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ON SEMIREGULAR RINGS WHOSE FINITELY GENERATED
MODULESEMBED IN FREE MODULES

Dedicated to the memory of Professor Maurice Auslander

JUAN RADA AND MANUEL SAORIN

ABSTRACT.  We consider rings asin the title and find the precise obstacle for them
not to be Quasi-Frobenius, thus shedding new light on an old open question in Ring
Theory. We also find several partial affirmative answers for that question.

It is well-known that aring for which every left module embedsin a free moduleis
Quasi-Frobenius (QF). However, the following is still an open question:

A) Givenaring Rfor which every finitely generated left R-module embedsin afree
(or projective) module, is R QF?

Until the early eighties there were many partial affirmative answersto this question.
Among them, when R is left perfect [10], left self-injective ([2] or [12]), left or right
noetherian ([6] and [4]) or when the injective envelope of rRis a projective module [7]
(see[4] for agood survey on these results). Menal [7] introduces a modified version of
Question A;

B) Doesthereexistacardinal c withthe property that every ring all whose c-generated
left R-modules embed in free modulesis necessarily a QF ring?

From that time, as far as we know, both questions have not seen any new partial
answer until very recently, when Gomez Pardo and Guil Asensio [5] proved that if the
embedding in projective of Question A is required to be essential the answer isyes. This,
as a byproduct, implied an affirmative answer in case R is supposed to be left CS (i.e.
every left ideal is essential in adirect summand of gR).

A natural generalization of both perfect rings and self-injective rings are the so-called
semiregular rings (see definition below), a class of rings which strictly includes the
semiperfect ones as well. In these notes, we try to get an insight in Questions A and
B when the ring Ris semiregular. We find that in case the Jacobson radical J(R) is left
T-nilpotent, the answer to A isyes (Theorem 2), whilein case the transfinite powers of J
becomeeventually zero or the intersection of any descending chain of cyclicright ideals
is zero, the answer to Question B is affirmative by taking ¢ = Xy, the infinite countable
cardina (Theorem 3). In the general semiregular situation, we see that the answer to

This paper was finished while Juan Rada was preparing his Ph.D. at the Universidad de Murcia. Manuel
Saorin was partially supported by D.G.I.C.Y.T. (PB93-0515, Spain) and the Comunidad Autonoma de Murcia
(PIB 94-25).

Received by the editors October 24, 1995.

AMS subject classification: Primary: 16D10, 16L60; Secondary: 16N20.

(© Canadian Mathematical Society 1997.

221

https://doi.org/10.4153/CMB-1997-027-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-027-2

222 JUAN RADA AND MANUEL SAORIN

Question A could only be negative in case there existed a proper direct summand of gRR
which is the left annihilator of afinite subset of J(R) (Corollary 5). Asaresult we get a
list of previously unobserved properties that, added to the semiregularity of R, imply an
affirmative answer for A (Corollary 6).

In the last part, we see that some strict generalizations of the left T-nilpotency of J
still allow alot of information on the structure of injectiveindecomposables(Theorem 7),
from which we can obtain new partial positive answersto A and B (Corollaries 8 and 9).

In the sequel “ring” means* associativering with identity” . All modulesare unital and
we shall write RM or Mg when we want to stress that amodule is left or right module. In
particular, gRR and Ry will denote the canonical structures of left and right R-module in
R. If Risaring, its Jacobson radical will be denoted by J(R), or simply J if no confusion
appears. Theleft transfinite sequenceof powers of J isdefined asfollows: J* = Jand, in
case J? has been defined for every ordinal 3 < a, we put J* = (3, J°, when « islimit,
and J* = JJ*1, when « is non-limit. There exists a least ordinal v such that J* = J,
for al ordinals o > v and we put 3(R) = J7. The Jacobson radical J is left T-nilpotent
when, for every sequence Xg, X1, - - -, Xn, - . . Of elements of J, there exists neN such that
XoX1- - Xn = 0.

A ring Ris called semiregular [8] when R/J isregular (in the sense of von Neumann)
and idempotents|lift modulo J. That is equivalent to say that every finitely presented | eft
(or right) R-module has a projective cover. Such aring has the property that, for every
finitely generated submodule M of a projective module P, P admits a decomposition
P = P; ® P, where P, C M and P, "M is a submodule of JP (note that then M =
Py & (P2 N M)).

A ring Ris caled left FP-injective when the dual functor (—)* = Homg(—, rR) pre-
serves exact sequences0 — K — L — M — 0in which gM is a finitely presented
module. More generally, R will be said left (cyclic) Rq-injective (see [3]) when every
homomorphismf: | — gR, wherel is afinitely generated (cyclic) left ideal of R, extends
to ahomomorphism f: RR — grR.

In order to deal with Question A we shall say that aring Risleft FGF(see[4]) when-
ever every finitely generated left R-module embeds in a free module (or, equivalently,
in aprojective module). Question A can be hencereformulated as: Does left FGF imply
QF?

For all ring-theoretical terminology not defined here, the reader isreferred to [1] and
[11].

From the explicit description of direct limitsin g Mod givenin [11, p. 17-18] follows
the next lemmawhich is crucial in the sequel.

LEMMA 1. Let Mg f—°> M, f—1> My — My f—"> Mp+1 - - - be a sequence of

homomorphisms of R-modules. If lim(Mn, {f,}) = O then, for every xeMo, there exists

an integer k = k(x) > 0 such that (fkno -+-ofp)(X) = 0. In particular, when Mg isfinitely
generated there existsaninteger k > O suchthatfy o --- o fy = 0.
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THEOREM 2. Let Rbearing such that R/J(R) is regular and J(R) left T-nilpotent.
If Risleft FGF then Ris QF.

ProoF. Wewill provethat every finitely generated left R-moduleis essentially em-
beddable in a projective module. The result will follow then by [5, Corollary 3.5].

Let M be afinitely generated left R-module. Since Ris semiregular left FGF, M hasa
decompositionM = P& Mg where P is projective and pio: Mg — Pg isamonomorphism
such that Py is finitely generated projective and Im o € JPo. By viewing pg as an
inclusion, we consider a pseudocomplement Vo of Mg in Py and hence Mg o, Py —/—
Po/ Vo, where 7 is the canonical projection, is an essential monomorphism. If Py / Vg is
projective we are done. If not, we have a decomposition Py /Vo = P, @ V, where Py is
projective and V(') is embeddablein theradical of afinitely generated projective module.
Now we lift this decomposition back to Po, so that Py = P & P, and Vo may be viewed
as asubmodule of P,. Thus we have a diagram as follows:

0D Vo

l(%)

My =  P,&Py
(1,pg)

Py @ (Pg / Vo)

where i0: Mo — P, ® Py is amonomorphism such that Im uo C JPy @ JPy, po: Py —
Po/ Vo is the canonical projection, O & Vo is a pseudocomplement of Im o in Py @ Py
with canonical inclusion tg: Vo — PS and fo = (1, po) © po: Mg — My, where M; =
PE) &) (Pg / Vo), is an essential monomorphism.

Proceeding in this way, since now Pg /Vo is embeddable in the radical of afinitely
generated projective module, we complete the diagram as follows:

06 Vo
l l(o,lo)
Mo —>  Py@P, 060& V)
l @) l (©0047)
/ U 1, ' / / U
Py @ (Pg/ Vo) o) Po@P,®P;
(L.1pg)
Py @ Py @ (Py/V1)

where, for eachn > 1, un:P,_;/Vo-1 — P, @ P, is @ monomorphism such that

Imun C P, @ IP,, pn: Py — P,/ Vy isthe canonical projection, 0@ - -+ ® 0BV, is
—,_J

/ / 1/ / n+l / /!

a pseudocomplement of My = Py & --- & P, _; & (P, _1/Vn1) iINPy & - & P, &P,

with canonical inclusion ¢n: V,, — P;; andf, = (1,...,1L,pn)o(L,...,1, un): My — Mpsp

N — N —
. . i n+1 n
is an essential monomorphism.
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Now for eachn > 1, it can be easily seen that

Vo=Ker(Py— P @ P, — - — P & &P,& Pl
= Ker(Py — Py) NKer(Py — P, — PN - NKer(Py — - PL)

whereP, — P, and P — P!, (the componentsof u;p;: P, — P;,;®P;,,) haveimages
containedin JP;,; and JP;,, respectively. Asaresult, thesequencePy — P; — P, — - - -
has the property that Im(P, — Pi,;) C JP!,, and from this follows that if we take
F = lim(P,, {P, — P/.1}), then F = JF. Consequently, the |&ft T-nilpotency of J yields

n
F = 0 and so Lemma 1 applies. That is, for n sufficiently large Py — - - - — P, is zero.

Hence,
Vo = Ker(Py — P;) NKer(Py — P} — Py)N---NKer(Py — -+ Po_y — Pp)

and so the top row of the diagram

T

PoP, — - — P@P®---aP®eP, — P,eP & aP,
f fn 7T, / / /
M; B LEN M1 SN Po®P, @ ©F,

has kernel 0 & Vo, where 7 and 7r'1 are the canonical projections onto the first n + 1

components. Therefore, the composition in the bottom row has to be a monomorphism,

fromwhichit follows, sincef, o - - - of; isan essential monomorphism, that 7r/1 ofjo---0

fi: Mg — Py@- - - & P, isalso an essential monomorphism (and even more P, /V, = 0).
Finaly, 1p ® (1y 0 fho---ofyofg) : M = P&Mo — PO P, @ - - - & P, isan essential

embedding into a projective module and so R is QF. ]
Now we can go further and answer Question B in a particular situation.

THEOREM 3. Let Rbea semiregular ring satisfying one of the following two condi-
tions:
1. J(R) = 0.
2. For every sequencex, ..., X, ... of elementsof J(R), Np>1 X1 - - ¥R = 0.

If every countably generated left R-module embedsin afree module, then Ris QF.

PrOOF. (1) Takethe same F asin the proof of the above theorem. All we need to
show isthat F = 0 and the same argument of that proof would apply. SupposeF # 0and
consider, since F is acountably generated flat left R-module, a non-zero homomorphism
f:F — R Bytaking | = Imf and bearing in mind that JF = F, we get JI = | and from
that follows easily that | C J* for every ordinal . So | C j(R) which contradicts the
assumption that J(R) = O.

(2) Letxy,...,%n,... beaseguencein J(R) and consider the sequence of homomor-
phisms gR 2 gRR & gRR — -+ &5 gR — ---, where p, is the right multiplication
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by x, for each n > 1. By passing to the direct limit, F' = lim(zR, pn) is a count-

—

n
/

ably generated flat left R-module. If we are able to provethat F = 0, Lemmal tells
usthat x;---%, = 0 for somen > 1 and so J will be left T-nilpotent, which im-

plies that R is QF by Theorem 2. We then prove that F = 0. Let F L sRbe any
homomorphism. Since F = R™ /K, where K is the submodule of R™ generated by
(1,—x1,0,...), (0,1, —x,0,...),...(0,...,0,1,—X,,0,...),...,f is given by a homo-
morphism : RN — gR such that K C Ker . Suppose ¢ is right multiplication by
the column matrix (bg, by, ...,bn,...) . From K C Kery we get by = X+10j+1 for all
i =0,1,...andsobje Ny>i1 Xi+1Xi+2 - - - XaR. Condition 2yieldsb; = Oforalli = 0,1,...
and so f = 0. Hence Homg(F ,gRR) = 0 and the embedding hypothesis entails that
F=o0. [

ExaMPLE. For a semiregular ring, both Conditions 1 and 2 in the above theorem
are strictly more general than that of left T-nilpotency, as can be seen by considering a
(commutative) discrete valuation domain.

In the following two results we just assumethe semiregularity of Rand try to identify
what might provoke a negative answer for Question A.

PROPOSITION 4. Let R be a semiregular left FGF ring and M a finitely generated
left R-module. If no non-zero direct summand of M embeds in the radical of a finitely
generated free left module then M is projective and injective.

PROCF. Let xeE(M) (the injective hull of M). Then by the FGF assumption, M + Rx
embedsin afree module, which by the finite generation of M + Rx can be assumed to be
R™ for aninteger m > 0. Since R is semiregular, M admits a decompositionM = P @ N
where P is a direct summand of R™" and N C JR™ By hypothesisN = 0soM = Pis
projective. Furthermore, M is an essential direct summand of M + Rx. ThusM = M + Rx

and so M isinjective. ]
From now on [(X) (resp. r(X)) will denotetheleft (resp. right) annihilator of the subset
Xof R

COROLLARY 5. Let Rbea semiregular left FGF ring. The following conditions are
equivalent:
1. rRRisnot injective;
2. Thereexists an idempotent e # 1in Rand elements xg, . .., X, in J(R) such that
Re=I(Xg,...,Xn);
3. Thereexists a finitely presented left R-module whose projective dimension is ex-
actly 1.

PrOOF. (1) = (3). By Proposition 4, there is a non-zero direct summand Re of gRR
and an embedding i: Re — grR", for somen, such that Imp C JR". Now M = Coker i
is the desired finitely presented module.

(3) = (2). The assumption and the semiregularity of R guarantee the existence of an
embedding 0 — P, £ Py, where P; and Py are non-zero fi nitely generated projective
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and Imp C JPy. Moreover, since every non-zero finitely generated projective module
isisomorphic to adirect sum of left ideals of the form Rf, with feR-{0} idempotent [8,
Theorem 2.11], it is not restrictive to assume P; = Rf and Py = rR", for somen > 1. In
that case, if u(f) = (X1,...%n) (hencexy, ..., X,eJ) oneeasily getsthat R(1—f) = I(f) =
[(X1,...,%,) andthuse = 1 — f isthe desired choice.

(2) = (). Leteand xg, ..., X%, asin (2). Then there exists a well-defined monomor-
phismR(1—e) — @ ; R — JR"givenby r(1—e€) v (rxa, ..., x)). If gRRisinjective
then R(1—e€) isadirect summand of R" whichiscontainedin JR". Thisisacontradiction
and so grRis not injective. n

REMARK. Although we do not know if the above equivalent conditions ever hold,
the corollary helpsto understand the precise obstacle for Question A to have an affirma-
tive answer. Furthermore, it is definite to state that answer in many partial cases, as the
following shows.

COROLLARY 6. Let Rbea semiregular left FGF ring. Each of the following condi-
tions forces Rto be QF:
1. JC Z(rR);
2. Soc(RR) isessential asa left ideal of R;
3. Homg(X, RR) # O for every cyclic finitely presented right R-module X;
4. Risleft FP-injective;

ProoOF. (1) For elementsxy, ..., X, inJ, I(X1,...,X,) isan essential left ideal of R.
Consequently, it cannot be a non-zero direct summand of R. It follows from Corollary 5
that RRisinjective and by [2] or [12], that Ris QF.

(2) SinceSoc(RR) C I(J) weknow that 1(J) isan essential left ideal of Rwhichimplies
that J C Z(gR). The result follows now from (1).

(3) If Risnot QF then by Corollary 5 there exist elements xs, ..., X, inJand e # 1
an idempotent in R such that Re = I(X, ..., Xn). Then X = (1 — e)R/ XL, xiRis cyclic
finitely presented and Homg(X, Rg) = 0 (Observethat xier (Re) = (1 — e)R).

(4) When Risleft FP-injective every sequence0 — P; — Py — M — 0, with Pg
and P finitely generated projective, splits. Hence Condition 3in Corollary 5 fails, which
impliesthat Ris left self-injective and so QF. ]

Now we go back to impose some preconditions, but strictly weaker than the T-nil-
potency of J.

THEOREM 7. Let Rbe a semiregular left FGF ring and suppose that, for every se-
quencex, ..., X, ... in J-{0}, there existsn > 1 suchthat I(x; - - - %) # [(X1 - - - Xne1).
Then every indecomposable injective left R-module is isomorphic to a direct summand
of rR.

PrROOF. Let E be an indecomposableinjective left R-module and take Ug a finitely
generated submodule of E. If E = E(Uy) is not projective then Ug is not projective and
injective so by Proposition 4, Ug embedsin theradical of afinitely generated free module.
Infact, itispossibleto embed Uy in J. Indeed, assume \: Uy — R"isan embedding such
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that Im(A\) C JR"andfori = 1,...,nlet ;: R" — Rbe the canonical projections. Then
the fact that 0 = Ker(\) = (L, Ker(m o \) implies that Ker(rj o A) = 0 for some
je{1,...,n}, because Ug is uniform. Thus po = 7 o A\:Ug — Ris a monomorphism
which clearly satisfiesIm(u0) C J asdesired. Now we adapt the Proof of Theorem 2 and,
taking apseudocomplement Vo of Im(uo) in R, we can definean essential monomorphism
Uo = R B, R/Vo where py is the canonical projection. It follows that E(Up) =
E(R/Vo) and so U; = R/V; is afinitely generated uniform module such that E(U,) is
not projective. We can repeat this argument to construct a diagram as follows:

Vo
llo
U = R A
LIE
u = R
|»
U, ---

wherefor each ieN, u;: Ui — Risamonomorphism such that Im(w;) C J, V; is apseu-
docomplement of Im(y;) in R with canonical inclusion +i: Vi — R, Uj = R/Vi_1 and
pi: R — Ui is the canonical projection. Now for each ieN, p;j o pi—1: R — Risright
multiplication by an element x;eJ. Therefore

I(Xq - - - %) = Ker(un 0 Pr—10 pin-10 - 0 i1 © Po)
for every n > 1. We claim that

Ker(iin+1 0 Pn o pin o -+ 0 i1 0 Po) = Ker(tn o Pr—10 ftn-10 - -+ 0 i1 © Po).

Oneinclusionis clear. To seethe other we take X € Ker(un+1 o pno - - o ug o pPo). Since
Un+1 1S @ monomorphism

(n © P10+ -+ 0 1 o po)(X)e Ker(pn) N IM(un) = VaNUn = 0.

Hence xe Ker(un o pn1 © -+ o pg o Po) as desired. It follows that for eachn > 1
[(x1-- X)) = I(X1--- X1) Which is a contradiction. As a consequence, E is a projec-
tive module. Moreover, since every projectiveisisomorphic to adirect sum of left ideals
of theform Re, with ecRidempotent, it followsthat E isisomorphic to adirect summand
of rR. | ]

REMARK. The annihilator hypothesis of Theorem 7 is trivialy satisfied when J is
left T-nilpotent. But it is not the only case. If Risleft (cyclic) Ro-injective then, for every
pair (X1, %) of elementsof J — {0}, the inequality I(x1) # I(X; - X2) holds. Indeed, let x;
and x, be non-zero elementsin J and assume [(x1) = (X3 - X2). Then ¢: Rxix; — Rxg
defined by ¢ (rxix2) = rx; (reR) is awell-defined isomorphism. Since R is left (cyclic)
Ro-injective there exists a homomorphism h:R — R suchthat hoi = j o ¢ where

https://doi.org/10.4153/CMB-1997-027-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-027-2

228 JUAN RADA AND MANUEL SAORIN

i: Rx1x2 — Randj: Rx; — Rarethe canonical inclusions. Now h isright multiplication
by an element yeR, so for each reRwe have that rx; = p(rxixz) = h(rxixz) = rxixay.
Taking r = 1it follows that x;(1 — x2y) = 0 and since xayeJd then 1 — xpy is invertible.
Hence x; = 0 which yields a contradiction.

ExampPLE. Every local left self-injective ring which is not left perfect satisfies the
annihilator hypothesis of Theorem 7 and its Jacobson radical cannot be left T-nilpotent
(For an example of alocal left self-injective ring which is not left perfect see[9, Exam-
ple1]).

Given aring R, we shall denote by Q(R), | (R) and P (R), respectively, the sets of
isomorphism classesof simple, indecomposabl einjective and indecomposabl eprojective
left R-modules. On the other hand, C (R) will stand for the set of isomorphism classes of
simpleleft R-moduleswhich areisomorphicto minimal left idealsof R. We shall makean
abuse of notation and use the same letter to denote a module and its isomorphism class.
Then the “injective envelope map” E(—): Q(R) — | (R) is an injective map and, when
Ris semiregular, so is the “top map” (:): P(R) — Q(R) that takes P onto P= P/JP,
since every indecomposable projectiveislocal [8, Corollary 2.13].

COROLLARY 8. Let Rbearingasin Theorem 7. Then each of the following condi-
tions forces Rto be QF:
1. Q(R) isafinite set;
2. R/Jisleft CS
3. ®pp R P isasef-generator (seee.g., [13, p. 120]).

PrROOF. (1) By Theorem 7 we have a composition of injective mappings
oR 2 IR cPR 2 aR).

If Q(R) isfinite then this composition must be hijective. Consequently, every simpleleft
R-modulehasa projective cover and so Ris semiperfect. Moreover, Risleft self-injective
since | (R) = P(R) and R = @[, Re whereeache (i = 1,...,n) isalocal idempotent
of R It follows from [2] or [12] that Ris QF.

(2) For every PeP (R) we know that P/JP ¢C (R/J). Then by Theorem 7,

QR/I) =R 2 IR PR 2 CR/I) C R/
is a composition of injective mappings which implies that the cardinality of Q(R) coin-
cideswith that of C(R/J). Now since R/ J is regular and left CSit follows from [5](see
note below) that Q(R) must be finite. Consequently, by (1), Ris QF.

(3) Let Sbeasimpleleft R-module. By Theorem 7, E(S)eP (R) and so Sisisomorphic
to a submodule of ®pp g P. Since ®p.p R P is a self-generator, Sis a factor of some
PeP (R). Consequently S = P/JP thus showing that every simple left R-module has a
projective cover. Hence R is semiperfect and, again by (1), Ris QF. ]
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NoTE. InLemma 2.3 of [5] the authors give a modified proof of aresult of Osofsky
[9], essentially stating that if Q is regular and left self-injective then |C(Q)| infinite im-
plies |C(Q)| < |Q(Q)| (|X| denotes the cardinality of the set X). We have checked that
Gomez Pardo and Guil Asensio’s proof works “mutatis mutandi” when “self-injective”
isreplaced by “CS’. In other words, the following is true:

If Qisaregular left CSring suchthat C (Q) isaninfiniteset, then |C (Q)| < |Q(Q)|.

Thisisthe result that we have used in the Proof of Corollary 8(2).

In the following result, Trg(l) denotesthetraceideal of | inR, i.e., Trr(l) = > {Imf :
fe HomR(I ) RR)}

COROLLARY 9. LetRbearingasin Theorem7 with the extra propertythat Trg(l) =
IR for every minimal left ideal of R. If Soc(rR) is essential as a left ideal of Rthen R is

QF.

ProOF. All we need to proveisthat Soc(rR)J = 0 for then I(J) is an essential ideal
of Rand so J C Z(rR) which, by Corollary 6, implies the statement.

Takeaminimal leftideal | of Rand assumefirst that | C Refor someidempotent ecR
with the property that Reisinjective. If Ix # 0 for some xeJ then py: 1 — Ix defined by
px(y) = yxfor eachyel isanisomorphismwithinversemap A: Ix — | (given by yx ~ y).
Now, due to the injective condition of Re, there exists a homomorphism A\:gRR — Re
making the following diagram commute:

IX — RgrR
J'/\ J'/i
I — Re

Choosebe Re such that S\(r) = rbforall reR Thenforal yel, yxb = yand soy(1—xb) =
0. Since xeJ, 1 — xb is an invertible element and, as a consequence, | = 0 whichis a
contradiction. Hence, 13 = 0in this case.

L et us come back now to the general casein which | isan arbitrary minimal left ideal
of R. We know, by Theorem 7, that E(I) = Re for certain local idempotent ecR. Then
there exists a monomorphism f: 1 — R suchthat f(I) € Re. Applying our assumption,
bearing in mind that we have acompositionf(l) — | — gR, wegetthat| C f(I)R. Thus,
13 C f(1)J = 0and so Soc(rR)J = 0. "

ExAMPLE. Astwo particular examplesin which the trace hypothesis of the forego-
ing corollary holds we can give:

1. When Ext&(R/I,RR) = 0, for every minimal left ideal | of R (e.g. if Ris left
(cyclic) Rp-injective). Hence, in particular, if R is semiregular left (cyclic) No-
injective and Soc(rR) is | eft essential, then R left FGF implies R QF.

2. If rRR contains exactly one isomorphic copy of each simple left R-module.
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