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AN APPROXIMATION THEOREM 
FOR COARSE V-TOPOLOGIES ON RINGS 

MURRAY A. MARSHALL 

ABSTRACT. An approximation theorem for V-topologies on not necessarily commu
tative rings is proved. This holds for a certain class of rings (called rings with enough 
units) and a certain class of V-topologies (called coarse V-topologies). This has appli
cation, for example, to V-topologies induced by orderings. 

The purpose of this paper is to prove an approximation theorem for V-topologies on 
(not necessarily commutative) rings along the lines of the approximation theorem for 
valuations in [8], [9], [10], [11]. The result is valid for a certain class of rings called 
rings with enough units, and a certain class of V-topologies called coarse V-topologies. 
This work was motivated, in part, by a question raised in [22] concerning V-topologies 
induced by orderings. 

In the field case there are several proofs [2], [23], [26], [28]. Of these, the proof in 
[28] is by far the simplest and, moreover, this proof is also valid for skew fields. The 
proof given here is patterned along the lines of the proof in [28]. 

0. Preliminaries. Let A be a ring. A ring topology on A is a (not necessarily Haus-
dorff) topology r such that the operations (x,y) H-> X — v, (JC, y) i—• jcy are continuous. 
We identify r with the set of r-neighbourhoods of zero, i.e., the statement N ET means 
that N is a r-neighbourhood of zero. A subset S in A is said to be (left) r-bounded if, for 
every M ET, there exists N E T such that NS Ç M. Sums, differences, products, and 
finite unions of r-bounded sets are r-bounded. For a ring homomorphism a:A—+ A' and 
a ring topology r on A7, we have the induced ring topology f on A (the weakest topology 
such that a is continuous). We say S Ç A is r-bounded if a(S) is r-bounded. Thus S 
is r-bounded =>• S is f-bounded. We make extensive use of the following almost trivial 
result; see [28, Lemma 2.1]. 

LEMMA 0.1. Let a;: A —• A/ be a ring homomorphism, n a ring topology on A/, 
i = 1, . . . , n. Suppose r is any topology on A such that the maps y H-> X + y, x E A, 
are continuous, and no S E r is rebounded, i = 1, . . . , n. Then, for any S ET and any 
Ti-bounded sets Bi ÇA, i = 1, . . . , n, S % B\ U • • • U Bn. 

PROOF. This is true by hypothesis if n = 1. Suppose n > 2 and that S Ç B\ U • • • UBn 

for some S E r and some rebounded sets Bi and that n is minimal with this property. 
Replacing S by its interior, we can assume S is open. Since Bn — Bn is rebounded, 
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S 2 Bn - Bn so 3x E S, x £ Bn - Bn. Pick S' E r, S' C S, x + Sf C S. Then, for any 
y E BnP\S',x+y E Ssox+y E Bt for some/. Ifx+j E j5n,thenx = (x+y)— j E Bn—Bn, 
contradiction. Thusx+y E 5/, i < n, soy E I X ^ / - * ) . Thus5' C (J^/ (fl,-U(fl/-Jc)). 
Since B( U (5/ — JC) is 77-bounded, this contradicts the choice of n. m 

1. V-topologies on skew fields. Let F be a skew field. A V-topology on F is a non-
discrete Hausdorff ring topology r on F such that (F \ U)~l := {x~l \ x E F \ U} is 
r-bounded for each U E r [15]. One also has the following characterization: 

LEMMA 1.1. For a non-discrete Hausdorff ring topology r on F, the following are 
equivalent: 

(1) T is a V-topology. 
(2) There exists a r-bounded set I E r such that, for each x E F, either x € I or 

x~l E /. 

PROOF. (1) =» (2). Let I = (F\ U)~l U {0} where UEris chosen so that 1 £ UU. 
Then U C I so everything is clear. (2) => (1). / is bounded so for each S ET there exists 
x E F* such that xi Ç S. Since y i—• xy is a homeomorphism of F onto itself, xl is a 
neighbourhood of zero. Thus the sets xi, x E F* form a basis of neighbourhoods of 0. 
Since (F\xl)~l Ç Ix~l for any x E F*, the rest is clear. • 

Afield topology on F is a ring topology such that the mapping x\—• x~l is continuous 
at each x ^ 0 in F. The following is well-known: 

LEMMA 1.2. Every V-topology on F is afield topology. 

PROOF. Let a E F*. Fix b E F* such that (a + bI)C\bl = 0. Then, for x E bl, 
a+x £ Wso(a+x) - 1 E Ib~l so a"1 — (a+x)~l = a~lx(a+x)~l E a~xxlb~x. Now take 
x close to zero and use the fact that / is r-bounded. • 

EXAMPLES. (1) Any Archimedian absolute value on F induces a V-topology on F 
(called an Archimedian V-topology). 

(2) For any proper (invariant) valuation ring in F [25], the associated valuation topol
ogy is a V-topology. 

(3) By results in [6], [16], any V-topology on F which bounds the commutator group 
of F is either Archimedian as in (1) or is induced by a valuation ring as in (2). 

THEOREM 1.3. Ifr\,... ,rn are distinct V-topologies on F and a\,...,an E F are 
given, then there exists a E F such that a is arbitrarily close to at with respect to r„ 
i = 1 , . . . , n. 

We give a quick proof of this, essentially, Weber's proof in [28], which will serve to 
motivate the generalization to rings given in Theorem 2.1. 

PROOF. By Lemma 1.1, we can choose rebounded sets // E r, such that x ^ //; => 
x~x E /|. It suffices to show the existence of elements z\,... ,zn with Zi arbitrarily close 
to 1 with respect to n and arbitrarily close to 0 with respect to Tj,j ^ i. (For then we 
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can take a = £"=1 aiZi-) This is clear if n = 1. Suppose n = 2. It suffices to construct 
one of z\, Zi since then we can choose the other using z\ + Zi = 1 • We know T\ 2 T2 or 
r2 $ZTi,sayr2 g r i . F o r j i , ^ G F*, ifjj/i Qhy^1 then, for any j E F*,yji/ij2 Qyh 
contradicting T2 2 Ti- Thusji/i $? ^ T 1 sowegetjti GJI/I ,JCI ^hy^x (soxf1 G ^2/2)-
Take zi = (xi + l ) - 1 . Now suppose n > 3. By symmetry, it suffices to construct z\. Let 
J i , . •., yn G F*. By the proof in the case n = 2 we know 77 £ Tj f° r * 7̂  7 a nd that >>i/i is 
77-unbounded if i > 2 (for each choice of y\ G F*) so, by Lemma 0.1, y\I\ £ \J-=2 hyjx. 
Thus we have x\ G y\I\, xf * G y//,, / > 2, so we can take z\ = (x\ + 1)_1. • 

To be able to apply Theorem 1.3 it is necessary to know when two V-topologies are 
the same. The following facts are well-known (and not difficult to prove): 

(1) Two proper valuation rings A, B in F induce the same V-topology iff A, B are 
dependent {i.e., AB ^ F). 

(2) Two Archimedian absolute values induce the same V-topology iff they are equiv
alent. 

(3) Archimedian V-topologies are never equal to V-topologies induced by valuations. 

EXAMPLE. Order topologies are V-topologies. Each ordering P on F [4] gives rise 
to a place Xp\ F —+ R U {00} with valuation ring Bp = {x G F \ n2 — x2 G P for some 
n G N}. If Bp ^ F the order topology coincides with the V-topology induced by BP. If 
Bp = F the order topology is the Archimedian V-topology induced by the embedding 
\p\F —+ R. Two distinct orderings P\,P2 on F give rise to the same V-topology iff 
BplBp2 =fi F. All this extends to orderings of higher level [1], [21]. 

2. V-topologies on rings. Let A be a (not necessarily commutative) ring with 1. An 
epic A-field is a pair consisting of a skew field F and a ring homomorphism a: A —• F such 
that a(A) generates F as a skew field [3]. Two epic A-fields (F, a), (F', a') are considered 
equivalent if there exists an A-homomorphism 7: F —• F'. If such a 7 exists, it is unique 
and is an isomorphism. In the commutative case, epic A-fields are identified with prime 
ideals of A, but in general, in the absence of Ore conditions, the structure of epic A-fields 
is pretty complicated. 

A V-topology on A is a triple (F, a,T) where (F, a) is an epic A-field and r is a V-
topology on F. We say two V-topologies (F,a,r), (F\a\rf) are equivalent if (F,a), 
(F', a') are equivalent and the unique A-isomorphism 7: F —> F1 preserves the topology. 

We begin by proving a general criterion for approximation which, in particular, is a 
generalization of Theorem 1.3: 

THEOREM 2.1. Let (F„ a,-, 77), i— l,...,nbe inequivalent V-topologies on A. Then 
the following are equivalent: 

(1) VZ? G A, 3b' G A such that <Xi(bf) is arbitrarily close to Gti(b)~x for all i such that 
oci{b) ± 0. 

(2) Vx/ G F{, i = 1, . . . , n, there exists a G A such that ai(a) is arbitrarily close to x-u 

i— ! , . . . , « . 
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PROOF. The non-trivial assertion is (1) => (2). Fix a 77-bounded set // E 77 such that, 
for x E Fi, either x E /, or x~l E //. 

Suppose n = 1. We must show oc\(A) is dense in F\. Denote by E\ the closure of 
a\(A) in F\. This is clearly a subring of F\ and ai(A) Ç Ei so it suffices to show E\ is a 
skew field. Let x E E\,x ^ 0. Pick a E A with ot\(a) close to x. By (1) we have a' E A 
with ai (a7) close to x~l. This proves x_1 E £1. 

Now suppose n > 2. It suffices to construct a\9...,an £ A with a;(<2/) close to 1 
and cxj(ai) close to 0 if j ^ i. Suppose n = 2. In this case, it suffices to construct one 
of a\,a2 (since then the other can be defined using a\ + a^ — 1). Suppose first that 
7*1,T2 induce distinct topologies fi,T2 on A, sayf2 g ^i- Let*; E F*, i = 1,2. Suppose 
afa(JCI/I) Ç a^ 1^*^ 1 ) for some X( E F*t,i = 1,2. Since a,(A) is dense in F/, and F, is 
r,-unbounded, A is 77-unbounded, so we can apply Lemma 0.1 to r = {A} to get a E A so 
that (Xi(a)~l is close to zero, / = 1,2. (A g Z?i UZ?2 for any rebounded sets Bi Ç A. Taking 
ft- = aJ-^/ofi), # E F*, this yields a £ cc\hy\x) U a^ihy^l s o «/(a)"1 € Ms 
i = 1,2.) Then af l((X\(a)~~lx\I\) Ç a ^ ^ O ? ) - 1 ^ * ^ 1 ) , and this contradicts T2 g ^i-
Thus a~[l(x\I\) ^ o f j 1 ^ ^ 1 ) so we have b EA with ai(fc) E jq/i, a2(fo)_1 E *2̂ 2- Now 
use (1) to pick a\ E A such that <Xi(a\) is close to a,(l + b)~l, i = 1,2. 

This leaves the case where f\ = T2. We claim (F\, a i , ri) and (F2, a2, T2) are equiva
lent in this case (so this case cannot occur). Since we are not assuming commutativity, we 
have to be a bit careful here. By hypothesis, ker(ai ) = ker(a2) and we have a topological 
A-isomorphism 7: oc\ (A) —+ a2(A) and we want to show this extends to a topological A-
isomorphism 7: F\ —-* F2. Suppose inductively we have a pair of rings 0C((A) Ç Rt C F/, 
/ = 1,2 and have extended 7 to a topological A-isomorphism 7: R\ —• Ri. Let S/ Ç F/, 
/ = 1,2, denote the set of all finite sums of elements of the form x\x • • - xfs

s where 
x\,...9xs E Ri, et E {— 1,1}, X[ ^ 0 if et = —1. This is a subring of F/. Clearly it 
suffices to show we have an extension 7: Si —> S2. The point is the following: For each 
x E R\,x ^ 0, we have a E A such that a\ (a) is close to x, so a2 (a) = 7(ai(a)) is close to 
7(x). Thus, by (1), we have a' E A such that a^a') is close tox - 1 anda?^ ' ) = 7(ai(tf')) 
is close to 7W _ 1 . Applying this many times, if we have any word x = • • • +x\x • • • x^ + • • • 
in Si and look at the corresponding word xf = • • • + 7(*i)*1 • • • 7fe)^ + • • • in S2, then 
we can find a EA with ai (a) close to x and (X2(a) = 7(ai (a)) close to x'. Thus we have 
a well-defined extension 7: Si —• S2. 

Finally, suppose n > 3. By symmetry, it suffices to construct a\. We use Lemma 0.1 : 
We know from the case n = 2 that aj"1

 (JCI/I ) is 77-unbounded for / > 2 for each choice of 
JCI E F[. Thus, by Lemma 0.1, a^Qcih) g U?=2 a7\hxjx) for all jt; E F*, / = 1, . . . , n. 
Thus we have a EA with ai(a) E *i/i, a,(a) -1 E xJi, i > 2. Now use (1) again to pick 
a\ E A with (Xi(a\) close to a/(l + a)_ 1 , / = 1,.. . ,n. m 

We say a V-topology (F, a, r) on A is Archimedian if r is Archimedian. We say (F, a, r) 
is coarse if A is r-unbounded. Clearly, coarseness is a necessary condition for a(A) to be 
dense in F. 

NOTE. (1) Any V-topology on a skew field is coarse. 
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(2) Any Archimedian V-topology on A is coarse (since Z Ç A is r-unbounded). 
(3) In the non-Archimedian case, if B is a proper valuation ring in F inducing r then 

(F, a, T) is coarse iff a(A)Z? = F. 

Coarse V-topologies are fairly numerous: Suppose (F, a,r) is a non-Archimedian V-
topology on A and B is a proper valuation ring in F inducing r with a(A) Ç. B. {e.g., if 
F is commutative and Q Ç A then such B always exists.) By considering the compos
ite homomorphism ar\A—+F, where F is the residue skew field of the (not necessarily 
invariant) valuation ring a(A)B, and the push-down B of B to F, we end up with a special
ization (F', a', Bf) of (F, a, B) where F' is the skew subfield of F generated by a'{A) and 
B' = EOF'. Moreover, a'{A)B' = F', so this process constructs a coarse specialization 
(F , ,a / , r / )of(F,a , r ) . 

EXAMPLE. An ordering on A is a triple (F, a, P) where (F, a) is an epic A-field and 
P is an ordering on F. Thus, to every ordering on A, we have an associated V-topology 
(F, a,7>) on A. LetP/> Ç F be the valuation ring of the place À/>: F —• RU{co} associated 
to P. Then (F, a,77>) is coarse iff a(A)BP = F. Moreover, if a(A)Bp ^ F then we have 
a unique specialization (F', a\ P') of (F, a, P) with a'(A)P/>/ = F' (obtained by going 
to the residue skew field of the valuation ring a(A)Bp). Note: There is no requirement 
now that a(A) <£ Bp. If a(A) Ç Bp, it just means that the resulting specialization is 
Archimedian. One would expect all this to generalize to higher level orderings as well. 

To get concrete results we must also assume the existence of enough units in A. Rather 
tentatively, we say A has enough units if, for each b E A, there exists a non-empty set r̂ , 
of subsets of Ab satisfying 

(1) VSerb,oes. 
(2) VS, S' E rb, 3S" E rb such that S" Ç S n S'. 
(3) VS e n, VJC € S, 35" G Tfc such that x + S' ÇS. 
(4) VS E n, S - S D Abm for some m > 1. 
(5) V ^ T / , , 1+SÇA*. 

Conditions (1), (2), (3) just mean that T& is a basis of open neighbourhoods of 0 for a 
topology on A such that the maps y \—» x + y, x E A, are continuous. 

EXAMPLES. (1) Let Am denote the set of finite products ctf • • • a%9 a\,..., ak e A, 
k > 1, and let £Am denote the set of all finite sums of elements of Am. If 1 + £ Am C A* 
for some (even) m > 1 [18], [22], then A has enough units. Proof: By a polynomial 
identity in [12, Theorem 8.8.2], £Am - £Am = A. Thus we can take rb = {5} where 
5 = J2Ambm. m 

(2) As in the commutative case [19], [27] let us say A has many units or is local-global 
if for each integer k > 1 and each polynomial/ in non-commuting variables X\,...,Xk 

with coefficients in A, if for each residue skew field A/m of A there exists x\,... ,xk E A 
(depending on m) such that/(xi, . . . , Xk) fi nt, then there exists x\,...fXk €A such that 
f(xu...,xk)eA*. 

(3) Suppose A has many units and all residue skew fields of A are infinite. Then A has 
enough units and, in this case, we can take m = 1. Proof: Take rb to be the set of all sets 
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Sy := {xb G Ab \ xb + vb + 1 G A* Vv G V} where V runs through all finite subsets of A 
such that 0 G V and vb + 1 G A* Vv G V. We must verify conditions (1) through (5). (1) 
and (5) are clear. For (2), just observe that SVHSV = SVuv- For (3), note that, if yb G Sy, 
thenyô + SV' Ç Sy where V = (V+;y)U{0}.For (4), if a G A, we want ab G Sy-SV, so 
we want* G A satisfying (*) xb + vb + 1, xb — ab + vb + 1 EA*,VveV. Take/(X) to be 
the product of the factors Xb + vb + 1, Xb — ab + vZ? + 1, v G V in some order, multiplied 
by the product of these same factors in the reverse order. Using pqp G A* <=ï p,q G A*, 
we see that x 6 i 4 satisfies (*) iff f(x) G A*. Thus, by our hypothesis, we have x G A 
satisfying (*). • 

(4) Suppose A/ $ is strongly regular [7], where $ is the Jacobson radical. Then A has 
many units, and hence has enough units if the residue skew fields of A are infinite. 

(5) In (3) and (4), it may be possible to remove the requirement that the residue skew 
fields are infinite. 

THEOREM 2.2. Suppose A has enough units and that (F/, 07,77), i = 1, . . . , n, are 
inequivalent coarse V-topologies on A. Then, given elements X[ G F/, there exists a G A 
such that (Xi(a) is arbitrarily close to xu i = 1, . . . , n. 

PROOF. It suffices to verify condition (1) of Theorem 2.1. Let b G A be given. We 
may as well assume 07(b) ^ 0 for all / = 1, . . . , n. Fix a 77-bounded set // G 77 such 
that, for x G F/, either x G /, or x~l G /,. Since a,(Z?) ^ 0 and A is 77-unbounded, 
Abm is also 77-unbounded. Since S — S D Abm for each S G 77,, this means S is 77-
unbounded for each S G 77,. Fix S G 77,. By Lemma 0.1, S Ç. (J/Li ^/ f° r anY T,-bounded 
sets £,-, 1 = 1, . . . , n. Taking Bt = a~l(IiX~l), xt G F*, this yields a G A, 1 + ab G A*, 
aZ? ^ ULi ^ r 1 ^*/ - 1 ) - Sorting this out, we see that ai(ab)~l G xJi. To complete the 
proof, take b' = (1 + ab)~la. m 

REMARK. In particular, this settles the question raised in [22]. 

For certain kinds of "weak" approximation on commutative rings, we can drop the 
requirement that A has enough units. In the non-commutative case, localization is more 
complicated and this method doesn't seem to work. 

COROLLARY 2.3. Suppose A is any commutative ring and (F,, a^ri), i = 1, . . . , n 
are inequivalent coarse V-topologies on A. Suppose T* Ç F* is a subgroup which is a 
Ti-neighbourhood of \ such that the factor group F* /'Tf is torsion, i = 1,. . . ,n. Then the 
natural map A \ (J/Li ker(a,) —• njLj Ff/T* is surjective. 

PROOF. GO to the semi-local ring B = S~lA where S = A \ \J}=1 ker(a,). This has 
enough units, so we can apply Theorem 2.2. Let x-x G F*. We want a EA\ (J-Î

=1 ker(a,) 
such that xtT* = (Xi(a)T*. Let Ut G 77 be such that 1 + UiQTf. By Theorem 2.2 there 
exists a/s G B such that oti(a/s) G xt + XjUi, i = 1,. . . ,n. Replacing a by asl~x and s 
by sl where t is the least common multiple of the orders of the elements cti(s)T*, we can 
assume ai(s) G T*. Thus 07(a) G a;(s)x/(l + Iff) Ç X[Tf. m 

In Corollary 2.3, the hypothesis that the (F/, 07,77) are coarse can be relaxed quite a bit. 
Obviously we only need the (F/, 07,77) to be coarse after semi-localizing. For example, 
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this is true automatically if there are no proper inclusion relations between the kernels of 
the or/. 

NOTE. See [13], [14] for approximation theorems for valuations and places on 
ternary fields (sometimes called planar ternary rings). 
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