, let u be such that [𝑐𝑢] = 0, so that 𝜌� can be lifted to 𝑅𝑢 . By the

universality of 𝑅�
𝜌

, we obtain a splitting 𝑠𝑢 of 𝜙𝑢 . One deduces that the map from 𝐼𝑢 to the kernel of the
surjective map

𝑡𝑢 : 𝔪𝑅𝑢/(𝔪2
𝑅𝑢
+𝜛𝑅𝑢) → 𝔪�/((𝔪�)2 +𝜛𝑅�𝜌 )

of mod 𝜛 cotangent spaces is an isomorphism.
The map 𝑡𝑢 , in turn, is induced from the homomorphism 𝑅/�̃�𝐽 → 𝑅�

𝜌
by pushout and from the

analogous surjection

�̃� : �̃�/(�̃�2 +𝜛𝑅) → 𝔪�/((𝔪�)2 +𝜛𝑅�𝜌 ).

Via our identification 𝐼𝑢 � ker 𝑡𝑢 , the pushout along u induces a surjective homomorphism
𝛾𝑢 : ker (̃𝑡) → 𝐼𝑢 � 𝑘 of k-vector spaces. One easily verifies that 𝑢 ↦→ 𝛾𝑢 induces an injective k-linear
map

ker(𝛼) ↩→ Hom𝑘 (ker (̃𝑡), 𝑘).

Upon identifying ker (̃𝑡)∗ with coker(𝐻1 (tr)), the proof of the bound (27) is complete.
It remains to show that 𝑓1, . . . , 𝑓𝑡 is a regular sequence. We may write O[𝜇] = O�𝑧�/((1+ 𝑧)𝑚 − 1),

where m is the order of 𝜇. By Lemma 4.1, we get a presentation

O�𝑧, 𝑦1, . . . , 𝑦 [𝐹 :Q𝑝 ]+1, 𝑥1, . . . , 𝑥𝑟�
((1 + 𝑧)𝑚 − 1, 𝑓1, . . . , 𝑓𝑡 )

�−→ 𝑅�𝜌 .

By the same argument as in (22), the Euler–Poincaré characteristic formula implies that
𝑟− 𝑡 = dim𝑘 (ad0 𝜌) ( [𝐹 : Q𝑝] +1) = (𝑑2−1) ( [𝐹 : Q𝑝] +1), and thus it follows from Corollary 3.38 that

dim 𝑅�𝜌 = [𝐹 : Q𝑝] + 2 + 𝑟 − 𝑡. (28)

This implies that (1 + 𝑧)𝑚 − 1, 𝑓1, . . . , 𝑓𝑡 can be extended to a system of parameters in a regular ring
𝑆 := O�𝑧, 𝑦1, . . . , 𝑦 [𝐹 :Q𝑝 ]+1, 𝑥1, . . . , 𝑥𝑟�. Thus, (1 + 𝑧)𝑚 − 1, 𝑓1, . . . , 𝑓𝑡 is a regular sequence in S and
so 𝑓1, . . . , 𝑓𝑡 is a regular sequence in 𝑅det 𝜌�𝑥1, . . . , 𝑥𝑟� = 𝑆/((1 + 𝑧)𝑚 − 1). �
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Remark 4.4. The Proposition also holds for continuous representations 𝜌 : 𝐺𝐹 → GL𝑑 (𝜅), where 𝜅
is a local field, with essentially the same proof. The only difference is that one has to work harder to
show the existence of the continuous section �̃�𝑢 , as the groups GL𝑑 (𝑅𝑢) and GL𝑑 (𝑅�𝜌 ) are not profinite
anymore. The existence of such a section is well explained in [21, Lecture 6].

Corollary 4.5. For each character 𝜒 : 𝜇𝑝∞ (𝐹) → O× and each closed point 𝑥 ∈ 𝑋gen above 𝔪𝑅ps , the
following hold:

(1) 𝑅
�,𝜒
𝜌𝑥 is O-torsion free of dimension 1 + 𝑑2 + 𝑑2 [𝐹 : Q𝑝] and is complete intersection;

(2) 𝑅
�,𝜒
𝜌𝑥 /𝜛 is complete intersection of dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝].

Proof. Without loss of generality, we may assume that the residue field of x is equal to k. Proposition
4.3 gives the presentation

𝑅
𝜒
det 𝜌𝑥�𝑥1, . . . , 𝑥𝑟�/( 𝑓1, . . . , 𝑓𝑡 )

�−→ 𝑅
�,𝜒
𝜌𝑥 ,

where 𝑅𝜒det 𝜌𝑥 := 𝑅det 𝜌𝑥 ⊗O [𝜇],𝜒 O. Since 𝑅𝜒det 𝜌𝑥 is formally smooth over O of dimension [𝐹 : Q𝑝] + 2
by Lemma 4.1, it is enough to show that

dim 𝑅
�,𝜒
𝜌𝑥 /𝜛 ≤ [𝐹 : Q𝑝] + 1 + 𝑟 − 𝑡.

Then the same argument as in the proof of Proposition 4.3 shows that the sequence𝜛, 𝑓1, . . . , 𝑓𝑡 is regular
in 𝑅

𝜒
det 𝜌𝑥�𝑥1, . . . , 𝑥𝑟�. Since 𝑅�,𝜒𝜌𝑥 is a quotient of 𝑅�𝜌𝑥 and 𝑅�𝜌𝑥 is O-torsion free by Corollary 3.38, we

have dim 𝑅
�,𝜒
𝜌𝑥 /𝜛 ≤ dim 𝑅�𝜌𝑥/𝜛 = dim 𝑅�𝜌𝑥 − 1, and the desired inequality follows from (28). �

The restriction of a pseudo-character 𝐷 : 𝐴[𝐺𝐹 ] → 𝐴 to G defines a continuous group homomor-
phism det 𝐷 : 𝐺𝐹 → 𝐴×; see [9, Definition 4.1.5]. Moreover, if D is associated to a representation
𝜌 : 𝐺𝐹 → GL𝑑 (𝐴), then det 𝐷 = det 𝜌. This induces a map of deformation rings 𝑅det𝐷 → 𝑅ps and
makes 𝑅ps into an O[𝜇]-algebra.

Since 𝐴gen is an 𝑅ps-algebra, we may define

𝐴gen,𝜒 := 𝐴gen ⊗O [𝜇],𝜒 O, 𝑋gen,𝜒 := Spec 𝐴gen,𝜒,

and we let 𝑋gen,𝜒 denote its special fibre. Note that since a character of 𝐺ab
𝐹 valued in a characteristic p

field is trivial after pulling back to 𝜇𝑝∞ (𝐹), we have that 𝑋gen,𝜒
= 𝑋

gen,1 for all 𝜒, where 1 is the trivial
character. Moreover, the reduced subschemes of 𝑋gen and 𝑋

gen,𝜒 coincide and so

dim 𝑋
gen,𝜒

= dim 𝑋
gen

= 𝑑2 + 𝑑2 [𝐹 : Q𝑝],

where the last equality is given by Corollary 3.40.

Corollary 4.6. For each character 𝜒 : 𝜇𝑝∞ (𝐹) → O×, the following hold:

(1) 𝐴gen,𝜒 is O-torsion free, equi-dimensional of dimension 1+ 𝑑2 + 𝑑2 [𝐹 : Q𝑝] and is locally complete
intersection;

(2) 𝐴gen,𝜒/𝜛 is equi-dimensional of dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝] and is locally complete intersection.

Proof. We claim that the local rings at closed points of 𝑋gen,𝜒 are O-torsion free and complete inter-
section. Given the claim, the proof is the same as in Corollary 3.40.

We will prove the claim using the strategy outlined in Remark 3.43. We already know from Corollary
4.5 that 𝑅�,𝜒𝜌𝑥 is O-torsion free and complete intersection of dimension 𝑑2 + 𝑑2 [𝐹 : Q𝑝] + 1 whenever
𝑥 ∈ 𝑋gen,𝜒 is a closed point with 𝜅(𝑥)/𝑘 a finite extension. By applying ⊗O [𝜇],𝜒O, we obtain the
𝜒-versions of Propositions 3.34 and 3.41 and Corollary 3.42.

Let x be a closed point of 𝑋gen,𝜒. If 𝜅(𝑥) is a finite extension of k, then Ô𝑋gen,𝜒 ,𝑥 � 𝑅
�,𝜒
𝜌𝑥 by Proposition

3.34, and hence, O𝑋gen,𝜒 ,𝑥 is complete intersection. Otherwise, let 𝑥 ′ and z be as in Corollary 3.42.
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In particular, z is a closed point of 𝑋gen,𝜒, and 𝜅(𝑧) is a finite extension of k. It follows from the
argument explained in Remark 3.43 that if 𝜅(𝑥) is a local field of characteristic p, then

Ô𝑋gen,𝜒 ,𝑥�𝑇� � 𝑅
�,𝜒
𝜌𝑥 � 𝑅

�,𝜒
𝜌𝑥′ �

�(𝑅�,𝜒𝜌𝑧 )𝑥′�𝑇�,
and if 𝜅(𝑥) is a finite extension of L, then

Ô𝑋gen,𝜒 ,𝑥 � 𝑅
�,𝜒
𝜌𝑥 � 𝑅

�,𝜒
𝜌𝑥′ �

�(𝑅�,𝜒𝜌𝑧 )𝑥′ .
Since 𝑅

�,𝜒
𝜌𝑧 is complete intersection, it follows from [48, Tag 09Q4] that the local ring (𝑅�,𝜒𝜌𝑧 )𝑥′ (and

hence its completion) is also complete intersection. The isomorphisms above imply that Ô𝑋gen,𝜒 ,𝑥 is
complete intersection. Hence, O𝑋gen,𝜒 ,𝑥 is complete intersection; see [48, Tag 09Q3]. �

Remark 4.7. Alternatively, one could first prove a version of Proposition 4.3 for deformation rings of
𝜌 : 𝐺𝐹 → GL𝑑 (𝜅(𝑥)) to Artinian Λ-algebra as in Section 3.5 for any closed point of 𝑥 ∈ 𝑋gen by
changing O to Λ and k to 𝜅(𝑥) everywhere. The Euler–Poincaré characteristic formula still holds in this
setting; see [9, Theorem 3.4.1(c)]. Then deduce Corollary 4.5 in this more general setting using the
same proof and then obtain Corollary 4.6 by repeating verbatim the proof of Corollary 3.40.

In the Lemmas below, 𝜅 is either a finite extension of k, a finite extension of L or a local field
of characteristic p containing k. The ring Λ is defined exactly as in the beginning of Section 3.5. If
char(𝜅) = 0, then Λ = 𝜅, and if char(𝜅) = 𝑝, then Λ is an O-algebra, which is a complete DVR
with uniformiser 𝜛 and residue field 𝜅. As in Section 3.5, we consider deformation problems of
𝜌 : 𝐺𝐹 → GL𝑑 (𝜅) to local Artinian Λ-algebras with residue field 𝜅.

Lemma 4.8. Let 𝜌 : 𝐺𝐹 → GL𝑑 (𝜅) be a continuous representation, where 𝜅 is either a finite extension
of k, a local field of characteristic p or a finite extension of L. If 𝐻2(𝐺𝐹 , ad0𝜌) = 0, then for all characters
𝜒 : 𝜇𝑝∞ (𝐹) → O×, the ring 𝑅

�,𝜒
𝜌 is formally smooth over Λ.

Proof. It follows from the proof of [9, Lemma 3.4.2], where an analogous statement is proved for the
deformation functors without the framing and for Artinian 𝜅-algebras, that the map

𝑅det 𝜌 → 𝑅�𝜌 ,

induced by sending a deformation of 𝜌 to an Artinian Λ-algebra to its determinant, is formally smooth.
By applying ⊗O [𝜇],𝜒O, we deduce that the map

𝑅
𝜒
det 𝜌 → 𝑅

�,𝜒
𝜌

is formally smooth.
Since the group 𝐺ab

𝐹 /Art𝐹 (𝜇𝑝∞ (𝐹)) is p-torsion free, the ring 𝑅
𝜒
det 𝜌 is formally smooth over Λ.

Hence, 𝑅�,𝜒𝜌 is formally smooth over Λ. (Alternatively, one could prove Proposition 4.3 for 𝜌 – see
Remark 4.4 – and then obtain the Lemma as a Corollary.) �

Recall that in Section 3.7 we have defined an open subscheme 𝑈n-spcl of 𝑋ps \ {𝔪𝑅ps } and defined
𝑉n-spcl to be a preimage of 𝑈n-spcl in 𝑋

gen. We will refer to 𝑉n-spcl as the absolutely irreducible non-
special locus.

Proposition 4.9. For each character 𝜒 : 𝜇𝑝∞ (𝐹) → O×, the absolutely irreducible non-special locus
in 𝑋

gen,𝜒 is regular.

Proof. It is enough to show that localization of 𝐴gen,𝜒/𝜛 at x is a regular ring for every closed point
x in 𝑉n-spcl ∩ 𝑋

gen,𝜒. It follows from Lemma 3.35 applied with 𝑅 = 𝑅ps,𝜒/𝜛 and 𝐴 = 𝐴gen,𝜒/𝜛
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that it is enough to show that the completion of 𝜅(𝑥) ⊗O 𝐴gen,𝜒 at the kernel of the map of 𝜅(𝑥)-
algebras 𝜅(𝑥) ⊗O 𝐴gen,𝜒 → 𝜅(𝑥) is regular. Proposition 3.34 implies that we may identify this ring with
deformation ring 𝑅

�,𝜒
𝜌𝑥 /𝜛. If 𝜁𝑝 ∈ 𝐹, then since x is non-special 𝐻2 (𝐺𝐹 , ad0𝜌𝑥) = 0 (see [9, Lemma

5.1.1]), Lemma 4.8 implies that 𝑅�,𝜒𝜌𝑥 /𝜛 is formally smooth over 𝜅(𝑥). If 𝜁𝑝 ∉ 𝐹, then 𝜇 is trivial, so
that 𝑅�,𝜒𝜌𝑥 = 𝑅�𝜌𝑥 , and 𝐻2 (𝐺𝐹 , ad 𝜌𝑥) = 0; see [9, Lemma 5.1.1]. It follows from (21) that 𝑅�𝜌𝑥/𝜛 is
formally smooth over 𝜅(𝑥). �

Proposition 4.10. For each character 𝜒 : 𝜇𝑝∞ (𝐹) → O×, the absolutely irreducible locus in
𝑋gen,𝜒 [1/𝑝] is regular.

Proof. Let x be a closed point in 𝑋gen,𝜒 [1/𝑝] and let 𝜌𝑥 : 𝐺𝐹 → GL𝑑 (𝜅(𝑥)) be the corresponding
Galois representation. We claim that if 𝜌𝑥 is absolutely irreducible, then 𝐻2(𝐺𝐹 , ad0𝜌𝑥) = 0. Since
𝜅(𝑥) is a finite extension of L, ad0𝜌𝑥 is a direct summand of ad 𝜌𝑥 , and thus it is enough to show
that 𝐻2(𝐺𝐹 , ad 𝜌𝑥) = 0. By local Tate duality, it is enough to show that 𝐻0(𝐺𝐹 , ad 𝜌𝑥 (1)) = 0. Since
𝜌𝑥 is absolutely irreducible, non-vanishing of this group is equivalent to 𝜌𝑥 � 𝜌𝑥 (1). By considering
determinants, we would obtain that the d-th power of the cyclotomic character is trivial, yielding a
contradiction.

Given the claim, the rest of the proof is the same as the proof of Proposition 4.9 since Lemma 3.37
implies that Ô𝑋gen,𝜒 ,𝑥 � 𝑅

�,𝜒
𝜌𝑥 . �

Lemma 4.11. Assume that 𝐹 = Q𝑝 and 𝑑 = 2. Let 𝜅 be either a finite extension of L or a finite or local
field of characteristic p. If char(𝜅) = 𝑝, then we further assume that 𝑝 > 2. Let 𝜌 : 𝐺Q𝑝 → GL2 (𝜅) be
a continuous representation with semi-simplification isomorphic to a direct sum of characters 𝜓1 ⊕ 𝜓2
satisfying 𝜓1 ≠ 𝜓2(1) and 𝜓2 ≠ 𝜓1(1). Then

𝐻2 (𝐺Q𝑝 , ad 𝜌) = 𝐻2(𝐺𝐹 , ad0𝜌) = 0.

In particular, 𝑅�,𝜒𝜌 is formally smooth over Λ.

Proof. Since char(𝜅) ≠ 2, ad0𝜌 is a direct summand ad 𝜌, and thus it is enough to show that
𝐻2 (𝐺Q𝑝 , ad 𝜌) = 0. By local Tate duality (see [9, Theorem 3.4.1(b)]), it is enough to show that
𝐻0 (𝐺Q𝑝 , ad 𝜌(1)) = 0. Non-vanishing of this group would imply that 𝜓𝑖𝜓−1

𝑗 (1) is a trivial character
for some 𝑖, 𝑗 ∈ {1, 2}. If 𝑖 = 𝑗 , then this would imply 𝜒cyc ⊗Z𝑝 𝜅 is trivial, which is not the case as
char(𝜅) ≠ 2. If 𝑖 ≠ 𝑗 , then this does not hold by assumption.

The last assertion follows from Lemma 4.8. �

Lemma 4.12. Assume that 𝑝 = 2, 𝐹 = Q2 and 𝑑 = 2. Let 𝜅 be a finite or local field of characteristic
2 and let 𝜌 : 𝐺Q2 → GL2 (𝜅) be a continuous representation, which is a non-split extension of distinct
characters.

Then 𝐻2 (𝐺Q2 , ad0𝜌) = 0. In particular, 𝑅�,𝜒𝜌 is formally smooth over Λ.

Proof. After twisting, we may assume that we can choose a basis of the underlying vector space of 𝜌,
such that with respect to that basis,

𝜌(𝑔) =
(
1 𝑏(𝑔)
0 𝜓(𝑔)

)
, ∀𝑔 ∈ 𝐺Q2 ,

where 𝜓 : 𝐺Q2 → 𝜅× is a nontrivial character. We use the same basis to identify ad 𝜌 with 𝑀2 (𝑘) with
the 𝐺Q2 -action given by

𝑔 · 𝑀 := 𝜌(𝑔)𝑀𝜌(𝑔)−1.

For 𝑖, 𝑗 ∈ {1, 2}, let 𝑒𝑖 𝑗 ∈ 𝑀2 (𝑘) be the matrix with the 𝑖 𝑗-entry equal to 1 and all the other entries
equal to zero. Let ad𝜌 be the quotient ad 𝜌 by the scalar matrices and let 𝑒𝑖 𝑗 be the image of 𝑒𝑖 𝑗 in ad𝜌.
A direct computation shows that

https://doi.org/10.1017/fmp.2023.25 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.25


38 G. Böckle, A. Iyengar and V. Pa𝑠k�̄�nas

𝑔 · 𝑒12 = 𝜓(𝑔)−1𝑒12, 𝑔 · 𝑒11 = 𝑒11 − 𝜓(𝑔)−1𝑏(𝑔)𝑒12, 𝑔 · 𝑒21 = 𝜓(𝑔)𝑒21 − 𝜓(𝑔)−1𝑏(𝑔)2𝑒12.

Since 𝜌 is non-split, 𝑏(𝑔) ≠ 0 for some 𝑔 ∈ 𝐺Q2 . Thus, 𝜅𝑒12 is the unique irreducible subrepresentation
of ad𝜌. Since 𝐺Q2 acts on 𝑒12 by a nontrivial character, we deduce that 𝐻0(𝐺Q2 , ad𝜌) = 0.

It follows from local Tate duality (see [9, Theorem 3.4.1(b)]) that 𝐻2(𝐺Q2 , ad0𝜌) = 0. Note that the
cyclotomic character is trivial modulo 2.

The last assertion follows from Lemma 4.8. �

Proposition 4.13. There is an open subscheme 𝑉0,𝜒 ⊂ 𝑋
gen,𝜒 such that

(1) 𝐻2(𝐺𝐹 , ad0𝜌𝑥) = 0 for all closed points 𝑥 ∈ 𝑉0,𝜒;
(2) dim 𝑋

gen,𝜒 − dim(𝑋gen,𝜒 \𝑉0,𝜒) ≥ 2.
In particular, 𝑋gen,𝜒 is regular in codimension 1.
Proof. We first note that if 𝑉 ⊂ 𝑋

gen,𝜒 is open and satisfies part (1), then V is regular by the argument
explained in the proof of Proposition 4.9. Thus if (1) and (2) hold then 𝑋

gen,𝜒 is regular in codimension
1. We also note that Lemma A.2 implies that part (1) holds for 𝑉Kirr,𝜒 := 𝑉Kirr ∩ 𝑋gen,𝜒. We consider
three separate cases.

Case 1: 𝑑 > 2 or 𝐹 ≠ Q𝑝 or 𝐷 is (absolutely) irreducible. These three conditions correspond
to parts (1), (2) and (3) of Proposition 3.53, respectively, and indeed Proposition 3.53 implies that
the complement of 𝑉Kirr,𝜒 in 𝑋

gen,𝜒 has dimension at most dim 𝑋
gen,𝜒 − 2. Hence, we may take

𝑉0,𝜒 = 𝑉Kirr,𝜒.
Case 2: 𝑑 = 2 and 𝐹 = Q𝑝 and 𝑝 > 2 and 𝐷 is reducible. In this case, 𝜇 = {1} so 𝜒 = 1, and thus,

𝑋
gen,1

= 𝑋
gen. It follows from Proposition 3.26, Lemma 3.30 and Lemma 3.52 that

𝑉0,𝜒 := 𝑋
gen \ (𝑌 ∪ 𝑍12

Pmax
∪ 𝑍21

Pmax
∪ 𝑍Kred)

satisfies part (2). We may also write 𝑉0,𝜒 = 𝑉Kirr ∪ 𝑉 ′Pmax
, where we use the notation introduced in

the proof of Proposition 3.27. Since part (1) holds for 𝑉Kirr, it is enough to consider closed points
𝑥 ∈ 𝑉 ′Pmax

. The definition of 𝑉 ′Pmax
implies firstly that 𝜌𝑥 is reducible and secondly that if we let 𝜓1

and 𝜓2 denote its irreducible Jordan-Hölder constituents, then 𝜓1 ≠ 𝜓2 (1) and 𝜓2 ≠ 𝜓1 (1). Therefore,
𝐻2 (𝐺𝐹 , ad0𝜌𝑥) = 0 by Lemma 4.11.

Case 3: 𝑑 = 2 and 𝐹 = Q2 and 𝐷 is reducible. The proof is the same as in Case 2, using Lemma
4.12 instead of Lemma 4.11. However, one additionally has to remove the reducible semi-simple locus
in 𝑋

gen,𝜒. Its dimension is at most 4 + 2 = 6 by Corollary 3.49 and the dimension of 𝑋gen,𝜒 is 8. Thus,
the codimension is at least 2. �

Proposition 4.14. 𝑋gen,𝜒 is normal.
Proof. Since 𝑋gen,𝜒 is a local complete intersection by Corollary 4.6, it is Cohen–Macaulay and satisfies
property (S2), and Proposition 4.13 says that it satisfies property (R1). Hence, 𝑋gen,𝜒 is normal by Serre’s
criterion for normality. �

Corollary 4.15. For each character 𝜒 : 𝜇𝑝∞ (𝐹) → O× and 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘), the ring 𝑅
�,𝜒
𝜌
/𝜛 is a

normal integral domain.
Proof. Since 𝑋gen,𝜒 is normal and excellent the completions of its local rings are normal by [36, Theorem
32.2 (i)]. So after formally completing along the maximal ideal corresponding to 𝜌, Proposition 3.34
(after applying ⊗O [𝜇],𝜒O) and Proposition 3.37 tell us that 𝑅�,𝜒

𝜌
/𝜛 is normal, and thus an integral

domain since it is a local ring. �

Lemma 4.16. Let 𝑌 be the preimage of 𝔪𝑅ps in Spec 𝑅�,𝜒
𝜌
/𝜛. Let W be a closed subscheme

of Spec 𝑅�,𝜒
𝜌
/𝜛 such that 𝐻2(𝐺𝐹 , ad0𝜌𝑥) ≠ 0 for all closed points 𝑥 ∈ 𝑊 \ 𝑌 . Then

dim 𝑅
�,𝜒
𝜌
/𝜛 − dim𝑊 ≥ 2.
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Proof. The assumptions imply that W is contained in �̂� ∪𝑌 , where 𝑍 = 𝑋
gen,𝜒 \𝑉0,𝜒 and �̂� is a formal

completion of Z at the point corresponding to 𝜌. In terms of commutative algebra, the ring of functions
of �̂� corresponds to the completion of the ring of functions of Z with respect to the maximal ideal
corresponding to 𝜌. Hence, dim �̂� ≤ dim 𝑍 , and Proposition 4.13 implies that �̂� has codimension at
least 2 in Spec 𝑅�,𝜒

𝜌
/𝜛. Similarly, 𝑌 is a formal completion of Y (the preimage of {𝔪𝑅ps } in 𝑋gen) at the

point corresponding to 𝜌, and using Lemma 3.30 we conclude that 𝑌 also has codimension of at least 2
in Spec 𝑅�,𝜒

𝜌
/𝜛. �

Proposition 4.17. 𝑋gen,𝜒 [1/𝑝] is normal.

Proof. The proof is essentially the same as the proof of Proposition 4.14. It follows from Corollary 4.6
that 𝑋gen,𝜒 [1/𝑝] is Cohen–Macaulay, and we have to check that the codimension of the singular locus
is at least 2. Since 𝑋gen,𝜒 [1/𝑝] is a preimage of Spec 𝑅ps,𝜒 [1/𝑝] in 𝑋gen, Lemma 3.18 implies that
𝑋gen,𝜒 [1/𝑝] is Jacobson and we may argue with closed points.

We have already shown in Proposition 4.10 that the absolutely irreducible locus𝑉 irr,𝜒 in 𝑋gen,𝜒 [1/𝑝]
is regular. Thus, the singular locus is contained in⋃

Pmin<P
𝑋

gen,𝜒
P [1/𝑝],

where 𝑋gen,𝜒
P := 𝑋gen,𝜒 ∩ 𝑋gen

P .
If either 𝜌 is absolutely irreducible, 𝐹 ≠ Q𝑝 or 𝑑 > 2, then it follows from Proposition 3.58 that

𝑋gen,𝜒 [1/𝑝] is regular in codimension 1.
If 𝜌 is reducible, 𝐹 = Q𝑝 and 𝑑 = 2, then there are two partitions Pmin and Pmax and

dim 𝑋gen,𝜒 [1/𝑝] − dim 𝑋
gen,𝜒
Pmax
[1/𝑝] = 1, so the previous argument does not work. If 𝑥 ∈ 𝑋gen,𝜒 [1/𝑝]

is a closed singular point, then it follows from Proposition 4.10 and Lemma 4.11 that 𝜌𝑥 is reducible
and its semi-simplification has the form 𝜓 ⊕ 𝜓(1) for some character 𝜓 : 𝐺𝐹 → 𝜅(𝑥)×. Thus, we
may assume that the pseudo-character 𝐷 associated to 𝜌 is equal to �̄� + �̄�(1). We will now recall a
construction, carried out after Lemma 3.24, in this special case. Let 𝑅�̄� be the universal deformation
ring of �̄�. Mapping a deformation 𝜓𝐴 to the pseudo-character 𝜓𝐴 + 𝜓𝐴(1) induces a map of local O-
algebras 𝑅ps → 𝑅�̄� . Let 𝑋ps,12

Pmax
be the schematic image of Spec 𝑅�̄� → 𝑋ps induced by this map. Let

𝑊 := 𝑋gen,𝜒 ×𝑋ps 𝑋
ps,12
Pmax

. The generic fibre 𝑊 [1/𝑝] contains all the singular closed points, and since
𝑋gen [1/𝑝] is Jacobson,𝑊 [1/𝑝] contains the singular locus of 𝑋gen [1/𝑝]. The special fibre𝑊 is a union
of 𝑍12

Pmax
and Y (as underlying topological spaces). Thus, dim𝑊 ≤ 6 as dim𝑌 ≤ 4 by Lemma 3.30 and

dim 𝑍12
Pmax
≤ 6 by Proposition 3.26. Since W is a GL𝑑-invariant subscheme of 𝑋gen, Lemma 3.23 im-

plies that dim𝑊 [1/𝑝] ≤ 6. It follows from Corollary 4.6 that dim 𝑋gen,𝜒 [1/𝑝] = dim 𝑋
gen,𝜒

= 8. Thus,
the codimension of the singular locus in 𝑋gen,𝜒 [1/𝑝] is at least 2. �

Corollary 4.18. 𝑋gen,𝜒 is normal.

Proof. Since 𝐴gen,𝜒 is O-torsion free by Corollary 4.6, the map O → 𝐴gen,𝜒 is flat. We have shown in
Propositions 4.14 and 4.17 that the fibre rings 𝐿 ⊗O 𝐴gen,𝜒 and 𝑘 ⊗O 𝐴gen,𝜒 are normal. Since O is a
regular ring, [11, Corollary 2.2.23] implies that 𝐴gen,𝜒 is normal. �

Corollary 4.19. For each character 𝜒 : 𝜇𝑝∞ (𝐹) → O× and 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘), the ring 𝑅
�,𝜒
𝜌

is a
normal integral domain.

Proof. The proof is essentially the same as the proof of Corollary 4.15. To see this, note that Corollary
4.18 implies that 𝑋gen,𝜒 is normal, and that the formal completion of 𝑋gen,𝜒 along the maximal
ideal corresponding to 𝜌 is 𝑅

�,𝜒
𝜌

by the 𝜒-version of Proposition 3.34 as explained in the proof of
Corollary 4.6. �
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Lemma 4.20. Let W be a closed subscheme of Spec 𝑅�,𝜒
𝜌
[1/𝑝] with the property that

𝐻2 (𝐺𝐹 , ad0𝜌𝑥) ≠ 0 for all closed points 𝑥 ∈ 𝑊 . Then dim 𝑅
�,𝜒
𝜌
[1/𝑝] − dim𝑊 ≥ 2.

Proof. Since in characteristic zero ad0𝜌𝑥 is a direct summand of ad 𝜌𝑥 we obtain that𝐻2 (𝐺𝐹 , ad 𝜌𝑥) ≠ 0
for all 𝑥 ∈ 𝑊 . This implies that W is contained in the singular locus of Spec 𝑅�,𝜒

𝜌
[1/𝑝]. Since 𝑅�,𝜒

𝜌
[1/𝑝]

is normal, the singular locus has codimension of at least 2. �

The next result answers affirmatively a question raised by GB–Juschka in [8, Question 1.10].

Corollary 4.21. The map 𝑅det 𝜌 → 𝑅�
𝜌

induces a bijection between the sets of irreducible components.

Proof. Since 𝑅�
𝜌

is O-torsion free by Corollary 3.38, the irreducible components of 𝑅�
𝜌

and 𝑅�
𝜌
[1/𝑝]

coincide. Since the algebra O[𝜇𝑝∞ (𝐹)] [1/𝑝] is semi-simple, we have

𝑅�𝜌 [1/𝑝] �
∏

𝜒:𝜇𝑝∞ (𝐹 )→O×
𝑅
�,𝜒
𝜌
[1/𝑝] . (29)

It follows from Corollaries 4.5 and 4.19 that 𝑅�,𝜒
𝜌

is an O-torsion free integral domain. We note that the
special fibres of these rings are non-zero, thus the rings themselves are non-zero. Hence, the localization
𝑅
�,𝜒
𝜌
[1/𝑝] is non-zero and is an integral domain. �

Corollary 4.22. 𝑅�
𝜌
[1/𝑝] is normal and 𝑅�

𝜌
is reduced.

Proof. The first assertion follows from (29) and Corollary 4.19. Since 𝑅�
𝜌

is O-torsion free by Corollary
3.38, it is a subring of 𝑅�

𝜌
[1/𝑝]. This implies the second assertion as normal rings are reduced. �

Corollary 4.23. If either 𝑑 = 2 and [𝐹 : Q𝑝] ≥ 4 or 𝑑 ≥ 3 and [𝐹 : Q𝑝] ≥ 3, then for each character
𝜒 : 𝜇𝑝∞ (𝐹) → O× and 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘), the rings 𝑅�,𝜒

𝜌
, 𝑅�,𝜒
𝜌
/𝜛 are regular in codimension 3. In

particular, 𝑅�,𝜒
𝜌

and 𝑅
�,𝜒
𝜌
/𝜛 are factorial.

Proof. The assumptions together with the lower bound on the codimension of the Kummer-irreducible
locus in Proposition 3.53 and the containment 𝑉Kirr ⊂ 𝑉n-spcl (resp. Proposition 3.58) imply that the
complement of the absolutely irreducible non-special locus in 𝑋

gen,𝜒 (resp. absolutely irreducible locus
in 𝑋gen,𝜒 [1/𝑝]) has codimension at least 4. It follows from Proposition 4.9 (resp. Proposition 4.10) that
it contains the singular locus in 𝑋

gen,𝜒 (resp. 𝑋gen,𝜒 [1/𝑝]). Hence, 𝑋gen,𝜒 and 𝑋
gen,𝜒 are regular in

codimension 3, which implies that 𝑅�,𝜒
𝜌

and 𝑅
�,𝜒
𝜌
/𝜛 are regular in codimension 3. Since both rings are

also complete intersection by Corollary 4.5, they are factorial by a theorem of Grothendieck; see [13]
for a short proof. �

Remark 4.24. The assumptions in Corollary 4.23 are not optimal as the next Corollary shows. To find
the optimal assumptions, one would have to further study the reducible locus, and we do not want to
pursue this here. We note that if 𝐹 = Q𝑝 , 𝑝 ≥ 5 and 𝜌 =

( 1 ∗
0 𝜔

)
is non-split, where 𝜔 is the cyclotomic

character modulo p, then it follows from [42, Corollary B.5] that 𝑅�,𝜒
𝜌
� O�𝑥1, . . . , 𝑥9�/(𝑥1𝑥2 − 𝑥3𝑥4)

and hence is not factorial. Therefore, some assumptions in Corollary 4.23 have to be made.

Corollary 4.25. If 𝜌 is absolutely irreducible, then 𝑅
�,𝜒
𝜌

and 𝑅
�,𝜒
𝜌
/𝜛 are factorial, except in the case

𝑑 = 2, 𝐹 = Q3 and 𝜌 � 𝜌(1).

Proof. Since 𝜌 is absolutely irreducible, 𝑋gen,𝜒 [1/𝑝] is regular by Proposition 4.10, and the singular
locus of 𝑋gen,𝜒 is contained in 𝑍spcl, which has codimension at least 1

2 [𝐹 : Q𝑝]𝑑2 by Lemma 3.52. Thus,
if either 𝑑 > 2 or 𝐹 ≠ Q𝑝 , then we can conclude that 𝑅�,𝜒

𝜌
and 𝑅

�,𝜒
𝜌
/𝜛 are regular in codimension 3

and hence factorial.
If 𝜌 � 𝜌(1), then 𝐻2(𝐺Q𝑝 , ad0𝜌) = 0, and it follows from Lemma 4.8 that 𝑅�,𝜒

𝜌
and 𝑅

�,𝜒
𝜌
/𝜛 are

formally smooth, hence regular and hence factorial.
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If 𝑑 = 2, then 𝜌 � 𝜌(1) implies that det 𝜌 = (det 𝜌)𝜔2. This leaves us with two cases: 𝐹 = Q2 or
𝐹 = Q3. If 𝑝 = 2, then 𝑅�

𝜌
is formally smooth over O[𝜇] by [16, Proposition 4.5], and thus 𝑅�,𝜒

𝜌
and

𝑅
�,𝜒
𝜌
/𝜛 are regular.

We claim that if 𝐹 = Q3, 𝑑 = 2 and 𝜌 � 𝜌(1), then the ring 𝑅
�,𝜒
𝜌

is not factorial. It fol-
lows from [6, Theorem 5.1] that, in this case, 𝑅�,𝜒

𝜌
is formally smooth over O�𝑏, 𝑐, 𝑑�/(𝑟), where

𝑟 = (1 + 𝑑)6(1 + 𝑏𝑐𝑢) − (1 + 𝑏𝑐𝑣) and 𝑢, 𝑣 are units in O�𝑏, 𝑐�. The ideal 𝔭 = (𝑏, 𝑑) is prime of
height 1. If 𝑅�,𝜒

𝜌
were factorial, then 𝔭 would have to be principal, [48, Tag 0AFT], and thus there

would exist 𝜋 ∈ O�𝑏, 𝑐, 𝑑� such that we have an equality of ideals (𝑏, 𝑑) = (𝑟, 𝜋) in O�𝑏, 𝑐, 𝑑�. By
considering this modulo (𝜛, 𝑐), we would conclude that (𝑑3 − 𝑑6, �̄�) is the maximal ideal in 𝑘�𝑏, 𝑑�.
Since (𝑑3 − 𝑑6, �̄�) → (𝑏, 𝑑)/(𝑏, 𝑑)2 is not surjective, we obtain a contradiction. The same argument
shows that 𝑅�,𝜒

𝜌
/𝜛 is also not factorial. �

Proposition 4.26. For each character 𝜒 : 𝜇𝑝∞ (𝐹) → O×, the rings 𝐴gen,𝜒 and 𝐴gen,𝜒/𝜛 are integral
domains.

Proof. Since 𝐴gen,𝜒 is normal by Corollary 4.18, it is a product of normal domains 𝐴gen,𝜒 � 𝐴1×. . .×𝐴𝑚.
The action of G on 𝑋gen,𝜒 leaves the connected components invariant by Lemma 2.1. It follows from
Lemma 3.21 that each Spec 𝐴𝑖 contains a closed point over the closed point 𝑋ps. Thus, 𝐴𝑖 ⊗𝑅ps 𝑘 are
non-zero for 1 ≤ 𝑖 ≤ 𝑚. If 𝑚 > 1, then this would imply that the fibre at the closed point of 𝑋ps is not
connected, contradicting Lemma 3.7. The same proof works also for the special fibre. �

Define 𝑅ps,𝜒 := 𝑅ps ⊗O [𝜇],𝜒 O for a character 𝜒 : 𝜇 → O× and using the isomorphism from
Lemma 4.1. We let 𝑋ps,𝜒 = Spec 𝑅ps,𝜒 and let 𝑋ps,𝜒 be its special fibre.

Corollary 4.27. The rings 𝑅ps [1/𝑝], 𝑅ps,𝜒 [1/𝑝] and the rigid spaces (Spf 𝑅ps)rig, (Spf 𝑅ps,𝜒)rig are
normal. Moreover, 𝑅ps,𝜒 [1/𝑝] is an integral domain, and thus the map 𝑅det 𝜌 [1/𝑝] → 𝑅ps [1/𝑝] induces
a bijection between the sets of irreducible components.

Proof. The assertion follows from [43, Theorem A.1] using Corollary 4.22. As part of the proof, one
obtains 𝑅ps [1/𝑝] = (𝐴gen [1/𝑝])𝐺 . This yields 𝑅ps,𝜒 [1/𝑝] = (𝐴gen,𝜒 [1/𝑝])𝐺 . Proposition 4.26 implies
that 𝐴gen,𝜒 [1/𝑝] is an integral domain. Hence, 𝑅ps,𝜒 [1/𝑝] is an integral domain, and the assertion about
irreducible components is proved in the same manner as Corollary 4.21. �

Corollary 4.28. The image of 𝑅ps in 𝐴gen is the maximal O-torsion free quotient of 𝑅ps and is also the
maximal reduced quotient of 𝑅ps. In particular, the map 𝑅det𝐷 → 𝑅ps → 𝑅ps [1/𝑝] induces a bijection
between the sets of irreducible components. Moreover, if 𝐷 is multiplicity free, then 𝑅ps is reduced and
O-torsion free.

Proof. By [50, Theorem 2.20], the map 𝑋gen � GL𝑑 → 𝑋ps is an adequate homeomorphism. It follows
from [1, Proposition 3.3.5] that the kernel of 𝑅ps → (𝐴gen)GL𝑑 is nilpotent and vanishes after inverting p.
Since 𝐴gen is O-torsion free and reduced, this implies that both quotients coincide and are equal to the
image of 𝑅ps in 𝐴gen. This together with the last part of Corollary 4.27 implies the assertion about the
irreducible components.

If 𝐷 is multiplicity free, then E is a generalized matrix algebra by [18, Theorem 2.22], and it follows
from [50, Theorem 3.8 (4)] that 𝑅ps = (𝐴gen)GL𝑑 , and so 𝑅ps is O-torsion free and reduced. �

Corollary 4.29. The image of 𝑅ps,𝜒/𝜛 in 𝐴gen,𝜒/𝜛 is the maximal reduced quotient of 𝑅ps,𝜒/𝜛. The
image of 𝑅ps,𝜒 in 𝐴gen,𝜒 is the maximal reduced quotient of 𝑅ps,𝜒 and is also the maximal O-torsion free
quotient of 𝑅ps,𝜒. Moreover, if 𝐷 is multiplicity free, then both 𝑅ps,𝜒/𝜛 and 𝑅ps,𝜒 are integral domains.

Proof. If we work with the algebra 𝐸𝜒 := 𝐸 ⊗O [𝜇],𝜒 O instead of E, then the argument in the proof of
Corollary 4.28 gives adequate homeomorphisms

𝑋gen,𝜒 � GL𝑑 → 𝑋ps,𝜒, 𝑋
gen,𝜒

� GL𝑑 → 𝑋
ps,𝜒

.
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In particular, the kernel of 𝑅ps,𝜒/𝜛 → 𝐴gen,𝜒/𝜛 is nilpotent. Since 𝐴gen,𝜒/𝜛 is an integral domain by
Proposition 4.26, we obtain the first assertion. The argument with 𝑅ps,𝜒 is the same as in Corollary 4.28
using that 𝐴gen,𝜒 is an integral domain.

If 𝐷 is multiplicity free, then 𝐸𝜒 and 𝐸𝜒/𝜛 are generalized matrix algebras, and the argument in
Corollary 4.28 carries over. �

Lemma 4.30. If 𝑅ps,𝜒/𝜛 satisfies Serre’s condition (S1), then 𝑅ps,𝜒/𝜛 and 𝑅ps,𝜒 are integral domains.

Proof. We first note that 𝑅ps,𝜒/𝜛 satisfies Serre’s condition (R0). Since the underlying reduced
subschemes of 𝑋

ps and 𝑋
ps,𝜒 coincide, Proposition A.9 implies that the Kummer-irreducible locus

(𝑋ps,𝜒)Kirr in 𝑋
ps,𝜒 is open dense. If 𝑥 ∈ (𝑋ps,𝜒)Kirr is a closed point, then the pseudo-character 𝐷𝑥

is absolutely irreducible and hence is associated to an absolutely irreducible representation which we
denote by 𝜌𝑥 . Let 𝑅𝜌𝑥 be the universal deformation ring of 𝑅𝜌𝑥 and let 𝑅𝜒𝜌𝑥 be the quotient of 𝑅𝜌𝑥
parameterizing deformations such that the restriction of the determinant to Art𝐹 (𝜇) ⊂ 𝐺ab

𝐹 is equal to
𝜒. Since 𝑅�,𝜒𝜌𝑥 is formally smooth over 𝑅𝜒𝜌𝑥 , the Kummer-irreducibility of x implies that 𝑅𝜒𝜌𝑥 is regular.
The proof of [9, Lemma 5.1.6] shows that x is a regular point in 𝑋

ps,𝜒. Hence, 𝑋ps,𝜒 contains an open
dense regular subscheme, which implies that 𝑅ps,𝜒/𝜛 satisfies (R0). Since 𝑅ps,𝜒/𝜛 satisfies (S1), by
assumption we conclude that 𝑅ps,𝜒/𝜛 is reduced. It follows from Lemma 4.29 and Proposition 4.26
that 𝑅ps,𝜒/𝜛 is an integral domain.

Let 𝑅ps,𝜒 � 𝑅
ps,𝜒
tf be the maximal O-torsion free quotient quotient and let 𝔞 be the kernel of this

map. We have an exact sequence 0 → 𝔞/𝜛 → 𝑅ps,𝜒/𝜛 → 𝑅
ps,𝜒
tf /𝜛 → 0. It follows from Corollary

4.29 that 𝔞 is nilpotent. Since 𝑅ps,𝜒/𝜛 is reduced, we deduce from the exact sequence that 𝔞/𝜛 is zero.
Nakayama’s lemma implies that 𝔞 = 0. Thus, 𝑅ps,𝜒 is O-torsion free and hence is a subring of 𝐴gen,𝜒

by Corollary 4.29. Since 𝐴gen,𝜒 is domain, we conclude that 𝑅ps,𝜒 is an integral domain. �

Remark 4.31. We expect that the rings 𝑅ps,𝜒 and 𝑅ps,𝜒/𝜛 are integral domains. Although we know the
dimension of 𝑅ps,𝜒/𝜛 by [9, Theorem 5.5.1], we cannot conclude that the ring is complete intersection
(which would imply that (S1) holds) as we lack a presentation analogous to (21). Since 𝐴gen,𝜒 and
𝐴gen,𝜒/𝜛 are integral domains, this question is closely related to the embedding problem discussed in
[5, Section 1.3.4].

5. Deformation rings with fixed determinant

Let 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘) be a representation with pseudo-character 𝐷 and let 𝜓 : 𝐺𝐹 → O× be a
character lifting det 𝜌 = det 𝐷. Let

𝑅
�,𝜓
𝜌

:= 𝑅�𝜌 ⊗𝑅det𝜌 ,𝜓 O.

Let 𝜇 := 𝜇𝑝∞ (𝐹) and let 𝜒 : 𝜇 → O× be a character such that the restriction of 𝜓 to 𝜇 under the Artin
map 𝜇 → 𝐺ab

𝐹 from local class field theory is equal to 𝜒. Then 𝑅
�,𝜓
𝜌

is a quotient of the ring 𝑅
�,𝜒
𝜌

considered in the previous section. We let 𝑋�,𝜒 = Spec 𝑅�,𝜒
𝜌

, 𝑋�,𝜓 = Spec 𝑅�,𝜓
𝜌

and denote by 𝑋
�,𝜒

and 𝑋
�,𝜓 their special fibres.

Let X : 𝔄O → Sets be the functor, which sends (𝐴,𝔪𝐴) to the group X (𝐴) of continuous characters
𝜃 : 𝐺𝐹 → 1 +𝔪𝐴 whose restriction to 𝜇 under the Artin map is trivial. It follows from Lemma 4.1 that
the functor X is pro-represented by

O(X ) � 𝑅1 ⊗O [𝜇] O � O�𝑦1, . . . , 𝑦 [𝐹 :Q𝑝 ]+1�. (30)

For 𝑒 ∈ N, let 𝜑𝑒 : X → X be the natural transformation that sends 𝜃 ∈ X (𝐴) to 𝜃𝑒. We also write
𝜑𝑒 for the induced maps O(X ) → O(X ) and SpecO(X ) → SpecO(X ). The natural transformation
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𝐷
�,𝜒
𝜌
→ X , 𝜌 ↦→ (det 𝜌)𝜓−1 induces a homomorphism of local O-algebras O(X ) → 𝑅

�,𝜒
𝜌

; we will
consider 𝑅�,𝜒

𝜌
as O(X )-algebra via this map in the statements below.

Proposition 5.1. One has a natural isomorphism of functors

𝐷
�,𝜒
𝜌
×X ,𝜑𝑑 X � 𝐷

�,𝜓
𝜌
× X .

Proof. Let (𝐴,𝔪𝐴) be in 𝔄O. An element in (𝐷�,𝜒
𝜌
×X ,𝜑𝑑 X ) (𝐴) is a pair (𝜌, 𝜃) such that 𝜃 : 𝐺𝐹 →

1 + 𝔪𝐴 is a continuous homomorphism that is trivial on 𝜇, 𝜌 : 𝐺𝐹 → GL𝑑 (𝐴) is a continuous
homomorphism such that det 𝜌 and 𝜒 agree when restricted to 𝜇, and one has (det 𝜌)𝜓−1 = 𝜃𝑑 . An
element in (𝐷�,𝜓

𝜌
×X ) (𝐴) is a pair (𝜌1, 𝜃1), where 𝜃1 : 𝐺𝐹 → 1 +𝔪𝐴 is a continuous homomorphism

that is trivial on 𝜇 and 𝜌1 : 𝐺𝐹 → GL𝑑 (𝐴) is a continuous homomorphism such that det 𝜌1 = 𝜓. One
verifies that the map

(𝜌, 𝜃) ↦→ (𝜌 ⊗ 𝜃−1, 𝜃)

defines a bijection that is natural in A. �

Corollary 5.2. Proposition 5.1 induces a natural isomorphism

𝑅
�,𝜒
𝜌
⊗O (X ) ,𝜑𝑑 O(X ) � 𝑅

�,𝜓
𝜌
⊗̂OO(X ).

We now clarify some properties of the map 𝜑𝑑 : O(X ) → O(X ).

Lemma 5.3. The map 𝜑𝑑 is finite and flat and becomes étale after inverting p. Moreover, it induces a
universal homeomorphism on the special fibres.

Proof. We may write 𝑑 = 𝑒𝑝𝑚 such that p does not divide e. Then 𝜑𝑑 = 𝜑𝑝𝑚 ◦ 𝜑𝑒. Since e is prime to
p, elements in 1 +𝔪𝐴 for (𝐴,𝔪𝐴) in 𝔄O possess a unique e-th root in 1 +𝔪𝐴 by the binomial theorem,
and it follows that 𝜑𝑒 is an isomorphism. We thus may assume that d is a power of p.

The map 𝜑𝑑 : O(X ) → O(X ) sends 𝑦𝑖 to (1+𝑦𝑖)𝑑−1. One checks that the monomials
∏ [𝐹 :Q𝑝 ]+1
𝑖=1 𝑦𝑚𝑖

𝑖
with 0 ≤ 𝑚𝑖 ≤ 𝑑 − 1 form a basis of O(X ) as O(X )-module via 𝜑𝑑 by checking the assertion modulo
𝜛 and using Nakayama’s lemma. A (standard) calculation shows that the discriminant is a power of p
up to a sign. Thus, 𝜑𝑑 becomes étale after inverting p.

The map 𝜑𝑑 : O(X )/𝜛 → O(X )/𝜛 is a power of the relative Frobenius of Spec(O(X )/𝜛)/Spec 𝑘 .
The last assertion follows from [48, Tag 0CCB]. �

In the following results, we deduce properties of the ring 𝑅
�,𝜓
𝜌

.

Corollary 5.4. The following hold:

(1) 𝑅
�,𝜓
𝜌

is a local complete intersection, flat over O and of relative dimension (𝑑2 − 1) ( [𝐹 : Q𝑝] + 1).
(2) 𝑅

�,𝜓
𝜌
/𝜛 is a local complete intersection of dimension (𝑑2 − 1) ( [𝐹 : Q𝑝] + 1).

Proof. The pushout of the isomorphism from Proposition 4.3 under 𝑅det 𝜌 → O, which corresponds to
𝜓, gives an isomorphism

O�𝑥1, . . . , 𝑥𝑟�/( 𝑓1, . . . , 𝑓𝑡 )
�−→ 𝑅

�,𝜓
𝜌

with 𝑟 − 𝑡 = (𝑑2 − 1) ( [𝐹 : Q𝑝] + 1). To prove (1) and (2), it thus suffices to show that the dimension of
𝑅
�,𝜓
𝜌
/𝜛 is at most (𝑑2 − 1) ( [𝐹 : Q𝑝] + 1), or equivalently (see (30)), it suffices to show that

dim
(
(𝑅�,𝜓
𝜌
⊗̂O O(X ))/𝜛

)
≤ 𝑑2([𝐹 : Q𝑝] + 1). (31)
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Let us write X := SpecO(X )/𝜛. Since 𝜑𝑑 : X → X is a universal homeomorphism. by Lemma 5.3,
the map

𝑋
�,𝜒 ×X ,𝜑𝑑 X → 𝑋

�,𝜒 (32)

is a homeomorphism. In particular, the spaces have the same dimension, which is equal to
𝑑2 ([𝐹 : Q𝑝] + 1) by Corollary 4.5. We conclude using Corollary 5.2 that (31) is an equality. �

Lemma 5.5. Let 𝜌 : 𝐺𝐹 → GL𝑑 (𝜅) be a representation, such that det 𝜌 = 𝜓, where 𝜅 is either a finite
or local field of characteristic p or a finite extension of L. If 𝐻2(𝐺𝐹 , ad0𝜌) = 0, then the ring 𝑅

�,𝜓
𝜌 is

formally smooth over Λ with Λ as in Subsection 3.5.

Proof. This is the same proof as the proof of Lemma 4.8. �

Theorem 5.6. The rings 𝑅�,𝜓
𝜌

and 𝑅
�,𝜓
𝜌
/𝜛 are normal integral domains.

Proof. We will first prove that 𝑅�,𝜓
𝜌
/𝜛 is normal. Since 𝑅�,𝜓

𝜌
/𝜛 is complete intersection by Corollary

5.4, it suffices to show that 𝑅�,𝜓
𝜌
/𝜛 satisfies Serre’s condition (R1). Let 𝔭 ∈ 𝑋�,𝜓 := Spec 𝑅�,𝜓

𝜌
/𝜛 be

a point of height at most 1 and assume that the local ring at 𝔭 is not regular. Then by Lemma 5.5 there is
a closed irreducible subset Z of 𝑋�,𝜓 of codimension at most 1, the closure of 𝔭, such that for all 𝑧 ∈ 𝑍
with finite or local residue field the space 𝐻2(𝐺𝐹 , ad0𝜌𝑧) is non-zero. Using the explicit bijection from
the proof of Proposition 5.1, and the isomorphism of Corollary 5.2 modulo, 𝜛 it follows that there is a
closed irreducible subset 𝑊 ⊂ 𝑋

�,𝜒 ×X ,𝜑𝑑 X of codimension at most 1, such that for all 𝑤 ∈ 𝑊 with
finite or local residue field, the space 𝐻2 (𝐺𝐹 , ad0𝜌𝑤 ) is non-zero, where, as in the proof of Proposition
5.1, the point w corresponds to a pair (𝜌𝑤 , 𝜃𝑤 ). Since the map (32) is a homeomorphism and sends
(𝜌𝑤 , 𝜃𝑤 ) to 𝜌𝑤 , the image of W in 𝑋

�,𝜒, which we denote by 𝑊 ′, is closed irreducible of codimension
at most 1 in 𝑋

�,𝜒, and all 𝑥 ∈ 𝑊 ′ with finite or local residue field have non-vanishing 𝐻2 (𝐺𝐹 , ad0𝜌𝑥).
Lemma 4.16 implies that the codimension of 𝑊 ′ is at least 2, yielding a contradiction.

Let us prove that 𝑅�,𝜓
𝜌

is normal. Since 𝑅
�,𝜓
𝜌

is O-torsion free by Corollary 5.4 and we know that
the special fibre is normal, it is enough to prove that 𝑅�,𝜓

𝜌
[1/𝑝] is normal; see the proof of Proposition

4.18. Lemma 5.3 implies that the map

𝑋�,𝜒 [1/𝑝] ×X [1/𝑝],𝜑𝑑 X [1/𝑝] → 𝑋�,𝜒 [1/𝑝] (33)

is finite étale. We proceed exactly as in the proof for the special fibre, using (33) instead of (32) and
Lemma 4.20 instead of Lemma 4.16. �

Corollary 5.7. The absolutely irreducible locus is dense in Spec 𝑅�,𝜓
𝜌
[1/𝑝] and the Kummer-irreducible

locus is dense in Spec 𝑅�,𝜓
𝜌
/𝜛.

Proof. By Proposition 3.55 and Corollary 3.59, the absolutely irreducible locus is dense open in
Spec 𝑅�,𝜒

𝜌
/𝜛 and in Spec 𝑅�,𝜒

𝜌
[1/𝑝]. Arguing as in the proof of Theorem 5.6, one deduces that

the absolutely irreducible locus is dense open in the spaces Spec 𝑅�,𝜓
𝜌
/𝜛 and Spec 𝑅�,𝜓

𝜌
[1/𝑝]. For

absolutely irreducible 𝑥 ∈ Spec 𝑅�,𝜒
𝜌
/𝜛, Kummer-irreducibility implies 𝐻2(𝐺𝐹 , ad0𝜌𝑥) = 0, so the

assertion on the density of the Kummer-irreducible locus in Spec 𝑅�,𝜒
𝜌
/𝜛 follows from the proof of

Theorem 5.6. �

As explained in Section 4, both 𝑅ps and 𝐴gen are naturally 𝑅det𝐷-algebras. Moreover, det 𝐷 = det 𝜌.
We let

𝑅ps,𝜓 := 𝑅ps ⊗𝑅det 𝐷 ,𝜓
O, 𝐴gen,𝜓 := 𝐴gen ⊗𝑅det 𝐷 ,𝜓

O.
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Corollary 5.8. The following hold:

(1) 𝐴gen,𝜓 is O-flat, equi-dimensional of dimension 1 + (𝑑2 − 1) ( [𝐹 : Q𝑝] + 1), normal and is locally
complete intersection;

(2) 𝐴gen,𝜓/𝜛 is equi-dimensional of dimension (𝑑2 − 1) ( [𝐹 : Q𝑝] + 1), normal and is locally complete
intersection.

Proof. The ring 𝐴gen is excellent, since it is finitely generated over a complete local Noetherian ring.
Thus, its local rings are also excellent. An excellent local ring is normal if and only if its completion
with respect to the maximal ideal is normal, [36, Theorem 32.2 (i)]. Given this, the proof is the same as
the proof of Corollary 4.6 using Theorem 5.6. �

Corollary 5.9. The rings 𝐴gen,𝜓 and 𝐴gen,𝜓/𝜛 are integral domains.

Proof. The proof is the same as the proof of Proposition 4.26. �

Corollary 5.10. The ring 𝑅ps,𝜓 [1/𝑝] and the rigid space (Spf 𝑅ps,𝜓)rig are normal. The ring 𝑅ps,𝜓 [1/𝑝]
is an integral domain.

Proof. This follows from [43, Corollary A.10]. The last part is proved in the same way as Corollary
4.27 using Corollary 5.9. �

Corollary 5.11. The maximal reduced quotient of 𝑅ps,𝜓 is equal to the maximal O-torsion free quotient
of 𝑅ps,𝜓 and is an integral domain. Moreover, if 𝐷 is multiplicity free, then 𝑅ps,𝜓 is an O-torsion free
integral domain.

Proof. This is proved in the same way as Corollary 4.28. �

Proposition 5.12. The map

𝑅det 𝜌 → 𝑅�𝜌 (34)

is flat.

Proof. Let 𝑆 := O�𝑧, 𝑦1, . . . , 𝑦1+[𝐹 :Q𝑝 ]�. By arguing as in the proof of Proposition 4.3, we may choose
presentations

𝑅det 𝜌 � 𝑆/((1 + 𝑧)𝑚 − 1), 𝑅�𝜌 � 𝑆�𝑥1, . . . , 𝑥𝑟�/((1 + 𝑧)𝑚 − 1, 𝑓1, . . . , 𝑓𝑡 ),

such that (34) is a map of S-algebras and (1+ 𝑧)𝑚 − 1, 𝑓1, . . . , 𝑓𝑡 is a regular sequence in 𝑆�𝑥1, . . . , 𝑥𝑟�.
Let 𝑆′ := 𝑆�𝑥1, . . . , 𝑥𝑟�/( 𝑓1, . . . , 𝑓𝑡 ). Then 𝑆′ is complete intersection, and hence Cohen–Macaulay,
and the fibre ring 𝑘 ⊗𝑆 𝑆′ is isomorphic to 𝑅�,𝜓

𝜌
/𝜛, which has dimension equal to dim 𝑅�

𝜌
−dim 𝑅det 𝜌 =

dim 𝑆′ − dim 𝑆, by Corollary 5.4. Since S is regular, the fibre-wise criterion for flatness, [36, Theorem
23.1], implies that 𝑆′ is flat over S. Hence, 𝑅�

𝜌
� 𝑆′/((1+𝑧)𝑚−1) is flat over 𝑅det 𝜌 � 𝑆/((1+𝑧)𝑚−1). �

6. Density of points with prescribed p-adic Hodge theoretic properties

We fix a continuous representation 𝜌 : 𝐺𝐹 → GL𝑑 (𝑘). Let 𝑅�
𝜌

be its universal framed deformation
ring and let 𝑋� = Spec 𝑅�

𝜌
. If 𝑥 : 𝑅�

𝜌
→ Q𝑝 is an O-algebra homomorphism, then we denote by

𝜌�𝑥 : 𝐺𝐹 → GL𝑑 (Q𝑝) the specialization of the universal framed deformation 𝜌� : 𝐺𝐹 → GL𝑑 (𝑅�𝜌 )
at x. In this section, we will study Zariski closures of subsets Σ ⊂ 𝑋� (Q𝑝), such that 𝜌�𝑥 is potentially
semi-stable for all 𝑥 ∈ Σ and satisfies additional conditions imposed on either the Hodge–Tate weights
or the inertial type of 𝜌�𝑥 . Recall that the Hodge–Tate weights HT(𝜌) of a potentially semi-stable
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representation 𝜌 is a collection 𝑘 of d-tuples of integers 𝑘𝜎 = (𝑘𝜎,1 ≥ 𝑘𝜎,2 ≥ . . . ≥ 𝑘𝜎,𝑑) for each
embedding 𝜎 : 𝐹 ↩→ Q𝑝 , and we say that 𝑘 is regular if all the inequalities are strict. Let

Σcris := {𝑥 ∈ 𝑋� (Q𝑝) : 𝜌�𝑥 is crystalline with regular Hodge–Tate weights}.

For a fixed regular Hodge–Tate weight 𝑘 , we let

Σ𝑘 := {𝑥 ∈ 𝑋� (Q𝑝) : 𝜌�𝑥 is potentially semi-stable with HT(𝜌�𝑥 ) = 𝑘}.

If 𝜌 is potentially semi-stable, then to it we may attach a Weil–Deligne representation WD(𝜌); we denote
by WD(𝜌)𝐹−ss its Frobenius semi-simplification. We may attach a smooth irreducible representation of
GL𝑑 (𝐹), which we denote by LL(WD(𝜌)), to WD(𝜌)𝐹−ss via the classical Langlands correspondence;
see [14, Section 1.8] for more details and further references.

Let Σprnc
𝑘 be the subset of Σ𝑘 , such that 𝑥 ∈ Σ𝑘 lies in Σprnc

𝑘 if and only if LL(WD(𝜌�𝑥 )) is a principal
series representation. In terms of the Galois side Σprnc

𝑘 may be characterised as the set of 𝑥 ∈ Σ𝑘 such
that the restriction of 𝜌�𝑥 to the Galois group of some finite abelian extension of F is crystalline.

Let Σspcd
𝑘 be the subset of Σ𝑘 such that x lies in Σspcd

𝑘 if and only if WD(𝜌𝑥) is irreducible as a
representation of the Weil group 𝑊𝐹 of F and is induced from a 1-dimensional representation of 𝑊𝐸 ,
where E is an unramified extension of F of degree d. In this case, LL(WD(𝜌𝑥)) is a supercuspidal
representation of GL𝑑 (𝐹).

The goal of this section is the following theorem.

Theorem 6.1. Assume that 𝑝 � 2𝑑. Let Σ be any of the sets Σcris, Σprnc
𝑘 , Σspcd

𝑘 defined above. Then Σ is
Zariski dense in 𝑋�.

Remark 6.2. We could additionally require the representations in Σcris to be benign in the sense of
[25, Definition 6.8], or instead of considering crystalline representations, fix an inertial type.

One could also change the definition of Σspcd
𝑘 to allow E to be a ramified extension of F; see

[25, Section 5.3].

The problem for Σcris has been studied by Colmez [19], Kisin [34], Chenevier [17], Nakamura [39],
[40]. Hellmann and Schraen have studied the problem for Σprnc

𝑘 and Σcris in [28]. Emerton and VP have

studied the problem for Σcris, Σprnc
𝑘 and Σspcd

𝑘 in [25]. A common feature of these papers is that they show
that the closure of Σ is a union of irreducible components of 𝑋� and density is equivalent to showing
that Σ meets each irreducible component. If one knows the irreducible components, then one might
hope to show density this way. This strategy has been carried out for Σcris by Colmez–Dospinescu–VP
in [20] for 𝑝 = 𝑑 = 2 and 𝐹 = Q𝑝 and by AI in [30] for 𝑝 > 𝑑 and F arbitrary, when 𝜌 is the trivial
representation, where after determining irreducible components, one can write down the lifts explicitly.
We note that using Corollary 4.21, one may remove the assumption 𝑝 > 𝑑 in [30, Theorem 5.11]. It
seems impossible to carry this out for arbitrary 𝑘 and 𝜌 directly, even if one knows that the irreducible
components of 𝑋� are in bijection with irreducible components of Spec 𝑅det 𝜌. Instead, we combine our
knowledge of irreducible components with results of [25].

The paper [25] builds on the global patching arguments carried out in [14], which assumes that
𝑝 � 2𝑑 and 𝜌 has a potentially diagonalisable lift. This last condition can be easily verified if 𝜌 is semi-
simple (see [14, Lemma 2.2]); it has been shown to always be satisfied in [24, Theorem 1.2.2]. The
output of [14] is a complete local Noetherian O-algebra 𝑅∞ with residue field k and a linearly compact
𝑅∞-module 𝑀∞, which carries a continuous 𝑅∞-linear action of 𝐺 := GL𝑑 (𝐹). Moreover, the action
of 𝑅∞[𝐾] on 𝑀∞ extends (uniquely) to a continuous action of the completed group algebra 𝑅∞�𝐾�,
where 𝐾 := GL𝑑 (O𝐹 ), so that 𝑀∞ is a finitely generated 𝑅∞�𝐾�-module.
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Lemma 6.3. We have an isomorphism of 𝑅�
𝜌

-algebras:

𝑅∞ � 𝑅�𝜌 ⊗̂O 𝐴,

where A is a complete local Noetherian O-algebra, which is O-torsion free, reduced and equi-
dimensional. Thus, the ring 𝑅∞ is a reduced, O-torsion free and flat 𝑅�

𝜌
-algebra.

After replacing L by a finite extension, the irreducible components of Spec 𝑅∞ are of the form
Spec(𝑅�,𝜒

𝜌
⊗̂O 𝐴/𝔭), for a character 𝜒 : 𝜇𝑝∞ (𝐹) → O× and a minimal prime 𝔭 of A. Moreover, distinct

pairs (𝜒,𝔭) give rise to distinct irreducible components of Spec 𝑅∞.
Proof. The ring 𝑅∞ is defined in [14, Section 2.8] and is formally smooth over the ring denoted by 𝑅loc

in [14, Section 2.6]. The ring 𝑅loc is a completed tensor product over O of 𝑅�
𝜌

, the ring 𝑅��̃�1 , which is
formally smooth over O by [14, Lemma 2.5], and potentially semi-stable rings at other places above
p, denoted by 𝑅

�, 𝜉 ,𝜏
�̃� in [14, Section 2.4]. These are O-torsion free, reduced and equi-dimensional by

[33, Theorem 3.3.8]. Thus, 𝑅∞ � 𝑅�
𝜌
⊗̂ 𝐴, where A is formally smooth over the ring ⊗̂𝑣 ∈𝑆𝑝\𝔭 𝑅

�, 𝜉 ,𝜏
�̃� in

the notation of [14]. Since the rings 𝑅�, 𝜉 ,𝜏�̃� are O-torsion free, reduced and equi-dimensional, so is the
ring A by [14, Corollary A.2] and [29, Lemma A.1]. Since 𝑅�

𝜌
is also O-torsion free, reduced and equi-

dimensional, we obtain that the same holds for 𝑅∞. Since A is O-torsion free, 𝑅∞ is a flat 𝑅�
𝜌

-algebra.
It follows from [29, Lemma A.5] that after replacing L with a finite extension, we may assume

that for all minimal primes 𝔭 of A, the quotient 𝐴/𝔭 is geometrically integral, by which we mean that
(𝐴/𝔭) ⊗O O𝐿′ is integral domain for all finite extensions 𝐿 ′/𝐿. If 𝔭′ is a minimal prime of 𝑅�

𝜌
, then

𝑅�
𝜌
/𝔭′ = 𝑅

�,𝜒
𝜌

for a unique character 𝜒 : 𝜇𝑝∞ (𝐹) → O× by Corollary 4.21. The moduli interpretation
of 𝑅

�,𝜒
𝜌

together with Corollary 4.19 shows that the ring is geometrically integral. It follows from
[4, Lemma 3.3 (5)] that the minimal primes 𝔮 of 𝑅∞ are of the form 𝔭′(𝑅�

𝜌
⊗̂O 𝐴) +𝔭(𝑅�

𝜌
⊗̂O 𝐴), where

𝔭′ is the image of 𝔮 in Spec 𝑅�
𝜌

and 𝔭 is the image of 𝔮 in Spec 𝐴. This implies the last assertion. �

In our arguments, we will not invoke the assumption 𝑝 � 2𝑑, since eventually this restriction used
in construction of 𝑀∞ should become redundant. In particular, the next two Lemmas do not use this
assumption.
Lemma 6.4. Let 𝜓 : 𝐺𝐹 → O× be a character such that 𝜓 is trivial on the torsion subgroup of 𝐺ab

𝐹 .
Then after replacing L by a finite extension, we may find a character 𝜂 : 𝐺𝐹 → O× such that 𝜂𝑑 = 𝜓.
Proof. It follows from local class field theory that the maximal torsion-free quotient of𝐺ab

𝐹 is isomorphic
to Ẑ×Z𝑚𝑝 , where 𝑚 = [𝐹 : Q𝑝]. We choose topological generators 𝛾1, . . . , 𝛾𝑚+1, where 𝛾1 is a generator
of Ẑ. Let 𝜓(𝛾1) be the image of 𝜓(𝛾1) in k. If it is not equal to 1, then choose 𝜆 ∈ 𝑘 such that 𝜆𝑑 = 𝜓(𝛾1).
We enlarge L, so that the residue field contains 𝜆 and let 𝜇 : Ẑ × Z𝑚𝑝 → Ẑ → O× be the unramified
character, such that 𝜇(𝛾1) is equal to the Teichmüller lift of 𝜆. After replacing 𝜓 with 𝜓𝜇−𝑑 , we may
assume that 𝜓(𝛾1) ≡ 1 (mod 𝜛). Thus, we may view 𝜓 as a character on Z𝑚+1𝑝 and 𝜓(𝛾𝑖) ≡ 1 (mod 𝜛)
for 1 ≤ 𝑖 ≤ 𝑚 + 1. After enlarging L, we may find 𝑦𝑖 ∈ (𝜛) such that (1+ 𝑦𝑖)𝑑 = 𝜓(𝛾𝑖). Since the series

(1 + 𝑦𝑖)𝑥 :=
∑∞
𝑛=0

(
𝑥
𝑛

)
𝑦𝑛𝑖 converges for all 𝑥 ∈ Z𝑝 , we may define 𝜂 on Z𝑚+1𝑝 by sending 𝛾𝑖 to 1 + 𝑦𝑖 and

then inflate it to 𝐺𝐹 . �

Lemma 6.5. Let 𝜅 : 𝐺𝐹 → O× be a character. Then there is a crystalline character 𝜓 : 𝐺𝐹 → O×
such that 𝜓𝜅−1 is trivial on the torsion part of 𝐺ab

𝐹 .
In particular, given characters 𝜅 : 𝐺𝐹 → 𝑘× and 𝜒 : 𝜇𝑝∞ (𝐹) → O×, there exists a crystalline

character 𝜓 : 𝐺𝐹 → O× lifting 𝜅 such that 𝜓(Art𝐹 (𝑧)) = 𝜒(𝑧) for all 𝑧 ∈ 𝜇𝑝∞ (𝐹).
Proof. The Artin map Art𝐹 : 𝐹× → 𝐺ab

𝐹 of local class field theory allows us to identify characters
𝜓 : 𝐺𝐹 → O× with characters 𝜓 : 𝐹× → O×. Under this identification, 𝜓 is crystalline if and only if
𝜓(𝑥) =

∏
𝜎:𝐹↩→𝐿 𝜎(𝑥)𝑛𝜎 for some integers 𝑛𝜎 and for all 𝑥 ∈ O×𝐹 by [22, Proposition B.4].
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Let 𝜁 be a generator of the torsion subgroup of 𝐹× and let m be the multiplicative order of 𝜁 . Let 𝜉 be
a primitive m-th root of unity in L. Then 𝜅(𝜁) = 𝜉𝑎 for some integer a. Let 𝜎 : 𝐹 ↩→ 𝐿 be an embedding
such that 𝜎(𝜁) = 𝜉. Let 𝜓 : 𝐹× → O× be the character 𝜓(𝑥) = 𝜎(𝑥𝜛−𝑣 (𝑥)𝐹 )𝑎 for all 𝑥 ∈ 𝐹×, where v is
a valuation on F normalized so that 𝑣(𝜛𝐹 ) = 1. Then 𝜓𝜅−1 (𝜁) = 1, and hence, 𝜓𝜅−1 is trivial on the
torsion subgroup of 𝐹×. Moreover, 𝜓 is crystalline by the above. Note that 𝜓𝜅−1 ≡ 1 (mod 𝜛).

For the last part, we may choose any 𝜅 : 𝐺𝐹 → O× lifting 𝜅 and satisfying 𝜅(Art𝐹 (𝑧)) = 𝜒(𝑧) for
all 𝑧 ∈ 𝜇𝑝∞ (𝐹) and apply the previous part. �

Lemma 6.6. Let 𝜓 : 𝐺𝐹 → O× be a character lifting det 𝜌 and let 𝑥 : 𝑅det 𝜌 → O be the corresponding
O-algebra homomorphism. Then the centre Z of G acts on 𝑀∞ ⊗𝑅det𝜌 ,𝑥 O via the character 𝛿−1, where
𝛿 : 𝑍 → O× is the composition

𝑍
�−→ 𝐹×

Art𝐹−→ 𝐺ab
𝐹

𝜀𝑑 (𝑑−1)/2𝜓
−→ O×,

where 𝜀 is the p-adic cyclotomic character.
Moreover, 𝑀∞ ⊗𝑅det𝜌 ,𝑥 O is non-zero and projective in the category of linearly compact O�𝐾�-

modules on which 𝑍 ∩ 𝐾 acts by 𝛿−1.
Further, if 𝜓 is crystalline, then there is an algebraic character 𝜃 : Res𝐹

Q𝑝
G𝑚 → G𝑚 defined over L

such that 𝛿 |𝐾∩𝑍 is equal to the composition

O×𝐹 ↩→ (Res𝐹Q𝑝
G𝑚) (Q𝑝) → (Res𝐹Q𝑝

G𝑚) (𝐿)
𝜃−→ G𝑚(𝐿),

where Res𝐹
Q𝑝

denotes the restriction of scalars.

Proof. It follows from the discussion at the beginning of [14, Section 4.22] that Z acts via 𝛿 on the
Pontryagin dual of 𝑀∞ ⊗𝑅det𝜌 ,𝑥 O. Hence, it acts on 𝑀∞ ⊗𝑅det𝜌 ,𝑥 O via 𝛿−1. The second part follows
from [14, Corollary 4.26]. The last part follows from [22, Proposition B.4] as explained in the proof of
Lemma 6.5. �

If V is a continuous representation of K on a finite dimensional L-vector space, then we define a
finitely generated 𝑅∞[1/𝑝]-module 𝑀∞(𝑉) as follows. Since K is compact, it stabilizes a bounded
O-lattice Θ in V. Let

𝑀∞(Θ) := (Homcont
O�𝐾�(𝑀∞,Θ

𝑑))𝑑 ,

where (·)𝑑 := Homcont
O (·,O). Then 𝑀∞(Θ) is a finitely generated 𝑅∞-module. The module 𝑀∞(𝑉) :=

𝑀∞(Θ) ⊗O 𝐿 does not depend on the choice of a lattice Θ.
We will denote by Irr(𝐺) the set of equivalence classes of irreducible algebraic representation of

(Res𝐹
Q𝑝

GL𝑑)𝐿 defined over L. If 𝜉 ∈ Irr(𝐺), then we will consider it as a representation of K by
evaluating at L and letting K act via the composition

𝐾 ↩→ (Res𝐹Q𝑝
GL𝑑) (Q𝑝) → (Res𝐹Q𝑝

GL𝑑) (𝐿).

If M is a compact O-module, then we define an L-Banach space

Π(𝑀) := Homcont
O (𝑀, 𝐿),

equipped with supremum norm. If M is a compact O�𝐾�-module, then the action of K on M makes
Π(𝑀) into a unitary L-Banach space representation of K. For example, the map 𝐾 → O�𝐾� induces an
isomorphism of unitary L-Banach space representations Π(O�𝐾�) � C (𝐾, 𝐿), the space of continuous
functions from K to L, with K-action given by left translations; [46, Corollary 2.2].
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Lemma 6.7. Let 𝜃 : Res𝐹
Q𝑝
G𝑚 → G𝑚 be an algebraic character defined over L and let 𝛿 : 𝑍 ∩𝐾 → O×

be the character associated to 𝜃 in Lemma 6.6. Let M be non-zero and projective in the category of
linearly compact O�𝐾�-modules on which 𝑍 ∩ 𝐾 acts by 𝛿−1. Then there is 𝜉 ∈ Irr(𝐺) such that
Homcont

𝐾 (𝑀, 𝜉∗) ≠ 0.

Proof. We may assume that M is a direct summand of O�𝐾� ⊗̂O�𝐾∩𝑍�, 𝛿−1 O since an arbitrary projec-
tive module is isomorphic to a product of indecomposable projectives, and these are direct summands
of O�𝐾� ⊗̂O�𝐾∩𝑍�, 𝛿−1 O. Then the Banach space Π(𝑀) is a non-zero direct summand C𝛿 (𝐾, 𝐿), the
subspace of C (𝐾, 𝐿) on which 𝑍 ∩ 𝐾 acts by 𝛿.

Using the theory of highest weight, we may find 𝜏 ∈ Irr(𝐺) such that the central character of 𝜏 is
equal to 𝜃. It follows from [23, Corollary 7.8] that the evaluation map⊕

𝜉 ′ ∈Irr(𝐺/𝑍 )
𝜏 ⊗ 𝜉 ′ ⊗ Homcont

𝐾 (𝜏 ⊗ 𝜉
′,Π(𝑀)) → Π(𝑀)

has dense image. Thus, there is 𝜉 ′ ∈ Irr(𝐺/𝑍) and an irreducible summand 𝜉 of 𝜏 ⊗ 𝜉 ′ such that
Homcont

𝐾 (𝜉,Π(𝑀)) ≠ 0. Dually, this implies Homcont
𝐾 (𝑀, 𝜉∗) ≠ 0. �

Theorem 6.8. The action of 𝑅�
𝜌

on 𝑀∞ is faithful.

Proof. Let 𝔭 be a minimal prime of 𝑅�
𝜌

. We have shown in Corollary 4.21 that there is a character
𝜒 : 𝜇𝑝∞ (𝐹) → 𝐿× such that 𝑅�

𝜌
/𝔭 = 𝑅

�,𝜒
𝜌

. It follows from Lemma 6.5 that there is a crystalline character
𝜓 : 𝐺𝐹 → O× lifting det 𝜌 such that 𝜓(Art𝐹 (𝑧)) = 𝜒(𝑧) for all 𝑧 ∈ 𝜇𝑝∞ (𝐹). Let 𝑥 : 𝑅det 𝜌 → O be
the corresponding O-algebra homomorphism. It follows from Lemmas 6.6, 6.7 that there is 𝜉 ∈ Irr(𝐺)
such that

Homcont
𝐾 (𝑀∞ ⊗𝑅det𝜌 ,𝑥 O, 𝜉∗) ≠ 0.

This implies that 𝑀∞(𝜉) ⊗𝑅det𝜌 ,𝑥 O ≠ 0.
Let 𝔞 be the 𝑅∞ annihilator of 𝑀∞. In [25, Theorem 6.12], it is shown, following the approach of

Chenevier [17] and Nakamura [40], that the closure in Spec 𝑅∞ of the union of the supports of 𝑀∞(𝜉 ′)
for all 𝜉 ′ ∈ Irr(𝐺) is a union of irreducible components of Spec 𝑅∞. Thus, there is a minimal prime 𝔮
of 𝑅∞ such that Supp 𝑀∞(𝜉) ⊂ 𝑉 (𝔮) ⊂ 𝑉 (𝔞).

Since 𝑀∞(𝜉) ⊗𝑅det 𝜌 ,𝑥 O ≠ 0, Lemma 6.3 implies that the image of 𝔮 in Spec 𝑅�
𝜌

is equal to 𝔭. Thus,
𝔭 contains 𝔞 ∩ 𝑅�

𝜌
, which is the 𝑅�

𝜌
-annihilator of 𝑀∞. Since 𝑅�

𝜌
is reduced by Corollary 4.22, the

intersection of all minimal prime ideals is zero, and hence, 𝑅�
𝜌

acts faithfully on 𝑀∞. �

Proof of Theorem 6.1. This is proved in the same way as [25, Theorems 5.1, 5.3]. Let us sketch the proof
in the case of Σcris for the convenience of the reader. For each 𝜉 ∈ Irr(𝐺), let 𝔞𝜉 be the 𝑅�

𝜌
-annihilator

of 𝑀∞(𝜉). It follows from [14, Lemma 4.18] that 𝑅�
𝜌
/𝔞𝜉 is a quotient of the crystalline deformation

ring of 𝜌 with Hodge–Tate weights corresponding to the highest weight of 𝜉; see [14, Section 1.8],
[23, Remark 5.14]. Moreover, 𝑅�

𝜌
/𝔞𝜉 is a union of irreducible components of that ring. This implies that

𝑅�
𝜌
/𝔞𝜉 is reduced and O-torsion free. The set Σcris contains the set of maximal ideals of (𝑅�

𝜌
/𝔞𝜉 ) [1/𝑝].

Since (𝑅�
𝜌
/𝔞𝜉 ) [1/𝑝] is Jacobson, if 𝑎 ∈ 𝑅�

𝜌
is contained in the intersection of all maximal ideals in

Σcris, then a will annihilate 𝑀∞(𝜉) for all 𝜉 ∈ Irr(𝐺). The continuous L-linear dual of 𝑀∞(𝜉) can be
identified with Hom𝐾 (𝜉,Π(𝑀∞)). The key point is that the image of the evaluation map⊕

𝜉 ∈Irr(𝐺)
𝜉 ⊗𝐿 Hom𝐾 (𝜉,Π(𝑀∞)) → Π(𝑀∞) (35)

is dense. Thus, a will annihilate the left-hand side of (35), and by density it will annihilate Π(𝑀∞). The
continuous L-linear dual of Π(𝑀∞) can be identified with 𝑀∞[1/𝑝]. Since 𝑅�

𝜌
is O-torsion free and

𝑅�
𝜌

acts faithfully on 𝑀∞, by Theorem 6.8, we deduce that 𝑎 = 0.
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If Σ = Σprnc
𝑘 or Σspcd

𝑘 , then the argument is the same, except that instead of considering all 𝜉 ∈ Irr(𝐺),
one fixes 𝜉 ∈ Irr(𝐺), such that the highest weight of 𝜉 corresponds to the Hodge–Tate weights 𝑘 and
one considers the family 𝜉 ⊗𝐿 𝑉 , where V are principal series or appropriate supercuspidal types; see
the proof of Theorems 5.1, 5.3 in [25] for more details. �

Remark 6.9. It is natural to ask whether the ring 𝑅∞ acts faithfully on 𝑀∞. We cannot answer this
question in general since it boils down to whether every irreducible component of the potentially semi-
stable rings 𝑅�, 𝜉 ,𝜏�̃� (see the proof of Lemma 6.3, where 𝑣 ∈ 𝑆𝑝 \𝔭 is a place above p, different from the
place at which the patching construction is carried out) has a point corresponding to an automorphic
Galois representation. These questions are connected with modularity lifting theorems and the Fontaine–
Mazur conjecture; see [14, Remark 4.20].

However, if all 𝑅�, 𝜉 ,𝜏�̃� were integral domains, then the ring A in Lemma 6.3 would also be an integral
domain, and we would deduce from the proof of Theorem 6.8 that 𝑅∞ acts faithfully on 𝑀∞. A further
possibility is to avoid the modularity lifting related issues by carrying out the patching construction of
[14] at all places above p at once. Then the proof of Theorem 6.8 would carry over in this new setting
to show that 𝑅∞ acts faithfully on 𝑀∞.

Remark 6.10. In [7], which is a sequel to this paper, we have proved the density of Σcris in the rigid
analytic space (Spf 𝑅�

𝜌
)rig associated to the formal scheme Spf 𝑅�

𝜌
by making a strong use of [24] to

show that Σcris is non-empty. This, in turn, implies Theorem 6.1 for Σcris without any restrictions on the
prime p; see [7, Corollary 5.2]. However, the sets Σprnc

𝑘 and Σspcd
𝑘 for a fixed regular 𝑘 are not Zariski

dense in (Spf 𝑅�
𝜌
)rig, and the argument explained in this section is the only known method to approach

the density result in Theorem 6.1 in these cases. We also find Theorem 6.8 to be an interesting result in
its own right: if one believes the expectation in [14, Section 6] that 𝑀∞ should realize the conjectural
p-adic Langlands correspondence, then Theorem 6.8 has to hold.

A. Kummer-irreducible points

The purpose of the appendix is to slightly generalize the notion of non-special points in
𝑋

ps
= Spec 𝑅ps/𝜛 in [9, Definition 5.1.2]. We use the notation of the main text. In particular, 𝜁𝑝 is a

primitive p-th root of unity in a fixed algebraic closure 𝐹 of F. If 𝑥 ∈ 𝑋ps, then we let 𝐷𝑥 = 𝐷𝑢 ⊗𝑅ps 𝜅(𝑥),
where 𝜅(𝑥) is an algebraic closure of the residue field at x, and we let 𝜌𝑥 : 𝐺𝐹 → GL𝑑 (𝜅(𝑥)) be the
semisimple representation whose pseudo-character is 𝐷𝑥 .

Definition A.1. We say that 𝑥 ∈ 𝑃1 (𝑅ps/𝜛) is Kummer-irreducible if the restriction of 𝐷𝑥 to 𝐺𝐹 ′

is absolutely irreducible for all degree p Galois extensions 𝐹 ′ of 𝐹 (𝜁𝑝). Otherwise, we say that x is
Kummer-reducible.

Thus, x is Kummer-irreducible if and only if 𝜌𝑥 |𝐺𝐹 (𝜁𝑝 ) is non-special in the sense of
[9, Definition 5.1.2]. In particular, if 𝜁𝑝 ∈ 𝐹, then both notions coincide. Our main interest in this
notion is the following Lemma.

Lemma A.2. If x is Kummer-irreducible, then 𝐻2(𝐺𝐹 , ad0𝜌𝑥) = 0.

Proof. Since the order of Gal(𝐹 (𝜁𝑝)/𝐹) is prime to p, we have

𝐻2 (𝐺𝐹 , ad0𝜌𝑥) � 𝐻2 (𝐺𝐹 (𝜁𝑝) , ad0𝜌𝑥)Gal(𝐹 (𝜁𝑝)/𝐹 ) .

Since x is Kummer-irreducible, the restriction of 𝜌𝑥 to 𝐺𝐹 (𝜁𝑝) is non-special, and it follows from
[9, Lemma 5.1.1] that 𝐻2(𝐺𝐹 (𝜁𝑝) , ad0𝜌𝑥) = 0. �

If 𝐸 ⊂ 𝐹 is a finite extension of F, then we denote by 𝑅
ps
𝐸 the universal ring for deformations of the

pseudo-character 𝐷 |𝐺𝐸 . We let 𝑋ps
𝐸 = Spec 𝑅ps

𝐸 , 𝑈irr
𝐸 the absolute irreducible locus in 𝑋

ps
𝐸 and 𝑈

n-spcl
𝐸
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the non-special locus in𝑈irr
𝐸 . These are open subschemes of 𝑋ps

𝐸 . Let𝑈spcl
𝐸 be the complement of𝑈n-spcl

𝐸
of 𝑈irr

𝐸 . We drop the subscript E, when 𝐸 = 𝐹.

Lemma A.3. If 𝐸 ⊂ 𝐹 is a finite extension of F, then the morphism 𝑟 : 𝑋ps → 𝑋
ps
𝐸 , induced by

restriction of pseudo-characters of 𝐺𝐹 to 𝐺𝐸 , is finite.

Proof. The proof is similar to the proof of Proposition 3.24. The map 𝑅
ps
𝐸 → 𝑅ps is a local homo-

morphism of complete local rings with residue field k. Topological Nakayama’s lemma implies that
it is enough to show that the fibre ring 𝑆 := 𝑅ps/𝔪𝑅ps

𝐸
𝑅ps is a finite dimensional k-vector space,

which amounts to showing Spec 𝑆 = {𝔪𝑆}. We note that S represents the functor of deformations
𝐷𝐴 : 𝐴[𝐺𝐹 ] → 𝐴 of 𝐷 to local artinian k-algebras A such that 𝐷𝐴 |𝐺𝐸 = 𝐷 |𝐺𝐸 ⊗𝑘 𝐴.

Let y be any point of Spec 𝑆 with associated pseudo-character 𝐷𝑦 and semisimple representation
𝜌𝑦 : 𝐺𝐹 → GL𝑑 (𝜅(𝑦)). The restriction 𝜌𝑦 |𝐺𝐸 is semisimple, cf. [9, Lemma 2.1.4], and its associated
pseudo-character is 𝐷 |𝐺𝐸 ⊗𝑘 𝜅(𝑦), so that 𝜌𝑦 (𝐺𝐸 ) is finite. Hence, 𝜌𝑦 (𝐺𝐹 ) is finite, and therefore, 𝐷𝑦
is defined over a finite field 𝑘 ′ ⊃ 𝑘 . This shows that the corresponding ring map 𝑆 → 𝜅(𝑦) factors via
𝑘 ′, and thus its kernel y is the maximal ideal 𝔪𝑆 . �

We define the Kummer-reducible locus in 𝑈irr as

𝑈Kred := 𝑈irr ∩
(⋃
𝐹 ′

𝑟−1(𝑋ps
𝐹 ′ \𝑈irr

𝐹 ′ )
)
,

where the union is taken over all degree p Galois extensions 𝐹 ′ of 𝐹 (𝜁𝑝). Since there are only finitely
many such extensions, 𝑈Kred is closed in 𝑈irr. We define the cyclotomic-reducible locus in 𝑈irr as

𝑈Cred := 𝑈irr ∩ 𝑟−1(𝑋ps
𝐹 (𝜁𝑝) \𝑈

irr
𝐹 (𝜁𝑝) ).

This is also a closed subset of 𝑈irr and is contained in 𝑈Kred. If F does not contain a primitive p-th root
of unity, then 𝑈Cred = 𝑈spcl, and 𝑈Cred = ∅ otherwise.

Lemma A.4. We have 𝑈spcl ⊂ 𝑈Kred. Moreover, the inclusion is an equality if F contains a primitive
p-th root of unity.

Proof. If 𝜁𝑝 ∈ 𝐹, then the definitions of 𝑈Kred and 𝑈spcl coincide. If 𝜁𝑝 ∉ 𝐹, then 𝑦 ∈ 𝑈spcl if and only
if 𝐷𝑦 is irreducible and the restriction of 𝐷𝑦 to 𝐺𝐹 (𝜁𝑝) is reducible. If we further restrict 𝐷𝑦 to 𝐺𝐹 ′ ,
where 𝐹 ′ is any degree p Galois extension of 𝐹 (𝜁𝑝), then the pseudocharacter remains reducible. Thus,
𝑦 ∈ 𝑈Kred. �

Lemma A.5. Let T be a locally closed subset of 𝑈irr, let 𝑇 be its closure in 𝑈irr and let Z be its closure
in 𝑋

ps. Then dim𝑇 = dim𝑇 and dim 𝑍 = dim𝑇 + 1.

Proof. Since 𝑈irr is open in 𝑋
ps, T is locally closed in 𝑋

ps. Thus, T is open in Z. Lemma 3.18 (5)
applied with Spec 𝑅 = Spec 𝑆 = 𝑍 and 𝑈 = 𝑇 implies that dim 𝑍 = dim𝑇 + 1. Since 𝑇 is contained in
𝑈irr, it does not contain the closed point of 𝑋ps. Thus 𝑇 ⊂ 𝑍 \ {𝔪𝑅ps }. Since Z is the spectrum of a local
ring, dim(𝑍 \ {𝔪𝑅ps }) = dim 𝑍 − 1. We conclude that dim𝑇 ≤ dim 𝑍 − 1 = dim𝑇 . Since 𝑇 contains T,
dim𝑇 ≤ dim𝑇 . �

Remark A.6. The equality dim𝑇 = dim𝑇 in Lemma A.5 may also be deduced from [48, Tag 0DRT],
which applies in a more general context.

Lemma A.7. We have

dim𝑈irr − dim𝑈Cred ≥ 1
2
𝑑2 [𝐹 : Q𝑝] ≥ 2.
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Proof. It follows from [9, Theorem 5.5.1] and Lemma A.5 that

dim𝑈irr = 𝑑2 [𝐹 : Q𝑝] . (36)

If 𝜁𝑝 ∈ 𝐹, then 𝑈Cred is empty and the required bound follows. If 𝜁𝑝 ∉ 𝐹, then 𝑈Cred = 𝑈spcl, and it
follows from [9, Theorem 5.4.1 (a)] and Lemma A.5 that dim𝑈spcl ≤ 1

2𝑑
2 [𝐹 : Q𝑝]. �

Lemma A.8. We have

dim𝑈irr − dim𝑈Kred ≥ 𝑑 [𝐹 : Q𝑝] ≥ 2.

Proof. It follows from [9, Lemma 5.1.1] that the preimage of 𝑈spcl
𝐹 (𝜁𝑝) in 𝑋

ps under the morphism

𝑟 : 𝑋ps → 𝑋
ps
𝐹 (𝜁𝑝) from Lemma A.3 with 𝐸 = 𝐹 (𝜁𝑝) is equal to 𝑈Kred \ 𝑈Cred. Thus, the induced

morphism 𝑟 : 𝑈Kred \𝑈Cred → 𝑈
spcl
𝐹 (𝜁𝑝) is also finite. We deduce

dim(𝑈Kred \𝑈Cred) ≤ dim𝑈
spcl
𝐹 (𝜁𝑝)

from [48, Tag 01WG].
Since 𝐹 (𝜁𝑝) contains a primitive p-th root of unity, [9, Lemma 5.1.1] implies that if p does not divide

d, then 𝑈spcl
𝐹 (𝜁𝑝) is empty; thus, 𝑈Kred = 𝑈Cred, and the required bound follows from Lemma A.7.

Let us assume that p divides d. Part (a) of [9, Theorem 5.4.1] applied with 𝐾 = 𝐹 (𝜁𝑝) bounds the
dimension of 𝑈spcl

𝐹 (𝜁𝑝) by 1
2𝑑

2 [𝐹 (𝜁𝑝) : Q𝑝] from above. The 1
2 in this estimate appears by estimating

[𝐾 ′ : 𝐾] ≥ 2 (see the proof of [9, Theorem 5.4.1] for the notation; 𝐾 ′ corresponds to our 𝐹 ′). If K
contains a p-th root of unity, then it follows from Case II of [9, Lemma 5.1.1] that [𝐾 ′ : 𝐾] = 𝑝. Since
𝐹 (𝜁𝑝) contains a p-th root of unity, the argument in the proof of [9, Theorem 5.4.1] gives us

dim𝑈
spcl
𝐹 (𝜁𝑝) ≤ (𝑑/𝑝)

2 [𝐹 ′ : Q𝑝] =
[𝐹 (𝜁𝑝) : 𝐹]

𝑝
𝑑2 [𝐹 : Q𝑝] .

Since [𝐹 (𝜁𝑝) : 𝐹] ≤ 𝑝 − 1, we conclude that

dim(𝑈Kred \𝑈Cred) ≤ 𝑝 − 1
𝑝

𝑑2 [𝐹 : Q𝑝] .

Lemma A.5 implies that the same bound holds for the dimension of the closure of𝑈Kred \𝑈Cred in𝑈irr.
Lemma A.7 gives the bound

dim𝑈Cred ≤ 1
2
𝑑2 [𝐹 : Q𝑝] .

Thus,

dim𝑈Kred ≤ 𝑝 − 1
𝑝

𝑑2 [𝐹 : Q𝑝] .

Since dim𝑈irr = 𝑑2 [𝐹 : Q𝑝] by (36), we obtain

dim𝑈irr − dim𝑈Kred ≥ 𝑑

𝑝
𝑑 [𝐹 : Q𝑝] ≥ 𝑑 [𝐹 : Q𝑝] ≥ 2,

where we have used that p divides d in the second inequality. �
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Proposition A.9. There exists an open dense subscheme 𝑈Kirr ⊂ 𝑈irr such that 𝑥 ∈ 𝑃1 (𝑅ps/𝜛) is
Kummer-irreducible if and only if x is a closed point in 𝑈Kirr. Moreover,

dim𝑈irr − dim(𝑈irr \𝑈Kirr) ≥ 𝑑 [𝐹 : Q𝑝] ≥ 2.

Proof. Let𝑈Kirr be the complement of𝑈Kred in𝑈irr. Since𝑈Kred is closed in𝑈irr,𝑈Kirr is open in𝑈irr.
If 𝑦 ∈ 𝑈irr, then y lies in 𝑈Kred if and only if there exists a degree p Galois extension 𝐹 ′ of 𝐹 (𝜁𝑝) such
that 𝐷𝑦 |𝐺𝐹′ is reducible. If 𝑦 ∈ 𝑋

ps is not the closed point and 𝐷𝑦 |𝐺𝐹′ is irreducible for all such 𝐹 ′,
then 𝐷𝑦 is irreducible, and hence 𝑦 ∈ 𝑈Kirr. It follows from Lemma 3.18 (4) that 𝑈Kirr ∩ 𝑃1 (𝑅ps/𝜛) is
the set of closed points in 𝑈Kirr. The bound for the difference of dimensions follows from Lemma A.8.
Since 𝑈irr is equi-dimensional by [9, Theorem 5.5.1], this implies density. �
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