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Systems of first order differential equations frequently occur in disparate fields spanning all of the
sciences. Examples include the population evolution of interacting species in an ecosystem, the con-
centrations of molecules in a chemical reaction, the production of goods, the price of supplies in
economic processes and so on. These equations also describe the dynamical scattering of electrons in
a periodic lattice potential, in which case they are known as the Darwin-Howie-Whelan (DHW) equa-
tions. The DHWs describe how the probability amplitude of an electron wave changes as a function
of depth in a crystal. This change depends on the difraction geometry and on the mutual interaction
strength of different diffracted beams [1]. The equations are often written as:

dψg

dz
− 2πisgψg = iπ

∑
g′

eiθg−g′

qg−g′
ψ′g,

where ψg is the amplitude of the beam diffracted by the lattice planes corresponding to the reciprocal
lattice vector g, sg represents how well the Bragg condition is satisfied for the planes g, and qg−g′
describes the strength of interaction between the beams g and g′. The equations are commonly written
in the form of a matrix equation, given by:

dS

dz
= iAS, Agg′ =

{
2πsg g = g′
π

qg−g′
g 6= g′

where S is the column vector of unknown diffracted amplitudes and A is the structure matrix; the
diagonal entries ofA contain the diffraction geometry via the excitation errors sg, and the off-diagonal
elements represent the beam interactions. The equations have a well-known solution of the form
S(z0) = eiAz0S(0) = S(z0)S(0), relating the amplitude at depth z0 to the initial amplitude, which in-
volves computation of the exponential of the structure matrix, resulting in the scattering matrix, S(z0).

The presence of a lattice defect usually implies a broken translational crystal symmetry, resulting in
atoms being displaced from their regular positions. Thus, a defect is usually quantified by a dis-
placement field, R(r), that may vary continuously (e.g., misfitting inclusions and dislocations) or
discontinuously (e.g., stacking faults) from one position to another. While there are other approaches
to compute the amplitude changes of electrons traversing a periodic lattice (e.g., Bloch waves), the
scattering matrix approach is particularly well suited for defect simulations as the defect contributions
appear as phase factors in the off-diagonal terms only, while the overall structure of the equation re-
mains intact [1]. The modified DHW equations, in the presence of one or more defects, take on the
form: dψg

dz
− 2πisgψg = iπ

∑
g′

eiθg−g′

qg−g′
e−iαg−g′ψ′g,

where αg ≡ 2πg ·R(r), with R(r) the total displacement at position r due to the superposition of all
individual defect displacement fields. It should be noted that the defect phase shifts can be written in
matrix form as Pgg′(r) = e−iαg−g′ , where the diagonal of the matrix contains 1s. Hence, the structure
matrix in the presence of a defect is modified as Adgg′(r) = Agg′Pgg′(r), where the matrix product
is performed element by element instead of as a regular matrix product. This decomposition into a
perfect crystal factor A and a defect factor P has important consequences for the efficient numerical
implementation of defect image simulations.
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Recently, Graphics Processing Units (GPUs) have become very popular for high performance com-
puting applications, allowing for heterogeneous combinations of GPUs and CPUs to carry out compu-
tationally intensive tasks in a massively parallel way. The GPU has a very different memory structure
and programming model from traditional serial programs; while the performance gain may be signif-
icant, the development effort and time involved in GPU programming is usually rather substantial. In
this contribution, we present a new GPU-based algorithm for defect image simulations using the scat-
tering matrix approach. In a typical CPU implementation, the intensity of each image pixel would be
calculated in a sequential fashion; incorporation of multi-core techniques, for instance through the use
of OpenMP constructs, can accelerate the computation, but even in the best case scenario, the speed-
up factor is usually less than the number of available cores. The GPU-based algorithm subdivides the
image into smaller blocks and performs the computation of all pixels in a sub-block simultaneously.
The perfect crystal structure matrix A is stored in global GPU memory, whereas the series of defect
phase factor matrices Pj for each of the slices j along the integration column is stored in the local work
item memory. The exponential of the defect structure matrixAd is then calculated for each slice using
scaling and squaring combined with the optimized Taylor expansion, considering the first nine terms
in the expansion [2]. Multiplication of the first slice scattering matrix S1 with the initial probability
amplitudes at the entrance surface, followed by repeated matrix-vector multiplications then completes
the integration along the column. Such an approach minimizes the amount of data transfer between
the CPU and the GPU, which would otherwise dominate the overall computation time.

The scattering matrix formalism, as implemented on a GPU platform, provides a unified approach for
defect image simulations for both the Transmission Electron Microscope (TEM) forescatter geometry
and the Scanning Electron Microscope (SEM) backscatter geometry. The intensity of an image pixel
in a TEM image is essentially given by the squared modulus of the relevant electron wave function
component at the sample exit plane, i.e. |ψg(z0)|2, where g = 0 for bright field images, and g 6= 0
for dark field mode. STEM-mode diffraction contrast simulations can also be implemented by prop-
erly integrating the intensities over those diffracted beams that reach the detector [3]. For SEM image
modes, the detected signal is typically given by a depth-integrated intensity. The observed backscat-
tered intensity in an SEM can be described as [4]:

P(k) =
∑
i∈S

Z2
iDWi

z0

∫ z0

0

λ(z)|Ψ(ri)|2dz

where, Zi and DWi are the atomic number and Debye-Waller factor of the atom at the ith lattice
site, λ(z) is a weight factor to account for the variation in the number of backscattered electrons as
a function of depth and z0 is the maximum depth from which the electrons are backscattered; both
parameters are computed via Monte Carlo trajectory simulations. The GPU-based scattering matrix
approach provides a fast and efficient algorithm for defect image computations for both TEM and SEM
mode; examples of simulation results will be provided, as well as an analysis of the speed-up achieved
by moving from CPU to GPU-based computations.
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