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1. Introduction

For an associative ring R with 1, the category Ch(R) of complexes has two well-known
model category structures with weak equivalences being the homology isomorphisms.
The ‘projective’ model structure is characterized by having the fibrations being all epi-
morphisms and the cofibrations being the monomorphisms with dg-projective cokernels.
The dual ‘injective’ model structure has the cofibrations being the monomorphisms and
the fibrations being the epimorphisms with dg-injective kernels. In 2004, Gillespie [17]
used Hovey’s Theorem 2.2 [21], which relates complete cotorsion pairs in Ch(R) to model
structures on Ch(R) to get the ‘flat’ model structure. Gillespie [17] proved in a general
way that any hereditary cotorsion pair in R-Mod induces two cotorsion pairs in Ch(R)
for which Hovey’s Theorem can apply if both of the induced cotorsion pairs are com-
plete. Thus, Gillespie put the open question of whether or not the induced cotorsion pairs
are complete when the original cotorsion pair is complete. Gillespie followed a method
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analogous to one in [6] to show that the cotorsion pairs in Ch(R) induced by the flat
cotorsion pair are both complete. In the current paper we give a positive answer to
this question when the original cotorsion pair is complete and hereditary as well. Later,
in [18], Gillespie generalized flat model structure on Ch(R) to the category of complexes
of quasi-coherent sheaves on a quasi-compact, semi-separated scheme X. Furthermore, he
pointed out that the flat model structure on Ch(R) is cofibrantly generated [18, Corol-
lary 7.2]. The cofibrantly generated property is very important for a model structure and
is studied in [18,19,21]. So we are also motivated to consider the cofibrantly generated
property of a model structure on Ch(R) in this paper.

The paper is structured as follows. Section 2 provides relevant definitions and notation
which will be used throughout the paper. In § 3, we will show that if the given cotorsion
pair (A,B) in the category of modules is complete and hereditary, then both of the
induced cotorsion pairs in the category of complexes are complete, which gives a positive
answer to the open question of Gillespie [17]. In § 4, we show that if (A,B) = (D,D⊥) with
D the class of all modules of projective dimension less than or equal to n, n a fixed non-
negative integer, then the associated model structure on Ch(R) is cofibrantly generated.
This model structure can in fact be regarded as a generalization of the projective one.

2. Preliminaries

In this section, we give some relevant definitions and some notation for later use.
Cotorsion pairs were invented by Salce [23] in the category of abelian groups, and

were rediscovered by Enochs and coauthors in the 1990s. Given a class H of objects in
an abelian category C, we will denote by H⊥ (respectively, ⊥H) the right orthogonal
(respectively, left orthogonal) class of objects X such that Ext1(H, X) = 0 (respectively,
Ext1(X, H) = 0) for every H ∈ H. Now using this notation, we recall from [15] that a
pair of classes of objects (A,B) is said to be a cotorsion pair if A⊥ = B and ⊥B = A. A
cotorsion pair (A,B) is said to be cogenerated by a set S ⊆ A whenever B ∈ B if and only
if Ext1(S, B) = 0 for all S ∈ S. A cotorsion pair (A,B) is called hereditary, if the class
A is closed under taking kernels of epimorphisms, or, equivalently, the class B is closed
under taking cokernels of monomorphisms. Also recall that a cotorsion pair (A,B) is said
to be complete if it has enough injectives and projectives, that is, for any object X of C
there are exact sequences 0 −→ X −→ B −→ A −→ 0 and 0 −→ B′ −→ A′ −→ X −→ 0,
respectively, with B, B′ ∈ B and A, A′ ∈ A. In the paper we will mainly consider cotorsion
pairs in the category R-Mod of R-modules and the category Ch(R) of complexes of
R-modules.

Recall from [13] that if H is a class of objects in an abelian category C and X ∈ C, then
an H-pre-envelope of X is a morphism f : X → H with H ∈ H, such that the triangle

H ′

X

��

f
�� H

��
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can be completed for each morphism X → H ′ with H ′ ∈ H. An H-pre-envelope f : X →
H is called special if Ext1(Coker(f), G) = 0 for all G ∈ H. If the triangle

H

X

f

��

f
�� H

��

can be completed only by isomorphisms, then f is called an H-envelope. (Special) H-
precovers and H-covers are defined dually.

Recall that a model category is a category that we shall assume has all limits and colim-
its, together with three subcategories (the model structure), called the weak equivalences,
cofibrations and fibrations, that must satisfy various axioms. Since our results are about
model categories, we assume that the reader is familiar with and interested in model
categories. However, if one believes [21, Theorem 2.2] then one really does not need to
know anything about model categories to understand the paper. A nice introduction to
the basic idea of a model category can be found in [9,20].

Throughout this paper, let R be an associative ring with 1, R-Mod the category of
left R-modules and Ch(R) the category of complexes of left R-modules. Let Hom(A, B)
denote the set of all morphisms from A to B and let Exti(A, B) denote the right-derived
functors of Hom. To every complex

C = · · ·
∂C

m+1−−−→ Cm
∂C

m−−→ Cm−1
∂C

m−1−−−→ Cm−2
∂C

m−2−−−→ · · ·

in Ch(R) we associate the numbers

supC = sup{l | Cl �= 0} and inf C = inf{l | Cl �= 0}.

The complex C is called ‘bounded above’ when supC < ∞, ‘bounded below’ when
inf C > −∞ and ‘bounded’ when it is bounded below and above. The mth cycle module
is defined as Ker(∂C

m) and is denoted by ZmC. The mth boundary module is Im(∂C
m+1)

and is denoted by BmC. The mth homology module of C is the module Hm(C) =
ZmC/BmC. Given a left R-module K, we will denote by Di(K) the complex · · · −→
0 −→ K

id−→K −→ 0 −→ · · · with K in the i and (i − 1)th positions and Si(K) the
complex · · · −→ 0 −→ K −→ 0 −→ · · · with K in the ith position.

In the following discussion, M and N denote complexes of left R-modules.
A homomorphism ϕ : M → N of degree m is a family (ϕi)i∈Z of homomorphisms of

R-modules ϕi : Mi → Ni+m. All such homomorphisms form an abelian group, denoted
Hom(M, N)m; it is clearly isomorphic to

∏
i∈Z

HomR(Mi, Ni+m). We will let Hom(M, N)
denote the complex of Z-modules with mth component Hom(M, N)m and differential

(∂(ϕ))i = ∂N
i+mϕi − (−1)mϕi−1∂

M
i .

A homomorphism ϕ ∈ Hom(M, N)m is called a chain map if ∂(ϕ) = 0, i.e. if

∂N
i+mϕi = (−1)mϕi−1∂

M
i for all i ∈ Z.
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A chain map of degree 0 is called a morphism. A morphism f : M → N is called a homol-
ogy isomorphism if the induced morphisms Hm(f) : Hm(M) → Hm(N) are isomorphisms
for all m ∈ Z. For more terminologies about complexes the reader can consult [7,16].

Given an ordinal number λ and a family (Xα)α<λ of subcomplexes of an R-complex X,
recall that the family (Xα)α<λ is called a continuous chain of subcomplexes [12, Definition
2.8] if Xα ⊆ Xβ whenever α � β < λ and if Xβ =

⋃
α<β Xα whenever β < λ is a limit

ordinal. A family (Xα)α�λ is called a continuous chain if (Xα)α<λ+1 is a continuous
chain.

3. Cotorsion pairs and model structures on Ch(R)

In this section, we mainly study the completeness of cotorsion pairs in Ch(R) induced
by a cotorsion pair in R-Mod.

Recall from [14] that a complex P is said to be dg-projective if each Pm is projective
and Hom(P, E) is exact for any exact complex E. A dg-injective complex is defined dually.
Gillespie [17, Definition 3.3] introduced the following definitions, which generalize the
notions of dg-projective and dg-injective complexes.

Definition 3.1 (Gillespie [17, Definition 3.3]). Let (A,B) be a cotorsion pair in
R-Mod and let X be an R-complex.

1. X is called an A complex if it is exact and ZiX ∈ A for all i ∈ Z.

2. X is called a B complex if it is exact and ZiX ∈ B for all i ∈ Z.

3. X is called a dg-A complex if Xi ∈ A for all i ∈ Z, and Hom(X, B) is exact
whenever B is a B complex.

4. X is called a dg-B complex if Xi ∈ B for all i ∈ Z, and Hom(A, X) is exact whenever
A is an A complex.

We denote the class of A complexes by Ã and the class of dg-A complexes by dgÃ.
Similarly, the B complexes are denoted by B̃ and the dg-B̃ complexes are denoted by dgB̃.
Clearly, any dg-projective complex is in dgÃ and any dg-injective complex is in dgB̃.

For later use we give the following lemma, which follows directly from [17, Proposi-
tion 3.6] and [17, Corollary 3.13].

Lemma 3.2. If (A,B) is a cotorsion pair in R-Mod, then (Ã, dgB̃) and (dgÃ, B̃) are
cotorsion pairs in Ch(R).

If (A,B) is a cotorsion pair in R-Mod, then we call (Ã, dgB̃) and (dgÃ, B̃) induced
cotorsion pairs by (A,B).

The next two lemmas play an important role in proving our main result.

Lemma 3.3. Suppose that (A,B) is a complete and hereditary cotorsion pair in
R-Mod and 0 → X1 → X2 → X3 → 0 a short exact sequence of R-modules. If fi : Ai →
Xi is a special A-precover of Xi for i = 1, 3, then there exists a commutative diagram (see
Figure 1) with exact rows and columns such that f2 : A2 → X2 is a special A-precover
of X2. Similarly, the dual version of this result holds.
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0

��

0

��

0

��
0 �� Ker(f1) ��

��

Ker(f2) ��

��

Ker(f3) ��

��

0

0 �� A1 ��

f1

��

A2 ��

f2

��

A3 ��

f3

��

0

0 �� X1 ��

��

X2 ��

��

X3 ��

��

0

0 0 0

Figure 1.

Proof. See [1, Theorem 3.1] or [8, Theorem 3] for the proof of the first part. The
second part of this result can be proved dually. �

Lemma 3.4. Suppose that (A,B) is a complete and hereditary cotorsion pair in R-
Mod. Then every exact complex admits a special Ã-precover and a special B̃-pre-envelope.

Proof. Let E be an exact complex. Then we have short exact sequences of R-modules:

0 −→ ZiE −→ Ei −→ Zi−1E −→ 0.

On the one hand, there exists a special A-precover f ′
k : A′

k → ZkE of the module ZkE

for each k ∈ Z by hypothesis, and on the other hand it follows from Lemma 3.3 that
for each i ∈ Z there exists a commutative diagram (see Figure 2) with exact rows and
columns such that fi : Ai → Ei is a special A-precover of Ei. Now if we put

A =: · · · −→ Ai+1
∂A

i+1−−−→ Ai
∂A

i−−→ Ai−1 −→ · · ·

with ∂A
i = µi−1νi−1, then the morphism f = (fi)i∈Z : A → E is a special Ã-precover of

the complex E. In fact, by the construction above, A is in Ã, the morphism f is epic and
Ker(f) ∈ B̃. We get from [17, Proposition 3.6] and [17, Lemma 3.10] that Ext1(X, Y ) = 0
for any X ∈ Ã and any Y ∈ B̃, in particular, Ext1(X, Ker(f)) = 0 for any X ∈ Ã. Thus,
the sequence

0 −→ Hom(X, Ker(f)) −→ Hom(X, A) −→ Hom(X, E) −→ 0

is exact for any X ∈ Ã, and so f : A → E is a special Ã-precover of the complex E.
Dually, we can prove any exact complex admits a special B̃-pre-envelope. �

There are many cotorsion pairs in R-Mod to satisfy the complete and hereditary prop-
erties [2,22,24]. So the following theorem, which is our main result in this section, gives
a positive answer to the open question of Gillespie [17], as mentioned in § 1.
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0

��

0

��

0

��
0 �� Ker(f ′

i) ��

��

Ker(fi) ��

��

Ker(f ′
i−1) ��

��

0

0 �� A′
i

µi ��

f ′
i

��

Ai

νi−1 ��

fi

��

A′
i−1

��

f ′
i−1

��

0

0 �� ZiE ��

��

E ��

��

Zi−1E ��

��

0

0 0 0

Figure 2.

Theorem 3.5. Suppose that (A,B) is a complete cotorsion pair in R-Mod. If the
cotorsion pair (A,B) is hereditary, then the induced cotorsion pairs (Ã, dgB̃) and (dgÃ, B̃)
in Ch(R) are both complete.

Proof. We need only to show the cotorsion pair (Ã, dgB̃) is complete, because the
completeness of the cotorsion pair (dgÃ, B̃) can be proved dually.

Let X be any complex. Then by [16, Theorem 2.2.4] there exists an exact sequence

0 −→ I
g−→ E

f−→ X −→ 0

such that f : E → X is a special exact precover of X, that is, E is exact and I is
dg-injective, where g : I → E is a natural injection. By Lemma 3.4, we have an exact
sequence

0 �� B �� A
α �� E �� 0

with α : A → E a special Ã-precover of E, that is, A is in Ã and B is in B̃. Now consider
the pullback diagram (Figure 3) of morphisms α : A → E and g : I → E. By [17, Lemma
3.10], we have B ∈ dgB̃. Moreover, since I is obviously in dgB̃ and the class dgB̃ is closed
under extensions, we get U ∈ dgB̃. This implies that the above morphism A → X is a
special Ã-precover of X. Thus, (Ã, dgB̃) has enough projectives. On the other hand, the
category Ch(R) of complexes of modules has enough projectives and enough injectives,
and so the cotorsion pair (Ã, dgB̃) has enough injectives by [15, Proposition 1.1.5]. This
completes the proof. �

If we denote by E the class of all exact complexes of R-modules, it has been proved
that the class ⊥E is that of all dg-projective complexes and the class E⊥ of all dg-injective
complexes [14]. The existence of dg-projective precovers and dg-injective pre-envelopes
has been studied and proved [3,14,16]. These results have played an important role in
extending the notions of projective and injective dimensions from modules to unbounded

https://doi.org/10.1017/S0013091510000489 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000489


Cotorsion pairs and model structures on Ch(R) 789

0

��

0

��
B

��

B

��
0 �� U ��

��

A ��

α

��

X �� 0

0 �� I
g ��

��

E ��

��

X �� 0

0 0

Figure 3.

complexes [5]. Here we will apply the techniques developed in the present paper to give
very short and easy proofs of the existence of such precovers and pre-envelopes.

Corollary 3.6. The cotorsion pairs (⊥E , E) and (E , E⊥) are both complete. In par-
ticular, every complex has a special dg-projective precover and a special dg-injective
pre-envelope.

Proof. Let (A,B) = (P,M), where M denotes the class of all R-modules and P
denotes the class of all projective R-modules. Then (A,B) is clearly complete and hered-
itary. Thus, (⊥E , E) = (dgÃ, B̃) is complete by Theorem 3.5, and so every complex has a
special dg-projective precover by [15, Proposition 1.2.6].

Dually, if we let (A,B) = (M, I), where M denotes the class of all R-modules and I
the class of all injective R-modules, then (A,B) is clearly complete and hereditary. Thus,
(E , E⊥) = (Ã, dgB̃) is complete by Theorem 3.5, and so every complex has a special
dg-injective pre-envelope by [15, Proposition 1.2.6]. �

Let (F , C) be the flat cotorsion pair in R-Mod. Since the cotorsion pair (F , C) is
complete and hereditary, the following result is easily seen by Theorem 3.5.

Corollary 3.7 (Gillespie [17]). Let (F , C) be the flat cotorsion pair in R-Mod. Then
the cotorsion pairs (F̃ , dgC̃) and (dgF̃ , C̃) are complete.

In [17], Gillespie obtained the flat model structure on Ch(R) from [21, Theorem 2.2]
and from the above facts. In the general case, we have the following result.

Corollary 3.8. Let (A,B) be a complete cotorsion pair in R-Mod. If (A,B) is hered-
itary, then there is an associated model structure on Ch(R) where the weak equivalences
are homology isomorphisms, the cofibrations (respectively, trivial cofibrations) are the
monomorphisms whose cokernels are in dgÃ (respectively, Ã) and the fibrations (respec-
tively, trivial fibrations) are the epimorphisms whose kernels are in dgB̃ (respectively, B̃).
In particular, dgÃ is the class of cofibrant objects and dgB̃ is the class of fibrant objects.
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Proof. It follows from [17, Corollary 3.13] that Ã = dgÃ ∩ E and B̃ = dgB̃ ∩ E ,
since the cotorsion pair (A,B) of modules is hereditary, where E denotes the class of all
exact complexes. As we have shown in Theorem 3.5, both of the induced cotorsion pairs
(Ã, dgB̃) and (dgÃ, B̃) are complete; thus, one can get the associated model structure
by using the converse of [21, Theorem 2.2] (taking P to be the class of all short exact
sequences in the theorem) along with [21, Definition 5.1]. �

4. A cofibrantly generated model structure on Ch(R)

Given a fixed non-negative integer n, let D be the class of all modules with projective
dimension less than or equal to n. By [2, Theorem 4.2] (see also [24]), the pair (D,D⊥)
forms a complete cotorsion pair in R-Mod. Since it is clearly hereditary, the following
result is easily seen by proving Theorem 3.5.

Corollary 4.1. The cotorsion pairs (D̃, dgD̃⊥) and (dgD̃, D̃⊥) are complete.

The main contribution of this section is the following result.

Theorem 4.2. Let (A,B) = (D,D⊥). Then the associated model structure on Ch(R)
as in Corollary 3.8 is cofibrantly generated.

The above result also extends the projective model structure given in [20, § 2.3] (see
also [21, Example 3.3]) and mentioned in § 1. We will give its proof at the end of this
section.

In order to prove Theorem 4.2, we will need a stronger version of Corollary 4.1, that
is, we need to show that both the cotorsion pairs induced by (D,D⊥) are cogenerated by
sets in Ch(R). (Note that in a Grothendieck category with a projective generator, if a
cotorsion pair (A,B) is cogenerated by a set, then it is complete [15, Corollary 3.1.6]. This
important result was originally stated and proved for the category of modules [10,11].)
Firstly, we generalize slightly the result given in [24, Lemma 3.6] as follows. We give its
proof here for completeness, since we use it frequently.

Lemma 4.3. Let R be a ring, let ℵ = card(R) + ℵ0 be an infinite cardinal number
and let M ∈ D be an R-module. Then, for any submodule A � M with card(A) � ℵ,
there exists a submodule N of M such that A � N , card(N) � ℵ, N ∈ D and M/N ∈ D.

Proof. Let

0 −→ Pn
fn−→ Pn−1 −→ · · · −→ P1

f1−→ P0
f0−→ M −→ 0

be a projective resolution of M . By the Kaplansky Theorem [4, Theorem 26.1], each
Pl =

⊕
α<λl

Plα, where Plα is countably generated for all 0 � l � n and α < λl.
Since card(A) � ℵ, there is a subset F0 ⊆ λ0 with card(F0) � ℵ such that A ⊆

f0(
⊕

j∈F0
P0j). Similarly, there is a subset F1 ⊆ λ1 with card(F1) � ℵ such that

Ker(f0|⊕
j∈F0

P0j
) ⊆ f1

( ⊕
j∈F1

P1j

)
,
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etc. Finally, there is a subset Fn ⊆ λn with card(Fn) � ℵ such that

Ker(fn−1|⊕
j∈Fn−1

Pn−1,j
) ⊆ fn

( ⊕
j∈Fn

Pnj

)
.

Now, there is a subset Fn−1 ⊆ F ′
n−1 ⊆ λn−1 with card(F ′

n−1) � ℵ such that

fn

( ⊕
j∈Fn

Pnj

)
⊆

⊕
j∈F ′

n−1

Pn−1,j ,

etc. Finally, there is a subset F0 ⊆ F ′
0 ⊆ λ0 with card(F ′

0) � ℵ such that f1(
⊕

j∈F ′
1
P1j) ⊆⊕

j∈F ′
0
P0,j . Continuously using this back-and-forth procedure, we obtain for each 0 �

l � n a subset Hl = Fl ∪ F ′
l ∪ F ′′

l ∪ . . . of λl with card(Hl) � ℵ such that the restricted
sequence

0 −→
⊕

j∈Hn

Pnj
fn−→

⊕
j∈Hn−1

Pn−1,j −→ · · · −→
⊕
j∈H1

P1j
f1−→

⊕
j∈H0

P0j
f0−→ N −→ 0

is exact, and A ⊆ N . By construction, the factor sequence

0 −→
⊕

j �∈Hn

Pnj
f̄n−→

⊕
j �∈Hn−1

Pn−1,j −→ · · · −→
⊕
j �∈H1

P1j
f̄1−→

⊕
j �∈H0

P0j
f̄0−→ M/N −→ 0

is also exact. So N, M/N ∈ D. Clearly, we have card(N) � ℵ since card(
⊕

j∈H0
P0j) �

ℵ · ℵ0 = ℵ. �

Recall from [16] that an R-complex N has projective dimension at most n if and only
if N is exact and any R-module ZiN has projective dimension at most n in R-Mod for
all i ∈ Z. Thus, the class D̃ is exactly the class of all R-complexes of projective dimension
at most n. For a complex X, we define its cardinality to be card(X) = card(

⊕
i∈Z

Xi).
The idea of the next lemma derives from [3].

Lemma 4.4. Let R be a ring, and let ℵ = card(R)+ℵ0 be an infinite cardinal number.
Then, for any complex Q ∈ D̃ and any element x ∈ Qk (k ∈ Z is arbitrary), there exists
a subcomplex L of Q with L ∈ D̃ such that x ∈ Lk, card(L) � ℵ and Q/L is also in D̃.

Proof. Let us suppose (without loss of generality) that k > 0 and x ∈ Qk. Consider
then the following exact complex

· · · −→ A1
k+2

∂k+2−−−→ A1
k+1

∂k+1−−−→ Rx
∂k−→ ∂k(Rx)

∂k−1−−−→ 0, (S1)

where A1
i is a submodule of Qi constructed as follows: card(Rx) � ℵ since card(R) � ℵ,

so we can find A1
k+1 � Qk+1 such that card(A1

k+1) � ℵ and ∂k+1(A1
k+1) = Ker(∂k|Rx).

Then A1
k+2 � Qk+2, card(A1

k+2) � ℵ, and ∂k+2(A1
k+2) = Ker(∂k+1|A1

k+1
), and we repeat

the argument.
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Now, we have Ker(∂k|Rx) � Ker(∂k), so we know by Lemma 4.3 that Ker(∂k|Rx)
can be embedded into a submodule S2

k of Ker(∂k) with card(S2
k) � ℵ, S2

k ∈ D and
Ker(∂k)/S2

k ∈ D. Then consider the exact complex

· · · −→ A2
k+2

∂k+2−−−→ A2
k+1

∂k+1−−−→ Rx + S2
k

∂k−→ ∂k(Rx)
∂k−1−−−→ 0, (S2)

where the A2
i are taken as above. It is obvious that Ker(∂k|Rx+S2

k
) = S2

k, which is in
Ker(∂k), and that card(Rx + S2

k) � ℵ + ℵ = ℵ.
Note that ∂k(Rx) ⊆ Ker(∂k−1), so we can embed ∂k(Rx) into a submodule S3

k−1
of Ker(∂k−1) in such a way that card(S3

k−1) � ℵ (card(∂k(Rx)) � ℵ), S3
k−1 ∈ D and

Ker(∂k−1)/S3
k−1 ∈ D, and then take the exact complex

· · · −→ A3
k+2

∂k+2−−−→ A3
k+1

∂k+1−−−→ A3
k

∂k−→ S3
k−1

∂k−1−−−→ 0. (S3)

We see again that Ker(∂k−1|S3
k−1

) = S3
k−1.

We turn over and find S4
k � Ker(∂k) with card(S4

k) � ℵ, S4
k ∈ D, Ker(∂k)/S4

k ∈ D and
S4

k ⊇ Ker(∂k|A3
k
), and then construct A4

i � Qi (card(A4
i ) � ℵ, for all i > k) such that

· · · −→ A4
k+2

∂k+2−−−→ A4
k+1

∂k+1−−−→ A3
k + S4

k
∂k−→ S3

k−1
∂k−1−−−→ 0 (S4)

is exact. Once more Ker(∂k|A3
k+S4

k
) = S4

k � Ker(∂k). We then find S5
k+1 � Ker(∂k+1)

with card(S5
k+1) � ℵ, S5

k+1 ∈ D, Ker(∂k+1)/S5
k+1 ∈ D and Ker(∂k+1|A4

k+1
) ⊆ S5

k+1, and
consider the exact complex

· · · −→ A5
k+2

∂k+2−−−→ A4
k+1 + S5

k+1
∂k+1−−−→ A3

k + S4
k

∂k−→ S3
k−1

∂k−1−−−→ 0, (S5)

in which Ker(∂k+1|A4
k+1+S5

k+1
) = S5

k+1 � Ker(∂k+1).
The next step is to find S6

k+2 � Ker(∂k+2) such that card(S6
k+2) � ℵ, S6

k+2 ∈ D,
Ker(∂k+2)/S6

k+2 ∈ D and that Ker(∂k+2|A5
k+2

) ⊆ S6
k+2, and then consider the exact

complex

· · · −→ A6
k+3

∂k+3−−−→ A5
k+2 + S6

k+2
∂k+2−−−→ A4

k+1 + S5
k+1

∂k+1−−−→ A3
k + S4

k
∂k−→ S3

k−1
∂k−1−−−→ 0,

(S6)
in which Ker(∂k+2|A5

k+2+S6
k+2

) = S6
k+2 � Ker(∂k+2).

Therefore, we prove by induction that for any m � 4 we can construct an exact complex

· · · ∂k+m−2−−−−−→ Am
k+m−3

∂k+m−3−−−−−→ Tm
k+m−4

∂k+m−4−−−−−→ Tm
k+m−5

∂k+m−5−−−−−→

· · · ∂k+1−−−→ Tm
k

∂k−→ Tm
k−1 −→ 0 (Sm)

such that Ker(∂k+m−j |T m
k+m−j

) is a submodule of Ker(∂k+m−j) for j � 4 and that all of
the terms have cardinality less than or equal to ℵ.

If we take the direct limit L = lim−→(Sm) with m � 1, then we see that the complex L is
exact and that Ker(∂i|Li) ∈ D is a submodule of Ker(∂i) for all i � k − 1. Furthermore,
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card(Li) � ℵ for any i � k − 1, so card(L) � ℵ0 · ℵ = ℵ. We finally consider the complex
L to be

L = · · · ∂k+2−−−→ Lk+1
∂k+1−−−→ Lk

∂k−→ Lk−1
∂k−1−−−→ 0 −→ 0 · · · ,

which is a subcomplex of Q, x ∈ Lk, Ker(∂i|Li
) ∈ D and Ker(∂i)/ Ker(∂i|Li

) ∈ D by the
above construction for all i � k − 1 since each Ker(∂i) ∈ D. Therefore, the subcomplex
L of Q has projective dimension at most n.

To finish the proof, we need only argue that Q/L = (Qi/Li, ∂̄i) has projective
dimension at most n. An easy computation shows that Ker(∂̄i) = Ker(∂i)/ Ker(∂i|Li),
but by construction Ker(∂i)/ Ker(∂i|Li

) is in D for any i � k − 1, and Ker(∂̄i) =
Ker(∂i)/ Ker(∂i|Li) = Ker(∂i) also has projective dimension at most n for all i < k − 1
by the hypothesis. Clearly, Q/L is exact, since both Q and L are exact. So Q/L has
projective dimension at most n. �

Theorem 4.5. The cotorsion pair (D̃, dgD̃⊥) is cogenerated by a set.

Proof. Assume that Q ∈ D̃ is a complex and x ∈ Qi. Then by Lemma 4.4 we know
that we can find a subcomplex L0 ∈ D̃ of Q such that x ∈ (L0)i, card(L0) � ℵ and that
the quotient complex Q/L0 has projective dimension at most n. Furthermore, we let

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈Xni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Xn−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈X1i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X0i

P j
0i

)
−→ Q −→ 0

be a projective resolution of the complex Q, where

0 −→
⊕

j∈Xni

P j
ni −→

⊕
j∈Xn−1,i

P j
n−1,i −→ · · · −→

⊕
j∈X1i

P j
1i −→

⊕
j∈X0i

P j
0i −→ ZiQ −→ 0

is a projective resolution of ZiQ and P j
ki is countably generated for all 0 � k � n, j ∈ Xki

and for each i ∈ Z. By the proofs of Lemmas 4.3 and 4.4, for each i ∈ Z there exists a
projective resolution of ZiL0 of the form

0 −→
⊕

j∈X0
ni

P j
ni −→

⊕
j∈X0

n−1,i

P j
n−1,i −→ · · · −→

⊕
j∈X0

1i

P j
1i −→

⊕
j∈X0

0i

P j
0i −→ ZiL0 −→ 0,

where X0
k,i ⊆ Xk,i for all k ∈ {0, 1, 2, . . . , n}, card(X0

k,i) � ℵ, and that

0 −→
⊕

j∈Xn,i\X0
ni

P j
ni −→

⊕
j∈Xn−1,i\X0

n−1,i

P j
n−1,i −→ · · ·

· · · −→
⊕

j∈X1,i\X0
1i

P j
1i −→

⊕
j∈X0,i\X0

0i

P j
0i −→ Zi(Q/L0) −→ 0
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is a projective resolution of Zi(Q/L0) for each i ∈ Z. By the Horseshoe Lemma, we get
the following projective resolutions of complexes L0 and Q/L0:

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈X0
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X0
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈X0
1,i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X0
0i

P j
0i

)
−→ L0 −→ 0,

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈Xni\X0
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Xn−1,i\X0
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈X1i\X0
1i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X0i\X0
0i

P j
0i

)
−→ Q/L0 −→ 0.

Take then any element y+(L0)j ∈ (Q/L0)j and, as in the case of L0, find a subcomplex
L1/L0 � Q/L0 such that

card(L1/L0) � ℵ, y + (L0)j ∈ (L1/L0)j and L1/L0, Q/L1 ∈ D̃.

By construction, L1/L0 has a projective resolution

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈Y 1
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Y 1
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈Y 1
1,i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Y 1
0i

P j
0i

)
−→ L1/L0 −→ 0

with

0 −→
⊕

j∈Y 1
ni

P j
ni −→

⊕
j∈Y 1

n−1,i

P j
n−1,i · · · −→

⊕
j∈Y 1

1i

P j
1i −→

⊕
j∈Y 1

0i

P j
0i −→ Zi(L1/L0) −→ 0

a projective resolution of Zi(L1/L0) for each i ∈ Z, where Y 1
k,i ⊆ Xk,i \ X0

k,i, card(Y 1
k,i) �

ℵ, for all k ∈ {0, 1, 2, . . . , n}. It is easy to see that L1 ∈ D̃ since D̃ is closed under
extensions. If we set X1

k,i = X0
k,i ∪ Y 1

k,i for each i ∈ Z and k ∈ {0, 1, . . . , n}, then the
Horseshoe Lemma yields a projective resolution

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈X1
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X1
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈X1
1,i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X1
0i

P j
0i

)
−→ L1 −→ 0
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of L1 (note that also here card(X1
k,i) � ℵ for all k ∈ {0, 1, . . . , n} and i ∈ Z). Hence,

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈Xni\X1
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Xn−1,i\X1
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈X1i\X1
1i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X0i\X1
0i

P j
0i

)
−→ Q/L1 −→ 0

is a projective resolution of Q/L1.
We then find inductively a chain of subcomplexes Lm � Q for all m ∈ N such that

Lm, Lm+1/Lm, Q/Lm ∈ D̃ and card(Lm+1/Lm) � ℵ for all m ∈ N. Furthermore, the
sequences

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈Y m
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Y m
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈Y m
1,i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Y m
0i

P j
0i

)
−→ Lm/Lm−1 −→ 0,

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈Xm
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Xm
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈Xm
1,i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Xm
0i

P j
0i

)
−→ Lm −→ 0

and

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈Xni\Xm
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Xn−1,i\Xm
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈X1i\Xm
1,i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X0i\Xm
0i

P j
0i

)
−→ Q/Lm −→ 0

are projective resolutions of Lm/Lm−1, Lm and Q/Lm, respectively, where Xm
k,i =

Xm−1
k,i ∪ Y m

k,i for all k ∈ {0, 1, . . . , n} and all i ∈ Z.
Let us define Lω0 =

⋃
m∈N

Lm. It is clear that if we take Xω0
k,i =

⋃
m∈N

Xm
k,i for each

i ∈ Z and each k ∈ {0, 1, . . . , n}, the sequences

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈X
ω0
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X
ω0
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈X
ω0
1,i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X
ω0
0i

P j
0i

)
−→ Lω0 −→ 0
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and

0 −→
⊕
i∈Z

Di+1
( ⊕

j∈Xni\X
ω0
ni

P j
ni

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈Xn−1,i\X
ω0
n−1,i

P j
n−1,i

)
−→ · · ·

· · · −→
⊕
i∈Z

Di+1
( ⊕

j∈X1i\X
ω0
1,i

P j
1i

)
−→

⊕
i∈Z

Di+1
( ⊕

j∈X0i\X
ω0
0i

P j
0i

)
−→ Q/Lω0 −→ 0

are projective resolutions of Lω0 and Q/Lω0 , respectively, and that card(Xω0
k,i) � ℵ0 · ℵ =

ℵ for all i ∈ Z and k ∈ {0, 1, . . . , n}. Thus, we can continue the argument and, by
transfinite induction, find a continuous chain of subcomplexes of Q, {Lα; α < λ}, such
that Q =

⋃
α<λ Lα, L0, Lα+1/Lα ∈ D̃ and card(L0) � ℵ, card(Lα+1/Lα) � ℵ for all

α + 1 < λ.
Therefore, applying [15, Proposition 3.1.1], the cotorsion pair (D̃, dgD̃⊥) is cogenerated

by any set of representatives of complexes L ∈ D̃ such that card(L) � ℵ. �

Proposition 4.6. The cotorsion pair (dgD̃, D̃⊥) is cogenerated by a set.

Proof. This follows from [18, Proposition 3.8] and the case that the cotorsion pair
(D,D⊥) is cogenerated by a set [24, Theorem 3.7]. �

We now finish this section by giving the proof of Theorem 4.2 as follows.

Proof of Theorem 4.2. This follows from Theorem 4.5, Proposition 4.6, [21,
Lemma 6.7] and [21, Lemma 6.8]. �
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