
Acta Genet Med Gemellol 32:127-137 (1983) 
The Mendel Institute/Alan R. Liss, Inc. 

Received 14 March 1983 

Twin Concordance for a Binary Trait. 
/. Statistical Models Illustrated With 
Data on Drinking Status 
Murray C. Hannah, John L. Hopper, and John D. Mathews 

Department of Medicine, University of Melbourne, Royal Melbourne Hospital, 
Victoria, Australia 

A flexible method based on maximum likelihood theory is introduced for the analysis of binary 
response data in twins. The method allows for explanatory variables such as age and sex, is free of 
the untestable distributional assumption of bivariate normality of liability, and makes more efficient 
use of the data available. The method is illustrated with preliminary data on drinking status in adult 
twins. Although there is some bias in the ascertainment of male dizygous twins, the results suggest 
that monozygous twins are more concordant than dizygous twins for drinking status. 
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INTRODUCTION 

Suppose we are interested in a binary trait, typically a disease or condition which may be 
diagnosed as present or absent. A useful way to gather information regarding the influence 
of genes on the occurrence of a trait is to compare the concordance rates for monozygotic 
(MZ) and dizygotic (DZ) twins. Any differences occurring between the individuals of an 
MZ twin pair must be attributable to the environment alone, since their genetic composi
tion is the same. Furthermore, if we are prepared to assume that the environmental 
variability within pairs is the same for both types of twins, then the degree to which the 
within-pair MZ correlation exceeds the within-pair DZ correlation should reflect the 
extent to which genetic variability effects the occurrence of the trait. 

If the trait is rare, to overcome problems associated with the ascertainment of affected 
individuals it is usual to base inference on the proband concordance rate defined as the 
proportion of co-twins with the trait for affected individuals independently ascertained. 
This definition is simple in practice and leads to an estimate of concordance which is 
independent of the ascertainment probability [11]. 

Often the probability of trait occurrence depends upon other explanatory variables, 
such as age, which are perfectly matched within pairs, and which cannot properly be 
regarded as being either "genetic" or "environmental" causes of variation. Such con
founding variables will tend to artificially inflate the concordance rates for both MZ and 
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DZ twins. For example, if the trait or disease incidence increases with age, the concor
dance rate will tend to be higher among older twins simply due to the effect of age on the 
probability of occurrence, and not because of any effect of age on the intrinsic correlation 
between twins. Therefore, as argued by Smith [11] and others, it is important to distin
guish between the concordance rate and the intrinsic correlation between twins. In this 
paper we describe a flexible and elegant parameterisation which emphasises this distinc
tion, which is efficient in its use of the data, and which can be generalised to allow for the 
effects of either qualitative or quantitative confounding variables on the concordance rate. 
We illustrate the method with twin data on drinking status. 

MATERIALS AND METHODS 
Statistical Model 
Consider a binary trait measured on a single pair of twins. Let Xk be 1 if the trait is present, and 0 if the 
is absent in twin k, with IIk the probability of occurrence of the trait twin k, k= 1,2. The probabilities, 
Py, of all four possible outcomes may be summarised in a 2 x 2 table (Table 1). 

Each Pjj may be written as a function of IT], n 2 and the within pair correlation coefficient p. To derive this 
function, consider 

P„ = E(X|X2) = Cov(X,,X2) + E(X|)E(X2) = pa,o2 + n , n 2 , 

where a\ = n, (1-IL), i= l , 2 [10]. This implies 

Pn =n,n2 + p{n, ( l-n^nad-nj)}"2. 

For simplicity of exposition, suppose II is dependent upon only age and sex, so that for like-sex twin 
pairs II | = II2, and from Table 1, 

Pn = n2 + pna-n), 
p,2 = n ( i - n ) - P n ( i - n ) = p2,, 
p22 = ( i - r t ) 2 + p n ( i - n ) . 

Under this model the distinction between the proband concordance rate, Pt, and the correlation, p, is 
clearly seen if we write 

pc = p{x2=i|x, =1} = n + p(i-m. (2) 

Pc is equivalent to the conditional probability of the second twin being affected, given that the first is affected 
(or vice versa). It is seen that Pc is dependent on n , the probability of being affected, as well as on p, the 
correlation coefficient. 

Having established a basic model for a single twin pair, we extend it to describe the essentials of a 
heterogeneous sample of N like-sex twin pairs. Logistic regression [3] may be used to model the dependence 

TABLE I. Probabilities for a Binary Trait Measured on a Twin Pair 

Twin 1 
X, = 1 X, = 0 

Twin 2 X2 = 1 P,, P,2 II2 

X2 = 0 P21 P22 1 - n 2 

n , i - n , i__ 

Xk is 1 if the trait is present, and 0 if the trait is absent in twin k, and n^ is the probability of occurrence of the 
trait in twin k, k = l,2. 

(1) 
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of n on a vector of explanatory variables z . To do this we write y = a' _z , where a is a vector of real 
constants, and 

n = e* / (1 + e*). (3) 

In general, p may be different for each combination of sex and zygosity and, like II, may also depend upon 
explanatory variables such as age (see Appendix A). However, here we will assume p to be dependent on sex 
and zygosity alone. 

Thus for each twin pair the probability of the observed outcome may be written in terms of the above 
parameters and the observed explanatory variables. Under the (weak) assumption of independence twin 
pairs, the log likelihood function of the parameters given the entire sample of (x, TL_ ) N like-sex MZ and 
DZ twins is the sum of the logs of these probabilities: 

N 
LL( £ ) a; x, z ) = E loge P{xn; zn, £, a }, (4) 

~ n = l 

where K„= (xn|,x„2) is the observed binary trait vector for the n'h twin pair, _z„ is the vector of explanatory 
variables for the n,h pair, p_ = (Pmmz.Pfmz.Pmdz.Pfdz) ar |d a = (om,Of), the subscripts referring to the 
combinations of sex and zygosity. The probabilities in (4) are calculated using the parameterisations (1) and 
(3). A computer routine (eg [5]) is needed to maximize the log likelihood and obtain the maximum likelihood 
estimate (MLE) of all parameters. LL is a regular function composed of log, exponential and polynomial 
functions, and inference can be drawn using results of asymptotic likelihood theory: asymptotic normality of 
estimators, likelihood ratio tests for model selection, and so on (see, for example, [4]). In Appendix C some 
MLEs and their asymptotic standard errors are derived analytically for the simplest case. 

RESULTS 
An Application to Data on Alcohol Consumption 

To illustrate the utility of this model we have applied it to data on the drinking habits of a 
sample of 181 pairs of like-sex adult twins who attended a voluntary interview and medical 
examination as part of a study of cardiovascular risk factors. This sample was ascertained 
from twins living in Melbourne and registered with the Australian National Health and 
Medical Research Council Twin Registry. The invited sample consisted of equal numbers 
of male and female, and equal numbers of MZ and DZ pairs, but otherwise was drawn at 
random from the registry. 

Information on drinking habits was obtained using a self-administered questionnaire 
and the responses, checked for completeness and consistency at face-to-face interview, 
were used to calculate alcohol consumption in grams per week. For these analyses twins 
have been arbitrarily categorised as nondrinkers if they consume less than 30 gm alcohol 
per week, and otherwise as drinkers; the binary outcome is drinking status (drinker or 
nondrinker). 

The numbers of twin pairs in the study, by sex, zygosity and drinking status, are given 
in Table 2. Seventy-five pairs were invited for interview from each sex by zygosity 
category. However, the last line of Table 2 shows a significant sex by zygosity interaction 

TABLE 2. Zygosity, Sex, and Drinking Habits of 181 Like-Sex Twin Pairs 

Neither is a drinker 
Discordant for drinking 
Both are drinkers 

Total 

MZ 

19 
14 
19 

52 

Male 

DZ 

7 
16 
8 

31 

MZ 

23 
11 
11 

45 

Female 

DZ 

28 
15 
10 

53 

Total 

77 
56 
48 

181 
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in the number of pairs responding (P = 0.03), and therefore we must be conscious of 
possible selection biases when interpreting the results. 

A preliminary log-linear analysis, using GLIM (Generalized Linear Interactive Mod
eling) [1], of the proportion of drinkers, conditional upon the observed numbers in each 
sex by zygosity subtotal, shows a clear sex difference (P = 0.003) but no significant 
zygosity effect (P = 0.8) nor a sex by zygosity interaction (P = 0.6). 

The 362 sample individuals range in age between 18 and 70 years. Plots of the (logit) pro
portion of drinkers against age-group are suggestive of a quadratic relationship (Figs. 1,2). 

Table 3 lists the parameters of our basic "saturated" model (Model 1), together with 
their MLEs and standard errors (estimated using the inverse observed information matrix; 
see [4,5]. For each sex a separate logistic regression model is fitted, given by y = /c + at 
+ /3t2 where t is (a simple monotone function of) age in years (see Appendix B). In Table 
3, n o is the inverse logit of the constant term K; n o = e«/(l +e"). 

Differences Between Males and Females 

Table 3 indicates that there is little difference between the correlation estimates for males 
and females, with a possible exception for the DZ twin correlations. We test for a 
difference between these two correlations by using the asymptomatically standard normal 
variate 

r̂  Pmdz ~~ Pfdz , rC 

Z. = —rjj = — 1. o J , 

{Varpmdz + Varp f d z }" z 

which implies P - 0.10 (two-sided). 
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Fig. I. Logit ofP, the proportion of drinkers among males, against age. Plotted points represent the observed 
proportion of drinkers in age groups of at least twenty individuals, and are plotted against the mean age of the 
group. The continuous curve is given by the fitted logistic model for males (Model I, Table 3) with the age 
transformation given in Appendix B. 
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Fig. 2. Logit of P, the proportion of drinkers among females, against age. Plotted points represent the 
observed proportion of drinkers in age groups of at least twenty individuals, and are plotted against the mean 
age of the group. The continuous curve is given by the fitted logistic model for females (Model 1, Table 3) with 
the age transformation given in Appendix B. 

TABLE 3. Parameters and Estimates for the Saturated Model, Model I 

MLEa 
SE" 

Male MZ correlation 
Female MZ correlation 
Male DZ correlation 
Female DZ correlation 
Male mean probability 
Female mean probability 
Male linear age adjustment 
Female linear age adjustment 
Male quadratic age adjustment 
Female quadratic age adjustment 

Pmmz 

Pfmz 

Pmdz 

Pfd? 

U mo 

nr„ 

a{ 

/ 3 m 

ft 

0.46 
0.42 

-0.05 
0.33 
0.47 
0.34 
0.62 
1.18 

-0.31 
-0.87 

0.12 
0.15 
0.18 
0.14 
0.10 
0.08 
0.83 
0.84 
0.37 
0.42 

The maximized log likelihood is LL| = - 183.10. 
"Maximum likelihood estimate. 
bAsymptotic standard error, derived from observed inverse information matrix. 

There is little difference between the male and female MZ twin correlation estimates, 
which if pooled give a new model (Model 2) with 

pmz = 0.45 (SE = 0.09) and LL2 = -184.02. 

Pooling the DZ correlations (as well as the MZ correlations) across sexes (Model 3) 
gives 

Pmz = 0-44 (SE = 0.09),pdz = 0.18 (SE = 0.11), and LL3 = -185.36. 

If each of the remaining parameters, n o , a and /3, are combined over sex (Model 4) 
there is a decrease in the log likelihood to LL4 = —190.62. This may be used to perform 
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a likelihood ratio (LR) test [3,4]: -2(LL4-LL3) = 10.54, which as a \\ variate gives P 
< 0.02, indicating a significant difference in drinking habits between sexes. 

Differences Between MZ and DZ Correlations 

Although the DZ correlation estimates for males and females are suggestive of a sex 
difference, both are strictly less than the estimates for the MZ correlations, and there is 
some justification for comparing the pooled values pm z and pdz given under Model 3 
above. 

{Varpmz + Varpd z - 2Cov(pmz,pdz)}' 
Z = T T T — ; , „ . TZ ^ 7 7 - ^ r-T7T72= 1-K), (5) 

implying P = 0.036 (one-sided). 
The model with only one correlation parameter for all sex and zygosity categories 

(Model 5), has log likelihood LL5 = -186.96. The LR test for a general difference 
between pm z and pdz is given by comparing -2(LL5-LL3) = 3.22 with the xl distribu
tion, which implies P = 0.073. Due to the nondirectionality of the LR test this is about 
twice the P value obtained using (5). 

Using the estimates and standard errors given for Model 1 (Table 3) it is seen that, 
taken individually, the difference between MZ and DZ correlations is significant for males 
(P = 0.01 , one-sided), but not significant for females (P — 0.34, one-sided). 

The Adjustment for Age 

For Model 6 the age adjustment terms are excluded from the saturated model and the 
estimates given in Table 4. The correlation estimates are slightly inflated due to the 
absence of any age adjustment. 

TABLE 4. Parameters and Estimates With No Age Adjustment, Model 6 

Pmm? 

Pfmr. 

Pimi?. 

/>fd/ 

n„, 
nf 

MLE 

0.46 
0.47 

-0 .03 
0.36 
0.51 
0.35 

SE 

0.12 
0.14 
0.18 
0.14 
0.04 
0.04 

100 x SE 

MLE 

26% 
30% 
— 

39% 
8% 

11% 

The maximized log likelihood is LL6 = - 188.49. 

TABLE 5. Liability Threshold Model Estimates 

Proband 
concordance 100 x Vr 

Male MZ 
Female MZ 
Male DZ 
Female DZ 

rate 

0.73 
0.67 
0.50 
0.57 

r 

0.65 
0.80 

-0.02 
0.60 

V r l / 2 

0.33 
0.43 
0.45 
0.37 

r 

51% 
54% 

— 
62% 
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The joint LR test of significance of the four age adjustment parameters gives an 
approximate \4 variate of —2(LL6 —LL|) = 8.98, 0.05 < P < 0.10. The age dependence 
is no doubt masked by the nonuniform age distribution of our sample; 50% are aged 
between 20 and 30 years while relatively few are older than 50 or younger than 20 years. 

The curves in Figures 1 and 2, derived from the maximum likelihood estimates in 
Table 3, are given by y = loge {no/(l - no)} + dt + /3t2. They appear to fit the data well 
when compared with the observed proportions of drinkers across age groups. 

Comparison With Liability Threshold Method for Analysis of Twin Data 

The raw data (Table 2) have also been analysed using the liability threshold method [11]; 
the estimated proband concordance rates (Pc), the correlation coefficient of liability (r) 
and its standard error (Vr

1/2) are given in Table 5. The correlation coefficients calculated 
by this method are all greater than those of Table 4, and although the two sets of 
correlation coefficients provide consistent summaries of the data, they have different 
interpretations (see Discussion). 

DISCUSSION 

Our method for the analysis of twin concordance rates for a binary trait has several 
obvious advantages. Firstly, it can allow for the effects of confounding factors, such as 
age and sex, that might otherwise cause the twin correlation estimates to be inflated for 
reasons which cannot be attributed to either genetic or environmental causes. Secondly, 
as the model is formulated in terms of the sample likelihood, likelihood ratio criteria can 
be used to assess the need for additional parameters in the model. 

Kaprio et al [6] have also considered the analysis of twin concordance data, but only 
for explanatory or confounding variables which are qualitative. Their work is useful, but 
suffers because they use a definition of concordance which ignores the information 
provided by discordant twin pairs, secondly because they have not extended their model 
to allow for the confounding effects of quantitative variables, and thirdly because they 
have not developed their models in terms of parameters which have a direct biological 
interpretation. 

It is of particular importance to compare our likelihood method with the liability 
threshold model as described by Smith [11]. That model is founded upon the dubious 
assumption of bivariate normality in liability. Smith [11] defends this approach by arguing, 
correctly, that any continuous liability distribution can be transformed to normality by an 
appropriate transformation of scale. However, marginal normality does not always imply 
bivariate normality [7], which is a much stronger assumption. Moreover, in this context 
the assumption is untestable. Thus, using the liability model, it is not obvious that the 
correlation coefficient in liability between relatives can be interpreted, as Smith suggests, 
in terms of the additive effects of genetic and environmental components of variance. 

In contrast, our more direct method avoids the strong and questionable assumption that 
there is an underlying liability with a bivariate normal distribution. Our parameterisation 
is in terms of the marginal and joint probabilities that one or both twins are affected. 
Accordingly, our derived correlation coefficient, p, cannot be directly equated with the 
"correlation coefficient in liability between relatives," r [11]. Although p cannot be 
interpreted as a simple sum of genetic and environmental components as has been 
suggested for r in the liability model, nevertheless, it is possible to compare the correlation 
p for MZ and DZ twins using this new model and thus to obtain at least qualitative 
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TABLE 6. Estimates of Coefficient of Genetic Determination (G) 

Liability 
Threshold model 

Likelihood 
Model 

Males 
Females 

Males 
Females 

G 

1.34 
0.41 

1.02 
0.18 

SE 

1.12 
1.14 

0.44 
0.41 

information regarding the importance of genetic factors. Further extensions are planned 
to allow the possible effects of environmental and genetic factors on p to be assessed in 
quantitative terms (See Appendix A). 

A comparison of Table 4 with Table 5 shows that, for the present data set, the estimates 
of r (liability model) are consistently greater than for p (likelihood model). More impor
tantly, the standard errors of the r estimates are greater, both in an absolute and propor
tional sense, than those of the p estimates. This simple observation provides a statistical 
justification for the use of the likelihood method on the grounds of improved efficiency. 

On the other hand, as p and r relate to different entities, it can be argued that they 
should not be compared on statistical grounds alone, but also on the basis of utility. For 
example, as r can (arguably) be decomposed into additive genetic and environmental 
components, it can also be used to calculate confidence limits for the coefficient of genetic 
determination (Table 6) as suggested by Smith [11]. As the scale for p is different, and 
nonadditive, it would be impossible to interpret, in any rigorous quantitative way, a 
"coefficient of genetic determination" defined as twice the difference between pmz and 
pdz. This might provide one utilitarian justification for the continued use of r rather than 
p. The strength of this conclusion depends on the validity of the assumptions underlying 
the liability method, and the credence attached to the global concepts of "heritability" and 
"genetic determination". It is our hope that by extending the methods introduced in this 
paper, we will be able to test some of the implicit assumptions about the ways in which 
genetic and environmental factors interact to influence binary traits in twins. Such 
extensions could allow inferences to be made which are stronger than those which depend 
on uncritical application of the liability model, where some of the underlying assumptions 
cannot be tested. 

The limited data presented in this paper are used to illustrate the methods of statistical 
analysis, rather than to arrive at conclusions about the causes of alcohol use in twins. 
Nevertheless, as indicated above, the data suggest that (a) there is bias in the ascertainment 
of male DZ twins, and (b) the concordance rates for alcohol use for MZ twin pairs are 
somewhat greater than for DZ twin pairs. These conclusions will be tested with data on 
alcohol consumption from a much larger sample of adult twin pairs. 
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APPENDIX A 

The within pair correlation p, likeTI, may depend upon explanatory variables. In partic
ular, where the correlation depends upon shared environmental factors we may wish to 
model p as a function of duration of cohabitation or of time since separation at time t0 [9]. 
For example, we may write (see Fig. 3) 

— v max(t—to,0) 
P = Po + Pie 

where t is age, po might represent genetic and/or constant environmental correlation, p, 
the correlation due to changing shared environment, and v the attentuation rate of this 
correlation with time. 

„ „ -v max(t-t . , o) 
P = P0+P,e »' 

P„+1 P. 

Fig. 3. Correlation, p, as a function of time (or age), t, with exponential decay after twin separation at time 
to, where po and p \ are interpreted as components of correlation and v controls the rate of attenuation of p j 
after to. I, = t0 + v~'loge2. 
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-vt+Y -11 P = P0
+P,[l-(1+e 

p +p 

TIME t 

Fig. 4. Correlation, p, as a logistic function of time: Po and p/ are interpreted as components of correlation, 
and v and y control the rate and timing of attenuation ofp/. 

Alternatively, write p = PQ + pi{1 - (1 + e~vt+'^)~ } (see Fig. 4), where p0 and 
Pi have interpretations as above, and v and y control the rate and timing of attenuation in 
the correlation due to shared environment. Under the assumption of homogeneity of 
environment p\ should be the same for MZ and DZ twins, and in theory this could be 
used to test the assumption. Depending upon the influence of genes, p0 for MZ twins 
(Pomz) should be greater than or equal to its value for DZ twins (p0dz)- However, unlike 
the genetic components of correlation in the liability model, po m z is not necessarily equal 
to twice podz even if the trait is exclusively genetic in origin. Many other different 
formulations for p are possible. 

APPENDIX B 

Plots of the proportion of drinkers against age (Figs. 1 and 2) reveal an asymmetry which 
would lead to systematic bias if a simple quadratic function were used to adjust for age 
dependence. It is possible that the age adjustment could be improved by an initial trans
formation (eg, log) of the age scale. For greater flexibility and utility we suggest a 
generalized power transformation, chosen according to some goodness of fit criterion. 
Following Box and Cox [2], define the transformed (age) variable 

t(\) = {
t x - 1 

loget 

if\ * 0, 

ifX = 0. 

This family of power transformations is continuous in X at 0, and therefore can be 
incorporated into the log likelihood function without causing a singularity in the likelihood 
surface. 

For our alcohol data, t was taken to be (age in years — 10)/10 and maximization of the 
likelihood of the saturated model (Model 1) with an age transformation parameter for 
each sex yields the following estimates: 

Xm = 0.46 (SE = 1.65), Xf = 0.32 (SE = 0.82) 
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with LL = -183.99. Setting Xm = Xf = 1 yields LL = -184.20. Clearly the estimates 
for Xm and Xf are not significantly different from 0 nor 1, and the change in the log 
likelihood is negligible indicating only slight improvement of fit for the inclusion of two 
extra parameters. 

For the purposes of the analysis of the alcohol data, the transformation parameter was 
set, somewhat arbitrarily, to 0.33, corresponding to a cube root transformation of the age 
scale, for both sexes. 

APPENDIX C 

For an alternative but mathematically equivalent formulation, the model may be expressed 
in terms of II and the proband concordance rate Pc = Pr{X2 = 1 | X] = 1}. From (2) 

p = (Pc - II) / (1 - II). (6) 

Let us consider just one sex by zygosity twin class. Under the simplest model in which 
II, p and Pc are independent of all explanatory variables suppose we observe x n concor
dant positive pairs, XQO concordant negative pairs, and x,j discordant pairs. The log 
likelihood in terms of Pc and II is: 

LL = x„logePc + xnlo&JI + xdloge (1 -P c ) + xdlogen + xoologc {1 - r i (2 -P c )} , 

and when maximized analytically gives the MLEs 

II = (2x|, + xd)/2N and Pc = 2xn/(2x,, + xd) (c.f. [11]). 

The observed inverse information matrix at 6 = (II,Pc) is 

a = 4N3 (x„ + xd)/{xoo (2x„ + xd)2}, 

b = - N2/xoo, 

c = (2xM + xd)2 { ( 4 x „ ) - , + x d - '+ (4x00)"'}. 

Letd = det(I)-1 = (ac - b 2 ) - 1 , then 

Varri = cd, Var Pc = ad and Cov(lI,Pc) = -bd 

are asymptotic estimates of variance and covariance [4]. 
From (6) the MLE for p isp = (Pc — IT)/(1 - I I ) . It can be shown that/5 = (X2/N)1/2 

where X2 is Pearson's chi-squared statistic for the two by two table {xy: i,j =0,1} where 
xoi = xio = l/2xd. Thus Np2 provides a simple approximate x? test of the hypothesis 
H0: p = 0. Also from (6) we have 

Varp = ( l-n)~2{K2VarIl + Var Pc - 2K Cov(II, Pc)}, 

where K = (1 -Pc)/(1 -II) , [5,8]. 
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