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In the present study, compressible low-Reynolds-number flow past a stationary isolated
sphere was investigated by direct numerical simulations of the Navier–Stokes equations
using a body-fitted grid with high-order schemes. The Reynolds number based on
free-stream quantities and the diameter of the sphere was set to be between 250 and
1000, and the free-stream Mach number was set to be between 0.3 and 2.0. As a result,
it was clarified that the wake of the sphere is significantly stabilized as the Mach number
increases, particularly at the Mach number greater than or equal to 0.95, but turbulent
kinetic energy at the higher Mach numbers conditions is higher than that at the lower
Mach numbers conditions of similar flow regimes. A rapid extension of the length of
the recirculation region was observed under the transitional condition between the steady
and unsteady flows. The drag coefficient increases as the Mach number increases mainly
in the transonic regime and its increment is almost due to the increment in the pressure
component. In addition, the increment in the drag coefficient is approximately a function
of the Mach number and independent of the Reynolds number in the continuum regime.
Moreover, the effect of the Mach and Reynolds numbers on the flow properties such as
the drag coefficient and flow regime can approximately be characterized by the position
of the separation point.

Key words: compressible flows, low-Reynolds-number flows, aerodynamics

1. Introduction

Studies of flow over generic bodies such as a flat plate, cylinder or sphere have
contributed to a better understanding of fluid mechanics and modelling of complex
phenomena. A sphere is the simplest three-dimensional body, but the flow field is
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complicated even for such a simple body and the flow field varies depending on flow
conditions.

The behaviour of flow past a sphere varies with Reynolds number (Re = ρ∞u∞d/μ∞)
based on the free-stream density ρ∞, velocity u∞, viscosity coefficient and the diameter of
a sphere d. This has been examined experimentally and numerically under incompressible
conditions. Taneda (1956) experimentally examined the wake of a sting-mounted sphere
at 5 ≤ Re ≤ 300. He determined that the critical Re of the formation of an axisymmetric
vortex ring behind a sphere is Re ≈ 24. Also, he observed a very long period oscillation
of the axisymmetric vortex ring when Re reached Re = 130. Magarvey & Bishop
(1961) experimentally examined wake structures of a falling liquid droplet in liquid at
0 ≤ Re ≤ 2500. They observed that asymmetry appears in the recirculation region at
around Re > 210. Nakamura (1976) also observed asymmetry in a steady recirculation
region at Re > 190. Taneda (1978) experimentally examined the wake behind a sphere
at Re ranging from 104 to 106 using the surface–oil flow, smoke and tuft-grid methods. He
observed wave motion in the wake at 104 ≤ Re ≤ 3.8 × 105 and noted that it forms a pair of
streamwise vortices at 3.8 × 105 ≤ Re ≤ 106. Sakamoto & Haniu (1990) experimentally
investigated vortex shedding from a sphere in uniform flow at 300 ≤ Re ≤ 4.0 × 104.
They examined the wake of a sphere by hot-wire and flow visualization experiments.
They showed that the wake vortices change from laminar to turbulent when Re reached
Re ≈ 800. In addition, they found that the higher- and lower-frequency modes of a
Strouhal number (St = fd/u∞) coexist at 800 ≤ Re ≤ 1.5 × 104. Here, f is the vortex
shedding frequency. Johnson & Patel (1999) experimentally and numerically examined
at 20 ≤ Re ≤ 300. They numerically identified the critical Re for a steady axisymmetric
flow (Re ≤ 210), steady non-axisymmetric (planar-symmetric) flow (210 < Re ≤ 270) and
unsteady (periodic) flow (Re > 270) by direct numerical simulations (DNS) of the
Navier–Stokes equations. Higher-Re conditions for flows over a sphere were studied
by Tomboulides & Orszag (2000) and Rodriguez et al. (2011) for 25 ≤ Re ≤ 1000 and
Re = 3700, respectively.

The flow properties are influenced by a Mach number (M = u∞/a∞) in compressible
flows, where a∞ is speed of sound in the free stream. Drag coefficients of a sphere under
compressible low-Re conditions have been investigated by several researchers. Those data
have been used for constructions of particle drag models (Carlson & Hoglund 1964;
Crowe 1967; Henderson 1976; Loth 2008; Parmar, Haselbacher & Balachandar 2010).
Such drag models can be used in the simulation of compressible multiphase flows, for
example. However, Saito, Marumoto & Takayama (2003) pointed out that the result of
numerical simulations of compressible particle-laden flow using the particle drag model
is changed by the drag model. In the aerospace application field, compressible multiphase
flows appear in exhaust jets of rocket engines, combustion flow, etc. A particle-resolved
simulation using the immersed boundary method (IBM) has been used for compressible
or supersonic viscous particle-laden flow by Mizuno et al. (2015), Schneiders et al. (2016)
and Das et al. (2017). Since the flow properties around a sphere have not been sufficiently
understood, the examination of the flow physics of the compressible low-Re flow over a
single isolated sphere will help understanding of the compressible multiphase flow and
extend the knowledge of fluid mechanics.

Kane (1951) was among the first to measure the drag force acting on the sphere
and investigate Re effects in the high-speed flow. They measured sphere drag force
using a low-density supersonic wind tunnel at 2.1 ≤ M ≤ 2.8 and 15 ≤ Re ≤ 800. May
& Witt (1953) measured the drag coefficient of the sphere at 0.8 ≤ M ≤ 4.7 and
1.14 × 103 ≤ Re ≤ 8.4 × 106 using the pressurized ballistic range and spheres of 1/4 to 3/4
inch in diameter. Sphere drag coefficients were obtained from position–time data. They
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clarified that the variation of the drag coefficient is only 10 % in the range of 1.6 < M < 4.7
for 4.0 × 103 < Re < 1.0 × 106. Also, May (1957) obtained the drag coefficient of a
sphere at 1.5 < M < 3.0 and 350 < Re < 3000 and derived a contour map of the drag
coefficient on M and Re coordinates. Sreekanth (1961) measured the drag coefficient of
a sting-supported sphere at M = 2 and Knudsen numbers of 0.1 to 0.8 in a low-density
wind tunnel. The influence of support interference on the measured drag force was also
reported. Bailey & Hiatt (1971, 1972), Bailey (1974) and Bailey & Starr (1976) carried
out free-flight tests using a ballistic range and estimated the drag coefficient of the
sphere for a wide range of Re and M (0.1 < M < 6 and 10−2 < Re < 107). Crowe et al.
(1969) calculated the drag coefficients of micron-size particles in subsonic free-flight
tests by measuring the deceleration of the flight speed with a Faraday cage. In addition,
Zarin & Nicholls (1971) conducted wind tunnel tests with a sphere at 0.1 < M < 0.57
and 40 < Re < 5000. They used a one-component magnetic balance and suspension
system and eliminated the support interference. These studies only focused on the drag
coefficient, the number of studies on the flow field at compressible low-Re flows remains
few.

The flow past a sphere under the compressible low-Re flow has numerically been
studied by Nagata et al. (2016), Riahi et al. (2018) and Sansica et al. (2018). Nagata
et al. (2016, 2018a,b) used DNS with a body-fitted grid to investigate fundamental
characteristics such as aerodynamic force coefficients, flow structures and flow regime,
with a stationary adiabatic sphere at 0.3 ≤ M ≤ 2.0 and 50 ≤ Re ≤ 300. They showed that
the wake behind a sphere under compressible flows is similar to that under incompressible
flows (alternating hairpin vortex wake) for M ≤ 0.8, but the wake structure became a
steady axisymmetric wake at M ≥ 0.95 and Re ≤ 300 (Nagata et al. 2016). Also, they
investigated the fundamental characteristics of flow past a stationary heated/cooled sphere
(Nagata et al. 2018a) and a rotating adiabatic sphere (Nagata et al. 2018b), respectively,
at 0.3 ≤ M ≤ 2.0 and 100 ≤ Re ≤ 300. It should be noted that they imposed a fully no-slip
condition on the surface of the sphere in all their simulations, even though a part of the
flow condition was in a non-continuum regime (e.g. Knudsen number for M = 2.0 and
Re = 50 is approximately 0.06). Riahi et al. (2018) computed the flow over a sphere at
0.3 ≤ M ≤ 2.0 and 50 ≤ Re ≤ 600 using the IBM. They found that the wake structure for
M = 0.95 is unsteady (alternating hairpin wake) at Re = 600 and the wake for M = 2.0 is
steady at Re ≤ 600. Sansica et al. (2018) carried out a global stability analysis (GSA) at
0.1 ≤ M ≤ 1.2 and 200 ≤ Re ≤ 370. They examined the effects of Re and M on unsteadiness
of the flow field and drew a stability map by tracking the bifurcation boundaries for
different Re and M. These studies showed that the flow behind the sphere is stabilized
when M increases, and unsteady flow patterns have not been observed at supersonic
flows in the numerically investigated Re ranges. Nagata et al. (2020b) investigated the
higher-Re flow past a sphere at 0.9 ≤ M ≤ 1.6 and 3900 ≤ Re ≤ 380 000 by free-flight tests
with schlieren visualization. They visualized the time-averaged and instantaneous flow
structures at M = 1.4 for Re ≥ 3900 and Re ≥ 8100, respectively. As a result, an unsteady
wake was observed at Re = 8100 and M = 1.4. Therefore, the critical Re for the transition
from steady to unsteady flow at supersonic speeds should be observed at 600 < Re < 8100.
The compressible flow over a circular cylinder at such Reynolds number range has been
experimentally studied using a low-density wind tunnel by Nagata et al. (2020a), but there
is no report on the flow dynamics around a sphere in such Reynolds number range under
the compressible conditions.

In the present study, the fundamental properties of flow past an isolated stationary
adiabatic sphere at 250 ≤ Re ≤ 1000 and 0.3 ≤ M ≤ 3.0 were investigated. Flow regime
maps for various Re and M values were drawn, and characteristic parameters of flow
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geometries, such as the length of the recirculation region, the position of the separation
point and aerodynamic force coefficients were examined.

2. Methodology

2.1. Governing equations
The three-dimensional compressible Navier–Stokes equations were employed as
governing equations. These equations in the Cartesian coordinate system are as
follows:

∂Q
∂t

+ ∂E
∂x

+ ∂F
∂y

+ ∂G
∂z

= ∂Ev

∂x
+ ∂F v

∂y
+ ∂Gv

∂z
, (2.1)

where Q contains conservative variables; E, F and G are the x, y and z components of an
inviscid flux, respectively; and Ev, Fv and Gv are the x, y and z components of a viscous
flux, respectively.

Q = (ρ ρu ρv ρw e)T
,

E = (ρu ρu2 + p ρuv ρuw (e + p)u)
T
,

F = (ρv ρvu ρv2 + p ρvw (e + p)v)
T
,

G = (ρw ρwu ρwv ρw2 + p (e + p)w)
T
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.2)

Ev = (0 τxx τxy τxz βx)
T
,

F v = (0 τyx τyy τyz βy)
T
,

Gv = (0 τzx τzy τzz βz)
T
,

⎫⎪⎬
⎪⎭ (2.3)

βx = τxx u + τxyv + τxzw − qx ,

βy = τyx u + τyyv + τyzw − qy,

βz = τzx u + τzyv + τzzw − qz,

⎫⎬
⎭ (2.4)

where ρ is the density; u, v and w are the x, y and z components of velocity, respectively;
τ is the component of a viscous stress tensor; and q is the heat flux. The total energy per
unit volume e is written as follows in terms of an equation of state for ideal gases in the
present study

e = p
γ − 1

+ 1
2
ρ(u2 + v2 + w2). (2.5)

Here, p and γ are the pressure and the specific heat ratio, respectively. In the present
study, the specific heat ratio was set to be 1.4 by assuming air. Also, the Sutherland
law (Sutherland 1893) was employed for accounting the temperature dependence of the
dynamic viscosity coefficient

μ = μ∞

(
T

T∞

)3/2 (
1 + C/T∞

(T + C)/T∞

)
, (2.6)

where C is constant for air in the Sutherland law (C = 110.4) and the Prandtl number was
set to be 0.72. In addition, the three-dimensional Navier–Stokes equations in a general
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coordinate system are expressed as

∂Q̃
∂t

+ ∂Ẽ
∂ξ

+ ∂F̃
∂η

+ ∂G̃
∂ζ

= ∂Ẽv

∂ξ
+ ∂F̃ v

∂η
+ ∂G̃v

∂ζ
, (2.7)

where

Q̃ = Q
J

,

Ẽ = 1
J

(
∂ξ

∂x
E + ∂ξ

∂y
F + ∂ξ

∂z
G

)
,

F̃ = 1
J

(
∂η

∂x
E + ∂η

∂y
F + ∂η

∂z
G

)
,

G̃ = 1
J

(
∂ζ

∂x
E + ∂ζ

∂y
F + ∂ζ

∂z
G

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

Ẽv = 1
J

(
∂ξ

∂x
Ev + ∂ξ

∂y
Fv + ∂ξ

∂z
Gv

)
,

F̃ v = 1
J

(
∂η

∂x
Ev + ∂η

∂y
Fv + ∂η

∂z
Gv

)
,

G̃v = 1
J

(
∂ζ

∂x
Ev + ∂ζ

∂y
Fv + ∂ζ

∂z
Gv

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

Here, J is the Jacobian, and ξ , η and ζ are the general coordinates.

2.2. Computational methods
The simulation was carried out by solving the Navier–Stokes equations on a
boundary-fitted grid. The governing equations were non-dimensionalized by the density
and speed of sound in the free stream and the sphere diameter. The convection and viscous
terms were evaluated by the sixth-order adaptive central and upwind weighted essentially
non-oscillatory scheme (WENOCU6-FP) proposed by Nonomura et al. (2015) and the
sixth-order central difference method, respectively. The time integration was conducted
by the third-order total variation-diminishing Runge–Kutta method proposed by Gottlieb
& Shu (1998). In the present study, the central difference of WENOCU6-FP was replaced
by one of the splitting types proposed by Pirozzoli (2011) to stabilize the calculation.
In particular, the WENO numerical flux Fweno for the convective term can be rewritten as
the following expression:

F weno = F central-div + F weno-dissipation, (2.10)

where Fcentral-div indicates the numerical flux corresponding to the sixth-order central
difference, and Fweno-dissipation indicates the sixth-order dissipation term for the sixth-order
WENOCU. Even though Fcentral is usually written in the form of a divergence, here it is
replaced by the splitting form Fcentral-split of Pirozzoli (2011).

2.3. Computational grid
A computational grid around the sphere was generated as a body-fitted grid. The
coordinate system and computational grid for Re = 300 are shown in figures 1
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z
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ξ

η
Sphere

FIGURE 1. Coordinate system.

(a) (b)

FIGURE 2. Computational grid (Re = 300).

and 2, respectively. The diameter of the computational region was 100 times as large as
that of the sphere. The region of 0.5d ≤ x ≤ 15d and (y2 + z2)0.5 ≤ 4d is the high-resolution
region, where the high resolution of the computational grid was maintained and the wake
structures were resolved. The grid size in the ζ direction was spread by 1.03 times from
the minimum grid size, and the grid size became constant when the grid width reached

ζ max = 0.05d at Re = 300 in the region at ζ ≤ 15d. The minimum grid size in the ζ
direction was calculated using the following equation adopted by Johnson & Patel (1999):


ζmin = 1.13√
Re × 10.0

. (2.11)

It is noted that the maximum grid size in ζ ≤ 15D for higher-Re cases was determined as
follows:


ζmax = 
ζmax_ref

√
Reref√
Re

, (2.12)

where the reference value was Reref = 300, and 
ξmax and 
ηmax were determined the
same as in (2.12). The minimum grid size for the ξ and η direction was also determined
the same as in (2.12). From 15d outward, the grid size increases by 1.2 times toward the
outer boundary as a buffer region to prevent reflection of pressure waves. Note that the
distance from the sphere to the outer boundary was much larger than that in previous
incompressible simulations. The number of grid points for each Re and calculation
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Re ξ direction η direction ζ direction Total

300 127 62 358 2 818 892
500 165 82 444 6 007 320
750 201 98 529 10 420 242
1000 231 110 601 15 271 410

TABLE 1. Number of grid points.

M
0.3 0.8 0.95 1.05 1.2 1.5 2.0

Re 250 � � � �
300 � � � � � �
500 � � � � � �
750 � � � � � �

1000 � � � � � �

TABLE 2. Flow conditions.

conditions are shown in tables 1 and 2, respectively. The conditions investigated in the
present study are the compressible low-Re flow because the goal of our project is the
modelling of the compressible multiphase flow such as the exhaust jet of the rocket
engines. For example, the exhaust jet of the solid rocket motor includes the alumina
particles and aluminium droplets with a diameter of 1.1–200 µm (Shimada et al. 2006),
and water droplets introduced by water injection are also included in the exhaust jet of the
large-scale liquid rocket. The relative velocity between the particles and fluid becomes
large when the particles pass the shock wave or shear layer, and the estimated flow
condition around each particle is O(101)–O(103) with the compressible flow. Hence, the
knowledge of the compressible low-Re flow is essential for modelling of the compressible
multiphase flow. Here, several cases were omitted to reduce the computational cost,
for supersonic conditions because most conditions expected to be steady axisymmetric
flows. Also, the flow field at M = 0.3 seems to be almost the same as incompressible
flows.

The boundary conditions on the sphere surface are no-slip and adiabatic conditions.
At the boundaries in the ξ and η directions, a periodic boundary condition on the six
overlapped grid points was imposed. The inflow and outflow boundary conditions were
imposed at the outer boundary where the flow goes inside and outside at one point
inside the boundary, respectively. All flow variables were fixed to their free-stream values
at the inflow boundaries. All the variables were extrapolated from one point inside of
the boundary at the supersonic outflow boundaries. The density and the velocities were
similarly extrapolated and the pressure was fixed to its free-stream values in the subsonic
outflow condition. All the variables on the singular point on the x-axis were set to be an
average of the nearest surrounding nodes.
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3. Time variation of flow field

3.1. Flow regime
According to studies of incompressible flow by Taneda (1956), Magarvey & Bishop (1961),
Sakamoto & Haniu (1990) and Johnson & Patel (1999), the flow structure at Re ≤ 1000 can
be classified into six regimes. The flow is attached-laminar flow over the entire surface
(fully attached flow) at Re < 24. Laminar separation occurs and a steady axisymmetric
vortex ring forms behind the sphere at 24 < Re ≤ 210 (steady axisymmetric flow).
The flow field is still steady, but axisymmetrical breakup occurs and the vortex ring
assumes an asymmetric shape (steady planar–symmetric flow) at 211 ≤ Re ≤ 275. The flow
over an isolated sphere becomes unsteady and hairpin vortex shedding begins at Re ≥ 275.
The hairpin vortices are periodically released from the recirculation region of the sphere at
275 ≤ Re ≤ 420. The vortex shedding is highly organized (hairpin wake) in this Re range.
The hairpin vortices are periodically released up to Re ≤ 800, but the heads of hairpin
vortices roll in an azimuthal direction at 420 ≤ Re ≤ 800 (hairpin wake with azimuthal
oscillation). The wake vortices become complicated and strongly random at Re ≥ 800.
The wake consists of low-mode and high-mode structures and large-scale vortex structure
forms and rolls in the azimuthal direction (helical wake).

Figure 3 shows the distribution of the flow regime in the Re–M plane under
compressible conditions. The results of the previous studies by Nagata et al. (2016),
Riahi et al. (2018) and Sansica et al. (2018) are shown for comparison with those of the
present study. The result of Nagata et al. (2016) is obtained by the three-dimensional
DNS with a boundary-fitted coordinate (BFC) grid, the result of Riahi et al. (2018)
is obtained the three-dimensional DNS with IBM, and the result of Sansica et al. (2018)
is obtained the three-dimensional GSA, respectively. In this plot, the seven different
flow regimes described above are indicated as follows: fully attached flow (FA), steady
axisymmetric flow (SA), steady planar-symmetric flow (SP), hairpin wake (HaW), hairpin
wake 2 (HaW2), hairpin wake with azimuthal oscillation (HaWAO) and helical wake
(HeW). However, in the article by Riahi et al. (2018), fully attached flow and hairpin
wake with azimuthal oscillation did not appear. Those flow regimes seem to be included
in steady axisymmetric flow and unsteady periodic flow (HaW in this article) in their
articles, respectively. Fully attached flow also did not appear in the literature by Nagata
et al. (2016), but positions of the separation points were provided so that some of the
conditions classified as steady axisymmetric flow in their article were re-classified here as
fully attached flow. Figure 3 illustrates that the flow regime under the low subsonic flow
at M = 0.3 is similar to that of incompressible flow. The regions of steady axisymmetric
flow, steady planar–symmetric flow and the hairpin wake are slightly shifted toward the
higher-Re side under high subsonic flow. This means that the steady regime expands to
the higher-Re side. The relationship between flow regime and Re is drastically changed,
and the flow field is significantly stabilized under transonic and supersonic conditions.
Particularly, even non-axisymmetric flow does not appear for Re ≤ 1000 at M ≥ 1.5.

3.2. Wake structure
Figure 4 shows a wake structure visualized by the isosurface of the second invariant of the
velocity gradient tensor, which is normalized by the free-stream velocity. Several kinds
of wake structures appear at M ≤ 2.0 and Re ≤ 1000, and the wake structures become
complex and simple as Re and M increase, respectively. The schematic diagram of the flow
structure at supersonic conditions is also shown in the figure. As for the incompressible
flow, a recirculation region is formed behind the sphere. The most different point between
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2.1
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SA

SP HaW2

HeW

HaWAO
HaW

Re

M

Transitional

FIGURE 3. Distribution of flow regimes. Symbols: Nagata et al. (2016) (BFC); Riahi
et al. (2018) (IBM); Sansica et al. 2018 (GSA); present study (BFC). Colours: black, fully
attached flow (FA); blue, steady axisymmetric flow (SA); light blue, steady planar–symmetric
flow (SP); green, hairpin wake (HaW); green with purple, hairpin wake 2 (HaW2); dark green,
hairpin wake with azimuthal oscillation (HaWAO); magenta, helical wake (HeW). Note that
FA and HaWAO did not appear in Riahi et al. (2018), but it seems that those flow regimes are
classified as steady axisymmetric flow and unsteady periodic flow (HaW in this article) in their
articles, respectively.

the subsonic and supersonic conditions is the existence of the shock wave. The bow shock
is formed in the upstream of the sphere, and the shock standoff distance Ls is defined
as the clearance between the bow shock and the upstream stagnation point. In addition,
at moderate Re, the expansion wave and recompression wave are formed at around the
position of the separation point and the end of the recirculation region, respectively.

Streamwise steady vortices are generated behind the sphere at Re = 250 and M = 0.3.
The flow becomes unsteady and hairpin vortices are generated in the recirculation region
of the sphere at Re = 300 and 500. When Re further increases to 750 and 1000, the
wake vortices form a helical structure with a high mode and a low mode. The size of
the recirculation region at M = 0.8 becomes large compared with that at M = 0.3, and
the pressure coefficient distribution is different. The Re evolution of the flow patterns for
M = 0.8 is similar at M = 0.3 in figure 4, but the wake structure at M = 0.8 seems to be
more complicated. Thus, the critical Re for each flow pattern might be different between
M = 0.3 and 0.8. However, the details of the value of critical Re for each flow pattern
cannot be discussed due to a lack of DNS data in the Re direction. The compressibility
effect on the wake vortices becomes obvious for M ≥ 0.95. The pressure coefficient
distribution is drastically changed and a recompression wave can be observed around the
end of the recirculation region. In this case, there is only a steady recirculation region,
and no unsteady wake vortices are formed downstream of the sphere up to Re = 300. At
Re = 500, streamwise vortices can be observed, similar to those at Re = 250 and M = 0.3,
and the wake becomes helical at Re ≥ 750, as at M = 0.3 and 0.8, but its structure is more
complex than that under subsonic conditions. A bow shock is formed upstream of the
sphere at M ≥ 1.05, and those waves include expansion and recompression waves that
become stronger as M increases. At M = 1.05, the flow behind the sphere remains steady
state up to Re = 500, and hairpin structures appear at Re ≥ 750. Stabilization effects of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.629


904 A36-10 T. Nagata, T. Nonomura, S. Takahashi and K. Fukuda

Cp
–0.54 1.1 1.00

u2 + v2 + w2/u∞�

M = 2.0

M = 1.5

M = 1.2

M = 1.05

M = 0.95

M = 0.8

M = 0.3

Re = 250 Re = 300 Re = 500 Re = 750 Re = 1000

Bow shock Expansion wave Recompression wave

Wake

Recirculation region

xs
Ls

Sphere

FIGURE 4. Wake structure visualized by the second invariant of velocity gradient tensor
(Q/u2∞ = 5.0 × 10−4). Contours and iso-surface colours represent the pressure coefficient and
velocity magnitude distributions, respectively.
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wake by compressibility become strong as M increases, and the wake is steady at M ≥ 1.5
and Re ≤ 1000.

In the present study, the hysteresis phenomena on the flow field were also explored
based on the time variation of the lift coefficients. The hysteresis phenomena were not
observed during our simulations in periodic cases (HaW, HaW2 and HaWAO). Also, no
hysteresis phenomena such as temporal stabilization of the flow field at the investigated
flow conditions were observed.

As shown in the above, the flow pattern is significantly influenced by the compressibility.
For example, the wake at Re = 750 of M ≤ 0.95, the wake has a helical structure, but it
becomes hairpin wake at M > 0.95. This kind of trend can also be observed at other Re
cases investigated in the present study, and the flow field becomes steady at higher-M
conditions, eventually. Therefore, the flow pattern at the higher-M condition is similar
to that of the incompressible low-Re flows. Since there is an increase in the viscosity
coefficient due to aerodynamic heating and decrease of the fluid velocity due to the bow
shock, the local Re around the sphere seems to be decreased. However, the dynamics of
the released wake vortices should be different due to the influence of the shock wave
and the difference in Re based on the free-stream quantities. Detailed structures of the
wake vortices are displayed in figure 5. The wake structures at Re = 300 of M = 0.3 and
0.8 is the simple hairpin structure. The wake structure of at Re = 500 of M = 0.3 is a
hairpin structure, but the head of the hairpin vortices is oscillating around the streamwise
direction. The wake structure at the same Re is helical wake at M = 0.8. The twisting of the
vortex tube can be confirmed so that the wake structure seems to be that of the higher-Re
one. Since the λ shock wave changes the position of the separation point and the stability
of the wake, it is considered that the flow structure behind the sphere becomes different
from the incompressible one. Meliga, Sipp & Chomaz (2010) showed a similar trend by
global stability analysis with an axisymmetric approximation. They pointed out that the
instability of the wake becomes strong because of the modification of the base flow. The
direction of the head of the hairpin vortices is slightly swaying at Re = 500 of M = 0.3 and
is rotating around the streamwise axis with a twist in vortex tubes at M = 0.8 as shown
in figure 5. Also, there is a twist in the vortex tube so that the higher-frequency structure
is included compared to the wake at Re = 500 of M = 0.3. The direction of the head of
the hairpin vortices is fixed at M = 0.95 and the flow pattern is quite similar to that of the
wake structure at Re = 300 of M = 0.3 and 0.8 but there are higher-frequency structures.
In addition, the vortex structure under transonic and supersonic conditions at Re = 750
and 1000 are also similar to that of the wake structure at Re = 300 of M = 0.3, but there is
the higher-frequency structure similar to the wake at Re = 500 of M = 0.95. Hence, there
is the effect of the free-stream Re and a compressibility effect in the wake structure, and
the wake structures at lower-Re in subsonic flow and that at higher-Re in transonic and
supersonic flow seem to be similar but essentially different.

Figure 6 shows the influence of M on St of vortex shedding. The Strouhal number
of vortex shedding was computed by the velocity fluctuation at the maximum turbulent
kinetic energy (TKE) point in the downstream. There is a discrepancy between the present
and previous results (Nagata et al. 2016) at M = 0.95 of Re = 300. The Strouhal number of
vortex shedding at Re = 300 by Nagata et al. (2016) was computed from the time variation
of the lift coefficient. In addition, the amplitude of the lift coefficient at Re = 300 and
M = 0.95 observed in the previous study was almost zero. It is considered that such
small fluctuations did not appear as velocity fluctuations in the wake. The simulation
was conducted for a long duration (378–585 flow through times). Also, we checked the
effect of the data length on the fast Fourier transformation results. The difference in the
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Hairpin wake with

azimuthal oscillation (HaWAO)
Helical wake (HeW) Hairpin wake 2 (HeW2)

Re = 300, M = 0.3

Re = 300, M = 0.8

Re = 500, M = 0.3 Re = 500, M = 0.8 Re = 500, M = 0.95

Re =750, M = 0.3

Re = 1000, M = 0.3 Re = 1000, M = 1.05

Re = 750, M = 1.05

FIGURE 5. Effect of M and Re on the structure of wake vortices in each flow regime.

first peak of St calculated by full data (excluding the initial phase of the computations)
and 66 % of full data was around 1 %. Overall, St of vortex shedding increases as Re
increases, and the critical M, where St of vortex shedding becomes zero, move to the
higher-M side as Re increases. The Strouhal number of vortex shedding at Re = 300
decreases as M increases under subsonic conditions and rapidly approaches zero around
M = 0.95 because there is no vortex shedding at Re = 300 and M ≥ 0.95. The trend of St of
vortex shedding at Re = 500 is similar to that at Re = 300, but St of vortex shedding does
not decrease up to M = 0.95 and sharply approaches zero around M = 1.0. The Strouhal
number of vortex shedding decreases at 0.3 ≤ M ≤ 0.8 and there are no M effects on St of
vortex shedding at 0.8 ≤ M ≤ 1.05. It appears that the decrease in St of vortex shedding at
0.3 ≤ M ≤ 0.8 is due to the difference in the wake structure. As shown in figure 4, the wake
structure at M = 0.8 and 0.95 of Re = 750 is more complicated and has a larger amplitude
(resembling a higher-Re condition) compared to that of M = 0.3 or under incompressible
flows. The difference in the wake structure is considered to be caused by the difference
in the position of the separation point. Flow separation in the high-subsonic and transonic
cases is promoted by the effect of the expansion wave formed near the separation point.
This results in the unsteadiness of the recirculation region and complicated vortex structure
but St of vortex shedding decreases. Also, the flow field is strongly stabilized under the
supersonic regime the same as lower-Re cases, and then St of vortex shedding becomes
zero for M ≥ 1.2. The overall trend is similar to Re = 1000 but the different trend of
increasing and decreasing St at around M = 1 is observed in this range. This peculiar
tendency is considered to be caused by the interference of recompression wave and wake,
and the expansion wave and boundary layer. Under sufficiently high-Re conditions, for
example for Re ≥ 105, the λ shock wave is formed, and flow separation occurs at around
θ = 90°. The effect of the λ shock wave on the boundary layer seems to be limited at
lower-Re conditions, as shown in figure 7(a), because the boundary layer on the sphere is
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FIGURE 6. Effect of M on primary peak St of velocity fluctuation at the maximum TKE point:
Re = 300 (St of CL) (Nagata et al. 2016), Re = 300, Re = 500, Re = 750, Re = 1000

(present study).

1.0

–1.0

div u

(a) (b)

FIGURE 7. Distribution of the divergence of the velocity near the sphere surface at M = 1.05.
(a) Re = 250; (b) Re = 1000.

quite thick and attenuates the λ shock wave. However, the complex interaction between
the λ shock wave and the thick boundary layer might occur at the intermediate Re, which
is at approximately 103 (figure 7b). Although this phenomenon cannot be clarified only by
the results of the present study, it can be clarified by performing a global stability analysis
or resolvent analysis in future studies.

Figure 8 is the lift phase diagram, and the effect of M is illustrated for each Re. The
variations in the lift coefficient occur only in the z-direction under subsonic conditions of
Re = 300 because the direction of the hairpin vortices is fixed. The diagrams for M ≥ 0.95
converge to a single point because of the steady axisymmetric flow. At Re = 500, the flow
regime of the subsonic flow becomes HaWAO or HeW so that there are variations of
the lift coefficient in both z- and y-directions. Also, the amplitude of the lift coefficients
for M = 0.3 is larger than that for M = 0.8. The difference in the amplitude of the lift
coefficient is due to the difference in the flow regime. The randomness of the release
location and direction of the wake vortices are strong in the case of HeW, and thus the
effect of the oscillation of the wake on the lift coefficient seems to be smaller than that
in the case of HaWAO. The amplitude of the lift coefficients at higher-Re conditions is
reduced for the same reasons.
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FIGURE 8. Effects of Re and M on the lift phase diagram. (a) Re = 300; (b) Re = 500;
(c) Re = 750; (d) Re = 1000.
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FIGURE 9. Normalized TKE distribution in the wake region: (a) Re = 500; (b) Re = 1000.

The effect of M on the relationship between wake oscillation and the amplitude of the
lift coefficient can be seen at Re = 750 as shown in figures 4 and 8(c). The amplitude
of the lift coefficients is almost the same at M = 0.3 and 0.8, but the amplitude of the
wake at M = 0.8 is larger than that at M = 0.3. Destabilization effects of the sphere wake
at subsonic flow have been suggested by Meliga et al. (2010). They showed that the
critical Re for a transition from steady to unsteady flow decreases as M increases up to
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M ≈ 0.6 by a global stability analysis of axisymmetric wakes. Therefore, the flow regime
at M = 0.8 of Re = 750 is HeW even though the flow regime at M = 0.3 of Re = 750 is a
transitional regime between HaWAO and HeW. The difference in the flow regime results
in the difference in the amplitude of the wake and the distribution of the turbulent kinetic
energy. The effect of M on the turbulent kinetic energy in the wake will be discussed in
§ 3.3. At M = 0.95 of Re = 750, the amplitude of the lift coefficients is further reduced
but the amplitude of the wake is larger than or similar to that of lower-M conditions, and
the vortex structure is more complicated. Since the direction of the flow past the sphere
is forced close the recirculation region because of the expansion wave, the recirculation
region is stabilized and the amplitude of the lift coefficients is reduced. Conversely, the
larger amplitude of the wake oscillation appears due to the interaction between the wake
and recompression wave formed around the end of the recirculation region. Consequently,
the amplitude of the wake oscillation of the transonic flow is larger than that of the
shock-free flow in spite of the smaller variation of the lift coefficients.

3.3. Turbulent kinetic energy in the wake
Figure 9 shows the distribution of TKE in the wake region. The TKE was computed and
normalized by free-stream kinetic energy as follows:

TKE = 1
2

____

u′2 +
____

v′2 +
____

w′2

u2∞
, (3.1)

where u′, v′ and w′ are the fluctuation components of fluid velocities which is defined
as u′ = u − ū. The overbar signifies the time-average value and the prime signifies the
fluctuation value so that u′ is equal to zero and (u′)2 is the mean square fluctuation. Also,
the TKE was calculated in the high-resolution region (0.5d ≤ x ≤ 15d and

√
y2 + z2 ≤ 4d),

and we determined the volume average by every 
x = 0.2d. Figure 9(a) illustrates that the
TKE is continuously increasing approximately up to x = 2.5d. This is because of the end of
the recirculation region of the unsteady case exists at around x = 2.0d. The TKE gradually
decreases as the distance from the sphere increases. The TKE increases as M increases
up to M ≤ 0.95, and it becomes less than 10−4 at M > 0.95 because the wake is steady.
Figure 9(b) illustrates that the trend of the spatial distribution of the TKE at Re = 1000
is similar to that at Re = 500 and its value is higher than that at Re = 500. In addition,
the TKE increases and decreases as M increase at M ≤ 0.95 and M ≥ 1.05, respectively.
Therefore, it was confirmed that the TKE in the downstream of the sphere under higher-M
conditions is larger than that under lower-M conditions with the same flow regime. In
contrast, the TKE decreases as M increases at M ≥ 1.05 of Re = 1000 due to a change in
the flow regime from helical wake to hairpin wake, and the TKE becomes less than 10−4

at M > 1.2 because of the steady wake. Hence, the compressibility effect not only leads
to the stabilization of the flow field but also leads to the unsteadiness of the wake under
an unsteady flow regime. The recirculation region is stabilized as M increases due to the
expansion wave. On the other hand, the recompression wave formed in the downstream of
the sphere facilitates a transition to turbulence. There is the recompression wave but the
expansion wave is still weak at M = 0.95, and thus the TKE becomes maximum at around
M = 1 of Re = 1000. The flow field becomes steady at M = 0.95 and M = 0.3 because of
the low-Re conditions even though weak expansion waves.
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FIGURE 10. Dependence of separation point position on M and Re: (a) M dependence:
Re = 300; Re = 500; Re = 750; Re = 1000.

4. Time-averaged flow properties

4.1. Flow geometries
Figure 10 shows the M effects on the position of the separation point. The position of the
separation point moves upstream as M increases up to M = 0.8 because the flow separation
is promoted because of the λ shock formed at around θ = 90°. In contrast, the position of
the separation point moves downstream as M increases at M > 0.8 because of the influence
of the expansion wave. The flow direction behind the expansion wave changes to the
direction toward the recirculation region, which reduces the flow separation, and its effect
becomes strong under higher-M conditions. Also, the relative position of the separation
point does not change with Re; that is, there is no clear influence of Re on the M effect in
the separation point.

Figure 11 shows the effects of M on the separation length. The separation length
increases as M increases under subsonic conditions. The behaviour of the separation
length is linked with the position of the separation point. The increment of the separation
length rapidly increases at around the transonic regime, except at Re = 1000. On the other
hand, the separation length decreases as M increases from the transonic to the supersonic
regime, creating an inflection point in the separation length as M evolves. The inflection
point moves to the higher-M side as Re increases because the separation length increases
to its maximum value at around the critical M, which is the point at which the flow
regime changes from steady to unsteady. Also, the maximum value of the separation
length decreases as Re increases. A similar inflection point in the separation length exists
at Re = 750 of M = 1.2, again because the inflection point appears when the flow changes
from steady to unsteady. Therefore, the inflection point for M = 2.0 is considered to appear
at Re ≥ 1000. It should be noted that the discrepancy in the length of the recirculation
region at Re = 300 is due to the difference in the measurement method. In the study
by Nagata et al. (2016), the end of the recirculation region was explored on the x-axis.
In the present study, on the other hand, the position of the end of the recirculation region
is not limited to the x-axis. Since the shape of the recirculation region is skewed in the
time-averaged field, and the end of the recirculation region is off-axis, the recirculation
region provided by the present result is slightly longer than that of the result by Nagata
et al. (2016).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.629


Direct numerical simulation 904 A36-17

5.0

4.0

3.0

2.0

1.0

0 0.5 1.0

M

xs

1.5 2.0

FIGURE 11. The Mach number dependence of recirculation region length. Re = 300;
Re = 500; Re = 750; Re = 1000.
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FIGURE 12. Pressure coefficient distribution on sphere surface: (a) Re = 300; (b) Re = 1000.

4.2. Distribution of surface stress coefficients
Figures 12 and 13 show the distribution of pressure and friction coefficients, respectively,
at Re = 300 and 1000 for various M. In the present study, the pressure and friction
coefficients were acquired from the time-averaged field and were averaged around the
x-axis. Figure 12(a) illustrates that the pressure coefficient increases as M increases.
Discontinuity due to the shock wave, which was confirmed in the previous study with
a rotating sphere under compressible low-Re flow (Nagata et al. 2018b), is not observed.
The minimum value of CP exists at around θ = 90°, and its position moves downstream
as M increases. Also, the minimum value of CP decreases and increases as M increases,
respectively, under subsonic and supersonic conditions. The minimum value of CP at
M = 2.0 is almost the same as CP at the downstream stagnation point. The trend of the
M effect on CP distributions under subsonic conditions is similar to that of a cylinder at
Re = 20 and 40 for M ≤ 0.5, as reported by Canuto & Taira (2015). It should be noted that
the change in the position of the separation point from M = 0 to 0.5 is less than 0.5°.

The position where the CP value at M ≤ 0.8 is minimized moves downstream as M
increases, even though the position of the separation point moves upstream. Figure 12(b)
illustrates that the influence of M on the CP distribution at Re = 1000 is similar to that
at Re = 300, but the influence of M on the CP minimum becomes clearer. Figure 13
shows the distribution of Cf at Re = 300 and 1000 for various M. The value of Cf at
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FIGURE 13. Friction coefficient distribution on sphere surface: (a) Re = 300; (b) Re = 1000.

Re = 300 becomes the maximum at around θ = 70° as shown in figure 13(a), and the peak
position moves downstream as M increases. In addition, the peak value of Cf increases
and decreases as M increases under subsonic and supersonic conditions, respectively.
The maximum value of Cf is smaller than that under the lower-M cases under higher-M
conditions in the upstream region, particularly under supersonic conditions, due to the bow
shock. The dynamic viscosity coefficient also increases due to aerodynamic heating under
supersonic conditions, but the effect of the deceleration of the flow is more effective.
In contrast, Cf under the higher-M condition is larger at the downstream side where Cf
becomes the maximum because the position of the separation point moves downstream
as M increases at M ≥ 0.8. Figure 13(b) illustrates that a similar trend to Re = 300 can be
observed at Re = 1000.

4.3. Drag coefficient
Figure 14 illustrates the effect of M on the drag coefficients at Re = 100, 300, 750 and 1000.
The total drag coefficient CD increases as M increases and its increment under transonic
conditions is greater than that under subsonic and supersonic conditions due to increased
wave drag. Under supersonic conditions, the increment of the drag coefficient becomes
almost zero and is independent of M at around M > 1.5. A similar trend for inviscid
hypersonic flows is well known as Oswatitsch’s Mach number independence principle.
The increment of the total drag coefficient by the effect of M is almost equivalent to
the increase of the pressure component CDP, as shown in figure 14(b). The effect of M
on the pressure drag coefficient can be predicted by the Prandtl–Glauert transformation
shown by the dotted curve up to high-subsonic conditions, and the increment of the
pressure component at M > 0.9 is mainly according to the increment of the wave drag.
However, the influence of M on the viscous component CDv is smaller than that on the
pressure component. The viscous component slightly decreases as M increases under
subsonic conditions because the position of the separation point moves upstream as
M increases. The position of the separation point moves downstream under transonic
conditions and the mean velocity gradient on the surface of the sphere increases. In
contrast, the viscous component is almost constant under supersonic conditions despite
the separation becoming delayed as M increases because the flow is decelerated at the
bow shock, and the velocity gradient on the surface of the sphere decreases. The fluid
viscosity increases due to increasing temperature, but the decrease in the velocity gradient
is more effective, as shown in figure 13.
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FIGURE 14. Effect of M on CD: (a) total drag coefficient; (b) pressure drag coefficient;
(c) viscous drag coefficient. Symbols: Re = 100 (Nagata et al. 2016), Re = 300, Re = 750,

Re = 1000 (present study).

Figure 15 shows the relationship between Re and CD at 0.3 ≤ M ≤ 2.0. The present
results are compared to the drag curves predicted by the Loth model (Loth 2008) and
experimental drag data acquired by Sreekanth (1961), Goin & Lawrence (1968), Zarin &
Nicholls (1971) and Bailey & Starr (1976). There are experimental data in a wide range of
Re and M, including the conditions investigated in the present study. Those drag data were
acquired by wind tunnel experiments using a magnetic balance and suspension system,
ballistic experiments and so on. Figure 15 illustrates that the drag coefficient increases
as Re decreases for each value of M. The drag coefficients predicted by the drag model
and DNS and measured by experiments show good agreement at M = 0.3. The present
result agrees well with some experimental data at Re > 600 of M = 0.8, but the drag
coefficient predicted by the Loth model is slightly lower than that by experiments and
DNS. The difference between experimental and DNS data and the drag model becomes
large as M increases under transonic conditions of 0.95 ≤ M ≤ 1.2, particularly in the
low-Re conditions. The difference between experimental and DNS data also becomes large
at lower-Re conditions because a no-slip boundary condition was used in the previous
DNS study by Nagata et al. (2016) despite the slightly rarefied regime. The drag model
and experimental data show good agreement at M = 2.0, but the DNS overestimates the
drag coefficient compared with the drag model and experimental data, particularly under
the low-Re conditions. The overestimation by DNS is due to the influence of the no-slip
boundary condition, and thus the difference between the DNS results and other data
becomes small as Re increases. The Knudsen number at M = 2.0 of Re � 250 is less than
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FIGURE 15. Relationship between Re and drag coefficient: (a) M ≈ 0.3, (b) M ≈ 0.8,
(c) M ≈ 0.95, (d) M ≈ 1.05, (e) M ≈ 1.2, ( f ) M ≈ 2.0. Symbols: Loth (2008), Goin &
Lawrence (1968), Zarin & Nicholls (1971), Bailey & Starr (1976), Bailey & Hiatt (1971),

Bailey & Hiatt (1972), Sreekanth (1961), Nagata et al. (2016), present study.

0.001 so that the rarefaction effect is sufficiently small in that region, but there is a clear
difference between the drag model and the experimental and DNS data.

The drag model proposed by Loth (2008) is based on theoretical formulas,
experimental formulas and empirical corrections, but the model includes interpolation and
approximation due to a lack of experimental data in the transitional regime of continuum
and rarefied flows. In other words, the drag model is not based on sufficient experimental
data, and thus the accuracy of the drag model gets worse in the transitional condition.
According to the original paper of the drag model, the drag model proposed in the previous
study is valid in the flow conditions investigated in our study. Such flow conditions appear
in compressible particle-laden flow, and the drag models are used in the multiphase
flow analysis. The results of the present study, particularly in figure 15, indicate that the
drag model proposed by the previous study requires correction to improve the prediction
accuracy.
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FIGURE 16. Increment of drag coefficient by M effect: (a) present study: Re = 300,
Re = 500, Re = 750, Re = 1000; (b) published experimental results: Re = 50,
Re = 100, Re = 200, Re = 500, Re = 1000, Re = 5000, Re = 10 000,

Re = 100 000 (black symbols, Bailey & Hiatt 1972; grey symbols, Bailey & Starr 1976).

Figure 16 shows the increment of the total drag coefficient with increasing M. In the
present study, 
CD was defined as follows:


CD = CD(Re, M) − CD(Re, M = 0), (4.1)

where CD(Re, M) indicates the drag coefficient predicted by the present DNS or previous
experiments, and CD (Re, M = 0) indicates the drag coefficient under the incompressible
flow, which was predicted by the drag model proposed by Clift & Gauvin (1971).
Figure 16(a) illustrates that 
CD increases as M increase at M ≥ 0.3, and its value
appears to be only a function of M. The increment of 
CD under transonic conditions
is in particular larger than that under subsonic and supersonic conditions. The increment
of 
CD under subsonic conditions is caused by a compressibility effect, which can be
explained by the Prandtl–Glauert transformation, and the pressure drag increases due to a
decrease of the attached region, as illustrated in figure 14(b) and figure 10. The increment
of the wave drag is almost constant at M > 1.5 and moderate Re; hence, the increment
of 
CD becomes small under higher-M conditions but also under low-Re conditions.
At M = 0.3, 
CD is negative because the drag coefficient at M = 0.3 is slightly smaller
than that under incompressible flow conditions, due to the position of the separation
point existing upstream compared to that under incompressible flows. The position of the
separation point under lower-Re conditions exists downstream compared with that under
higher-Re conditions, and thus the decrement of 
CD is larger under lower-Re conditions.
Figure 16(b) shows 
CD as calculated using published experimental data. In this case,

CD is approximately characterized by M at M < 1.5, but Re dependence appears at
M = 2.0. The value of 
CD decreases as Re decreases for lower-Re conditions of M = 2.0,
particularly at Re ≤ 200, because the Knudsen number based on the free-stream velocity
and the sphere diameter is greater than 0.01 at Re ≤ 200 and M = 2.0. Hence, the slip effect
on the wall caused by the rarefaction effect gradually strengthens as Re decreases.

5. Characterization of drag coefficient and flow regime by position of separation
point

Figure 17 shows the relationship between the positions of the separation point and
drag coefficients. Figures 17(a)–17(c) illustrate that the total, pressure and viscous drag
coefficients become small when the position of the separation point exists upstream at
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FIGURE 17. Characterization of drag coefficient by position of the separation point: (a) total
drag; (b) pressure component; (c) viscous component. Symbols: M = 0.3, M = 0.8,

M = 0.95, M = 1.05, M = 1.2, M = 2.0 (closed symbols, Nagata et al. 2016; open
symbols, present study).

Re ≤ 1000. Also, the θ s–CD curve for each M value has a similar shape. The position of the
θ s–CD curve for each M condition and gradient of those curves depend on M. However, a
different trend can be seen in the pressure component, as shown in figure 17(b). The shape
of the θ s–CDP curve is different under subsonic, transonic and supersonic conditions in
the case of the pressure component. The θ s–CDP curve has nonlinearity under subsonic
conditions. In contrast, nonlinearly in the θ s–CDP curve under supersonic conditions is
relatively weak, and the trend in the θ s–CDP curves for transonic conditions is different
from the trend under subsonic and supersonic conditions. In particular, the gradient of
the θ s–CDP curve at M = 0.95 is negative, thus the behaviours of the pressure field and
flow field are different from those under subsonic and supersonic conditions due to the
formation of shock waves. The pressure drag coefficient increases as M increases, but the
position of the separation point is approximately the same up to M = 1.05. The increment
of CDP with increasing M in this regime is caused by compressibility effects, which
can be explained by the Prandtl–Glauert transformation and wave drag. At M ≥ 1.05,
in contrast, the increment of CDP with increasing M is smaller and the position of the
separation point moves downstream as M increases. The trend of the θ s–CDv curves is
similar as shown in figure 17(c), and M does not have a large impact on CDv, despite the
position of the separation point moving downstream as M increases, particularly under
supersonic conditions. This trend is caused mainly by the bow shock. The flow separation
is reduced and the position of the separation point moves downstream as M increases under
supersonic low-Re flow. Moreover, the flow decelerates at the bow shock, and thus the
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FIGURE 18. Characterization of flow regime by position of the separation point. Symbols:
FA, SA, PS, HaW, HaWAO, HeW (closed symbols, Nagata et al. 2016 for

50 ≤ Re ≤ 250; open symbols, present study for 250 ≤ Re ≤ 1000).

normalized velocity gradient on the surface of the sphere normalized by the free-stream
velocity is lower than that in the subsonic cases. Since this reduces the lower wall shear
stress, CDv does not increase when M increases.

The position of the separation point moves from downstream to upstream as Re increases
under incompressible flows of Re ≤ 1000, and the flow regime changes from fully attached
flow to helical wake through steady axisymmetric, steady planar–symmetric and hairpin
wake flows. In other words, the flow pattern appears to depend on the position of
the separation point. Figure 18 characterizes the flow regime according to the position
of the separation point. This figure illustrates that the flow regime can be characterized by
the position of the separation point for every M investigated in the present study. The flow
pattern changes to unstable wake as the position of the separation point moves upstream
for all values of M; hence, the relationship between the flow regime and the position of the
separation point under compressible flows is similar to that under incompressible flows.
However, the effect of M on the flow regime remains, even when characterized using
the position of the separation point. For example, the separation point at M = 0.3 and
0.8 shifts upstream, and the separation point for each flow pattern also shifts upstream
with increasing M. This indicates that the change in the flow pattern with increasing
M is not merely by a change in the position of the separation point. As M increases, a
certain flow pattern appears when the position of the separation point exists relatively
upstream up to M = 0.95. This means that the flow becomes stable despite the separation
point existing upstream (resembling higher-Re conditions) compared with the position of
the separation point under lower-M conditions. The situation under supersonic conditions
is different from that under subsonic and transonic conditions. The separation angle is
different because of the expansion wave even if the separation point exists at the same
location. The Reynolds number of the flow in the supersonic case is higher than that in the
subsonic cases for the same separation point with different M values, and thus supersonic
flows appear to be less stable compared with subsonic flows for the same separation point.

6. Conclusions

In the present study, the compressible low-Re flow over a sphere was investigated
by DNS of the three-dimensional compressible Navier–Stokes equations using a
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body-fitted grid with high-order schemes. The flow conditions were 250 ≤ Re ≤ 1000 and
0.3 ≤ M ≤ 2.0, and adiabatic and no-slip boundary conditions were imposed on the sphere
surface. The present study investigated the time variation of the flow field such as the
wake flow regime and TKE in the wake; the time-averaged flow properties such as the
position of the separation point; the length of the recirculation region; the distributions of
the surface stress coefficients; and the aerodynamic force coefficients.

The results showed that the wake is significantly stabilized as M increases. In the case
of M = 1.2, for example, steady axisymmetric, steady-planar symmetric and hairpin wakes
were observed at Re = 500, 750 and 1000, respectively. These flow regimes appear at
24 < Re ≤ 210, 211 ≤ Re ≤ 275 and 275 ≤ Re ≤ 420, respectively, in incompressible flows
so that critical Re for each flow regime in the compressible flow is different from that
in the incompressible cases, and the flow regime is shifted toward the lower-Re side as
M increases. However, there is the effect of the free-stream Re and the compressibility
effect in the wake structure. The wake structure at lower-Re in subsonic flow and that at
higher-Re in transonic and supersonic flow seems to be similar but essentially different.
The difference in the unsteady wake behaviour between low-speed and high-speed flows
appears around the recompression wave. This characteristic is the same as that under
higher-Re conditions of Re ≤ 104 in a similar M range.

The position of the separation point moves upstream and downstream as M increases
under subsonic and greater-than-transonic conditions, respectively. Also, the separation
point moves upstream as Re increases, and the magnitude of the change is almost the same
for each M; hence, the interaction between M and Re does not change the position of the
separation point. In contrast, the effects of M and Re interact to change the length of the
recirculation region, which had a steep peak at around the transonic condition. The peak
value of the length of the recirculation region decreases as Re increases, and the point at
which the length of the recirculation region increases to its maximum value is shifted to
higher-M values as Re increases. The recirculation length becomes the maximum value
around the critical M, which is the boundary of steady and unsteady flows.

The drag coefficient increases as M increases mainly under transonic conditions due
to the compressibility effect described by the Prandtl–Glauert transformation and wave
drag. The Re effect also appears in the drag coefficient, but the increment of the drag
coefficient due to compressibility effects in the continuum regime can be characterized
by only M. In addition, few data are available for the drag coefficient under compressible
low-Re conditions, particularly under transonic conditions. It seems that the accuracy of
the previous drag model for transonic conditions was relatively low compared to that for
subsonic and supersonic conditions.

Finally, the drag coefficient and the distribution of the flow regime were discussed based
on the position of the separation point. The drag coefficient can be characterized by the
position of the separation point for each M. This result suggests that the effect of Re on
the drag coefficient can be characterized by the position of the separation point regardless
of the compressibility effect. Although the influence of M is not characterized completely,
characterization based on the position of the separation point works well compared to
characterization using Re and M.
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FIGURE 19. Distribution of grid size in ξ direction at the end of the high-resolution region.

Re = 300 Re = 500 Re = 750

M = 0.3 M = 2.0 M = 0.3 M = 2.0 M = 0.3 M = 2.0

Baseline 0.6587 1.452 0.5658 1.331 0.5078 1.251
Fine 0.6644 1.458 0.5679 1.336 0.5085 1.254

TABLE 3. Drag coefficients computed by different grid resolutions.

Re M 
t Re M 
t

250 0.3 0.002 750 0.3 0.001
0.8 0.001 0.8 0.001
0.95 0.001 0.95 0.001
1.05 0.001 1.05 0.001

300 0.3 0.002 1.2 0.001
0.8 0.001 2.0 0.0001
0.95 0.001 1000 0.8 0.0005
1.05 0.001 0.95 0.0005
1.2 0.0005 1.05 0.0005
2.0 0.0001 1.2 0.0002

500 0.3 0.0005 1.5 0.0001
0.8 0.002 2.0 0.0001
0.95 0.001
1.05 0.001
1.2 0.0005
2.0 0.0001

TABLE 4. Time step size 
t.
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Appendix A. Computational grid

The distribution of the grid size in the ξ direction at the end of the high-resolution
region is shown in figure 19.
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Appendix B. Grid size and time step size convergence study

Table 3 shows the drag coefficients computed using the baseline and fine grids at
Re = 300, 500 and 750. The fine grid for each Re corresponds to the baseline grid for the
next-higher Re value; for example, the fine grid for Re = 750 corresponds to the baseline
grid for Re = 1000. Also, table 4 shows the list of the time step size 
t for each simulation.
The time step size convergence study was conducted at Re = 750 of M = 0.3. The time step
size of the fine case is half of the baseline case. The relative error in the time-averaged drag
coefficient was 0.2 % (baseline, CD = 0.5085; fine, CD = 0.5099).
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