ISOMORPHIC GROUP RINGS OVER DOMAINS

BY
ISABELLE ADJAERO AND EUGENE SPIEGEL

Abstract

Let R and S be rings, G and H abelian groups, and $R G$ and $S H$ the goup rings of G and H over R and S respectively. In this note we consider what relations must hold between G and H or between R and S if the group rings $R G$ and $S H$ are isomorphic. For example, it is shown that if R and S are integral domains of characteristic zero, G and H torsion abelian groups such that if G has an element of order p then p is not invertible in R, and $R G$ and $S H$ are isomorphic, then the rings R and S are isomorphic and the groups G and H are isomorphic.

Let R be a commutative ring, G an abelian group, and $R G$ the group ring of G with coefficients in R. If $x \in R G$, then $x=\sum_{g \in G} r_{g} g$ with $r_{g} \in R, g \in G$ and $r_{g}=0$ for all but a finite number of g. The homomorphism $\psi_{R}: R G \rightarrow R$ defined by $\psi_{R}(x)=\Sigma r_{g}$ is called the augmentation homomorphism. For $x \in R G$ we will often denote $\psi_{R}(x)$ by $c(x)$ and call this quantity the content of x.

If A is either a commutative ring or an abelian group and p is a prime, let $A_{p}=$ $\left\{x \in A \mid x^{p^{n}}=1\right.$ for some integer $\left.n\right\}$. A_{p} is the set of p torsion elements of A. Here 1 denotes the identity of A. In the group ring $R G$, let $V_{R, p}=V_{p}=\left\{x \in R G \mid x \in(R G)_{p}\right.$ and $c(x)=1\} . V_{p}$ is called the normalized p torsion of $R G$.

If $x \in(R G)_{p}, x$ is a p torsion element in $R G$ and so $\psi_{R}(x)=c(x)$ is a p torsion element in R. There is, then, and element $\bar{x} \in V_{p}$ with $x=c(x) \bar{x}$. This representation of x shows that $(R G)_{p}$ is the direct product of R_{p} and V_{p}.

We let Supp G denote the set of all primes p for which G_{p} is a nontrivial group, and let R^{*} represent the unit group of the ring R. May ([3], p. 493 and 497) has determined sufficient conditions on R to guarantee that G_{p} is a direct summand of V_{p}. We list his result in lemma 1.

Lemma 1. Let R be an indecomposable ring of characteristic 0 and G be an abelian group. Suppose that $\operatorname{Supp} G \cap R^{*}=\emptyset$. If $p \in \operatorname{Supp} G$, then G_{p} is a direct summand of V_{p}. If, in addition, R is an integral domain, then $G_{q}=V_{q}$ for every prime q.

If G is an abelian group, we let $T(G)$ denote the torsion subgroup of $G . \zeta_{n}$ will represent a primitive $n^{\text {th }}$ root of unity chosen so the $\zeta_{m n}^{m}=\zeta_{n}$ for all m and n. Let $\rho_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial. If r is an element of the ring R and $\rho_{n}(r)=0$, we will call r a primitive $n^{\text {th }}$ root of unity.

Theorem 2. Let R be an integral domain of characteristic $0, S$ a ring, and G and H abelian groups with $\operatorname{Supp} G \cap R^{*}=\emptyset$. Suppose that $R G \simeq S H$. Then $T(H)$ is isomorphic to a direct summand of $T(G)$.

Proof. Let $\varphi: R G \rightarrow S H$ be the given isomorphism and let $p \in \operatorname{Supp} G$. By Lemma $1, R G_{p}$ is the direct product of R_{p} and G_{p}. Also $R G$ ([3], p. 489) contains no nontrivial idempotents and so the same must be true of $\varphi(R G)=S H$ and thus, S has no nontrivial idempotents. In particular S is an indecomposable ring of characteristic 0. $p=\varphi(p)$ is neither a unit nor a zero divisor of $S H$, since p has similar properties in $R G$. Hence $\operatorname{Supp} G \cap S^{*}=\emptyset$.

Let $q \in \operatorname{Supp} H$. Then there is an element $h \in H$, of order q, and an element $u \in R G$ such that $\varphi(u)=h$. Since u is a torsion element $u=\alpha g$ with $g \in T(G)$ and $\alpha \in T\left(R^{*}\right) . u^{q}=1$ implies that $g^{q}=1$ and $\alpha^{q}=1$. If $g=1$, then $\alpha^{q}=1, \alpha \neq 1$ in the domain R implies α satisfies $\rho_{q}(x)=0$, i.e. $\alpha^{q-1}+\alpha^{q-2}+\cdots+1=0$. But then $\varphi(u)=\varphi(\alpha)=h$ satisfies $h^{q-1}+h^{q-2}+\cdots+1=0$ which contradicts the linear independence of $1, h, h^{2}, \ldots, h^{q-1}$ over S. Thus $g \neq 1$ and $g \in \operatorname{Supp} G$. We can now conclude that $\operatorname{Supp} H \cap S^{*}=\emptyset$. From Lemma $1, V_{p}$ is the direct summand of H_{p} and T_{p} for some subgroup T_{p} of V_{p}, and so $(S H)_{p}$ is the direct product of S_{p}, T_{p} and H_{p}. Since $\varphi\left((R G)_{p}\right)=(S H)_{p}$ we have that $R_{p} \times G_{p} \simeq S_{p} \times T_{p} \times H_{p}$ for any $p \in \operatorname{Supp} G$. Because R is an integral domain, R_{p} is either isomorphic to a cyclic group of order p^{k} for some $k \geqq 0$, or is isomorphic to $Z\left(p^{\infty}\right)$. In either case we claim S_{p} contains a direct summand isomorphic to R_{p}.

Proof of claim: Suppose R contains a primitive $p^{\text {th }}$ root of unity ζ_{p}. Then $\zeta_{p} \in R_{p}$ and ζ_{p} satisfies $\rho_{p}\left(\zeta_{p}\right)=0$. Hence $\psi_{S} \varphi\left(\zeta_{p}\right)$ also satisfies $\rho_{p}(x)=0$. Thus $\psi_{S} \varphi$ is injective on $\left\langle\zeta_{p}\right\rangle$ and so on R_{p}. In particular, S_{p} contains a subgroup $A=\psi_{S} \varphi\left(R_{p}\right)$ isomorphic to R_{p}. We must check that A is a direct summand of S_{p}.

If $R_{p} \simeq Z\left(p^{\infty}\right)$, then A, being a divisible subgroup, is a direct summand of S_{p}. So suppose now R_{p} is a finite cyclic group of order p^{k}. Let $t \in S_{p}$ and suppose $t^{p^{j}} \in A-\{1\}$ with j-minimal. Then $t^{p^{j}}$ is a solution of $\rho_{p^{\prime}}(x)=0$ for some l, and so t is a solution of $\rho_{p^{\prime}+j}(x)=0$. Since t is then a p^{l+j} th root of unity, we have that $l+j \leqq k$. Let $\zeta_{p^{k}}$ generate R_{p} and $a=c\left(\varphi\left(\zeta_{p^{k}}\right)\right)$ generate A. Since $t^{p^{j}}$ is a solution of $\rho_{p^{\prime}}(x)=0$ we can write $t^{j^{j}}=a^{\left(p^{k-l}\right) s}$ with $(s, p)=1$. So $t^{p j}=\left(a^{s\left(p^{k-l-j}\right)}\right)^{p^{j}}$. This says that A is a pure subgroup of S_{p}, which is also bounded. From ([2], p. 18), A is a direct summand of S_{p}. This completes the proof of the claim.

Write S_{p} as ${ }_{p} A \times_{p} B$ with ${ }_{p} A \simeq R_{p}$. Then

$$
\begin{equation*}
R_{p} \times G_{p} \simeq{ }_{p} A \times{ }_{p} B \times T_{p} \times H_{p} \tag{*}
\end{equation*}
$$

If R_{p} is finite, Walker's theorem ([4], p. 900) permits us to cancel the R_{p} and A_{p} from (*) giving $G_{p} \simeq{ }_{p} B \times T_{p} \times H_{p}$, while if $R_{p} \simeq Z\left(p^{\infty}\right)$ we can cancel R_{p} and ${ }_{p} A$ from ${ }^{(*)}$ since R_{p} is a divisible group. In either case we have that $G_{p} \simeq_{p} B \times T_{p} \times H_{p}$ and H_{p} is isomorphic to a direct summand of G_{p}. Since $T(G) \simeq \oplus_{p} G_{p}$ and $T(H) \simeq \oplus_{p} H_{p}$ the theorem is now established.

Corollary 3. Let R and S be integral domains of char 0 and G and H abelian groups such that $R G \simeq S H$. Suppose that $\operatorname{Supp} G \cap R^{*}=\emptyset$. Then $T(G) \simeq T(H)$.

Proof. Let $p \in \operatorname{Supp} G$. From Lemma $1,(R G)_{p}=R_{p} \times G_{p}$. As in the proof of Theorem $2 \operatorname{Supp} H \cap S^{*}=\varphi$ and so again by Lemma $1(S H)_{p}=S_{p} \times H_{p}$. Since S is an integral domain, S_{p} is either isomorphic to a cyclic group of order p^{k} for some $k \geqq 0$, or to $Z\left(p^{\infty}\right)$. Neither of these groups has any nontrivial direct summands. But the theorem shows that R_{p} is a direct summand of S_{p}. Hence $S_{p} \simeq R_{p}$ or $R_{p} \simeq\{1\}$ and S_{p} is not the trivial group. In the latter case, S_{p} would then contain a $p^{\text {th }}$ root of unity while R does not, contradicting a conclusion in the proof of the theorem. Hence $R_{p} \simeq S_{p}$ and by Walker's theorem $H_{p} \simeq G_{p}$.

In general we cannot say that R and S must be isomorphic even if $T(G) \simeq T(H)$. We can take, for example, any nonisomorphic torsion free abelian groups A_{1} and A_{2} and a torsion group B. Let $C=A_{1} \oplus A_{2} \oplus B$. Then $Z C \simeq Z\left(A_{1}\right)\left(A_{2} \oplus B\right) \simeq Z\left(A_{2}\right)\left(A_{1} \otimes B\right)$. If $R=Z\left(A_{1}\right), S=Z\left(A_{2}\right), G=A_{2} \oplus B$ and $H=A_{1} \oplus B$, then the integral domains R and S are not isomorphic even though $Z G \simeq S H$ and the hypotheses of Corollary 3 are met. However, even though $G / T(G)$ is not isomorphic to $H / T(H)$, we still have $R(G / T(G)) \simeq S(H / T(H))$. We check this, in some generality, in the following

Theorem 4. Let R and S be integral domains of char 0 , and G and H abelian groups such that $R G \simeq S H$. Suppose that $\operatorname{Supp} G \cap R^{*}=\emptyset$ and $T(G)$ is a direct summand of G, then $R(G / T(G)) \simeq S(H / T(H))$.

Proof. Let $\varphi: R G \rightarrow S H$ be the given isomorphism. As before $\varphi\left((R G)_{p}\right)=(S H)_{p}$, and $(R G)_{p}=R_{p} \times G_{p},(S H)_{p}=S_{p} \times H_{p}$ with $R_{p} \simeq S_{p}$ by the proof of Corollary 3. Also, we have $T\left((R G)^{*}\right)=T\left(R^{*}\right) T(G)$ and we may define the map $\pi: T\left(R^{*}\right) T(G) \rightarrow T(G)$ given by $\pi(r g)=g$ with $r \in T\left(R^{*}\right), g \in T(G)$. Let $h \in T(H)$, then $\varphi^{-1}(h)=r_{h} g_{h}$ with $r_{h} \in T\left(R^{*}\right) g_{h} \in T(G)$. Define $\psi: T(H) \rightarrow T(G)$ by $\psi(h)=g_{h} . \psi$ is a homomorphism since it is the composite of φ^{-1} restricted to $T(H)$ and π. We check that ψ is an onto isomorphism.

Suppose $h \in T(H)$ and $\psi(h)=1$. Then $\psi^{-1}(h)=r_{h}$ with $r_{h} \in T\left(R^{*}\right)$. Suppose h is of order n, then $r_{h} \in R$, with R an integral domain, is an $n^{\text {th }}$ root of unity, and so r_{h} satisfies the equation $\rho_{n}(x)=0$. But then h satisfies $\rho_{n}(x)=0$ which contradicts the linear independence of $1, h, h^{2}, \ldots, h^{n-1}$ over S. Hence $n=1$ and ψ is injective. To check ψ is onto, it is sufficient to check that $\psi\left(H_{p}\right)=G_{p}$ for each prime p. Fix $p \in \operatorname{Supp} G$. Let $A=\varphi^{-1}\left(H_{p}\right)$. Since $\varphi\left(R_{p} \times G_{p}\right)=S_{p} \times H_{p}$ we have that

$$
\frac{R_{p} \cdot G_{p}}{A} \simeq \frac{S_{p} \cdot H_{p}}{H_{p}} \simeq S_{p}
$$

if $h \in H_{p}$ with $h \neq 1$, then $\varphi^{-1}(h)$ cannot be a root of unity and thus satisfy a cyclotomic equation, since h does not. So $A \cap R_{p}=\{e\}$. Then

$$
\frac{A \cdot R_{p}}{A} \simeq \frac{R_{p}}{R_{p} \cap A} \simeq R_{p}
$$

Since $R_{p} \simeq S_{p}$, and this group which must be either a cyclic group of order p^{k} for some k, or $Z\left(p^{\infty}\right)$, does not contain a proper subgroup isomorphic to itself, we can conclude that $A \cdot R_{p}=R_{p} \cdot G_{p}$ because $A R_{p} / A$ is a subgroup of $R_{p} G_{p} / A$. Thus $\pi(A)=G_{p}$ and $\psi\left(H_{p}\right)=G_{p}$. This shows ψ to be a surjective isomorphism.

Because $T(G)$ is a direct summand of G, we can find a torsion-free subgroup U of G with $G=U \cdot T(G)$.

Let $\tau: R G \rightarrow R G$ be the R map defined by $\tau(u)=u$ if $u \in U \tau(g)=\varphi^{-1}\left(\psi^{-1}(g)\right)$ if $g \in T(G)$.

Since ψ is a surjective isomorphism, τ is well defined. It is straightforward to check that τ is an automorphism of $R G$. Then $\hat{\varphi}=\varphi \tau$ is an isomorphism from $R G$ onto $S H$ such that $\hat{\varphi}(T(G))=T(H)$. Let I_{1} be the ideal of $R F$ generated by $\{1-g \mid g \in T(G)\}$ and I_{2} the ideal of SH generated by $\{1-h \mid h \in T(H)\} . \hat{\varphi}\left(I_{1}\right)=I_{2}$ and thus

$$
R(G / T(G)) \simeq R G / I_{1} \simeq S H / I_{2} \simeq S(H / T(H))
$$

which establishes the result.
Corollary 5. Let R and S be integral domains of characteristic 0 , and G and H torsion abelian groups such that $R G \simeq S H$. Suppose that $\operatorname{Supp} G \cap R^{*}=\emptyset$. Then $G \simeq H$ and $R \simeq S$.

Proof. The groups are isomorphic by Corollary 3 and the domains are isomorphic by Theorem 4.

Using the techniques of the previous results we can extend Theorem 7.2 of [1].
Theorem 6. Let R be an integral domain of characteristic $0, S$ a ring, and G and H torsion abelian groups. Suppose that $\operatorname{Supp} G \cap R^{*}=\emptyset$, and that if $p \in \operatorname{Supp} G, R$ does not contain a p^{2} root of unity. Then $R G \simeq S H$, if and only if there exist subgroups K, L of G with
(i) $G=K L$ (internal direct sum)
(ii) $L \simeq H$
(iii) $S \simeq R K$

Proof. If such subgroups exist,

$$
R G \simeq(R K) L \simeq S L \simeq S H
$$

Conversely, suppose $\varphi: R G \rightarrow S H$ is the given isomorphism. If $p \in \operatorname{Supp} G$, by Lemma $1,(R G)_{p}=R_{p} \times G_{p}$. Suppose $u \in R G$ is a $p^{\text {th }}$ root of unity. Then $u^{p}=1$ and u satisfies $\rho_{p}(x)=0$. Write $u=r g$ with $r \in R_{p} g \in G_{p}$. Then $r^{p}=1$ and $g^{p}=1$. If $g \neq 1$, then $r g$ satisfies $\rho_{p}(x)=0$. This says that g satisfies $\eta(x)=\rho_{p}(r x)=0$ which contradicts the linear independence of $1, g, g^{2}, \ldots, g^{p-1}$ over R. Hence $u=r$ and u is a $p^{t h}$ root of unity in R. We now can conclude that all solutions of $\rho_{p}(x)=0$ are in R and there are either 0 or $p-1$ of them, the latter case when R has a $p^{\text {th }}$ root of
unity. Because φ is an isomorphism, there are either 0 or $p-1$ solutions of $\rho_{p}(x)=0$ in $S H$, and they are similarly all in S.

Let $1 \neq h \in H_{p}$ and write $\varphi^{-1}(h)=r_{h} g_{h}$ with $r_{h} \in R_{p} g_{h} \in G_{p}$. If $h^{p^{n}}=1$, then $r_{h}^{p^{n}}=1$ which implies $R_{h}^{p}=1$ since R does not contain a p^{2} root of unity. Since r_{h} is either 1 or a $p^{t h}$ root of unity, $\varphi\left(r_{h}\right) \in S_{p}$. Let π be the projection map from $R_{p} \times G_{p} \rightarrow G_{p}$, and $L_{p}=\pi \varphi^{-1}\left(H_{p}\right)$.

If $v \in H_{p}$ is such that $\pi \varphi^{-1}(v)=1$. Then $\varphi^{-1}(v)=r_{v}$ with $r_{v} \in R_{p}$. But then either $r_{v}=1$ or r_{v} satisfies $\rho_{p}(x)=0$. This latter case contradicts the linear independence of $1, v, v^{2}, \ldots, v^{p-1}$ over S. Hence $L_{p} \simeq H_{p}$ and $L=\oplus L_{p}$ is isomorphic to $H=\oplus H_{p}$.

Let $\tau_{1}: H \rightarrow(S H)^{*}$ be the homomorphism defined by $\tau_{1}(h)=\varphi\left(r_{h}\right) h$ for $h \in H_{p}$ and $\tau: S H \rightarrow S H$ the S-linear map extending τ_{1}. It is easy to check that τ is an automorphism of $S H$. Let $\hat{\varphi}=\tau \varphi$. Then $\hat{\varphi}$ is an isomorphism of $R G$ onto $S H$ and $\hat{\varphi}(L)=H$.

Let I_{1} be the ideal of $R G$ generated by $\{1-l \mid l \in L\}$ and I_{2} the ideal of H generated by $\{1-h \mid h \in H\}$. $\hat{\varphi}\left(I_{1}\right)=I_{2}$ and so $R(G / L) \simeq R G / I_{1} \simeq S H / I_{2} \simeq S(H / H) \simeq S$.

As in the proof of Theorem 2, S is indecomposible and so by Lemma 1, if $p \in$ Supp G, there is a subgroup T_{p} of V_{p} (in $S H$) such that $V_{p}=T_{p} \times H_{p}$. Then (SH $)_{p}=$ $S_{p} \times T_{p} \times H_{p}$. Let $T={ }_{p} \oplus T_{p}$ and $K=\left\{g \in G \mid \hat{\varphi}(g) \in S^{*} \times T\right\}$. K is a subgroup of G and $K \cap L=\{1\}$. To complete the proof we need only check that $K L=G$. We show that $G_{p} \subset K L$. Let $g \in G_{p}$. Then $\hat{\varphi}(g)=\omega_{p} h_{p}$ with $\omega_{p} \in S_{p} \times H_{p}, h_{p} \in H_{p}$.

Let $l \in L$ be such that $\hat{\varphi}(l)=h_{p}$ then $g=\left(g l^{-1}\right) l$ and $\hat{\varphi}\left(g l^{-1}\right)=\hat{\varphi}(g) \hat{\varphi}\left(l^{-1}\right)=$ $\omega_{p} h_{p} h_{p}^{-1}=\omega_{p}$. thus $g l^{-1} \in K$. This completes the proof.

References

[^0]Department of Mathematics
University of Connecticut
Storrs, Connecticut 06268

[^0]: 1. I. Adjaero and E. Spiegel, On the uniqueness of the coefficient ring in a group ring. Canad. J. Math. 35 (1983), 654-673.
 2. I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor 1954.
 3. W. May, Group algebras over finitely generated rings, J. of Alg. 39 (1976), 483-511.
 4. E. Walker, Cancellation in direct sums of groups, Proc. Amer. Math. Soc., 7 (1956), 898-902.

 University of Nigeria-Nsukka
 Ahambra State, Nigeria

