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ON SEMIREGULAR RINGS WHOSE FINITELY GENERATED
MODULES EMBED IN FREE MODULES

Dedicated to the memory of Professor Maurice Auslander

JUAN RADA AND MANUEL SAORÍN

ABSTRACT. We consider rings as in the title and find the precise obstacle for them
not to be Quasi-Frobenius, thus shedding new light on an old open question in Ring
Theory. We also find several partial affirmative answers for that question.

It is well-known that a ring for which every left module embeds in a free module is
Quasi-Frobenius (QF). However, the following is still an open question:

A) Given a ring R for which every finitely generated left R-module embeds in a free
(or projective) module, is R QF?

Until the early eighties there were many partial affirmative answers to this question.
Among them, when R is left perfect [10], left self-injective ([2] or [12]), left or right
noetherian ([6] and [4]) or when the injective envelope of RR is a projective module [7]
(see [4] for a good survey on these results). Menal [7] introduces a modified version of
Question A:

B) Does there exist a cardinal c with the property that every ring all whose c-generated
left R-modules embed in free modules is necessarily a QF ring?

From that time, as far as we know, both questions have not seen any new partial
answer until very recently, when Gómez Pardo and Guil Asensio [5] proved that if the
embedding in projective of Question A is required to be essential the answer is yes. This,
as a byproduct, implied an affirmative answer in case R is supposed to be left CS (i.e.
every left ideal is essential in a direct summand of RR).

A natural generalization of both perfect rings and self-injective rings are the so-called
semiregular rings (see definition below), a class of rings which strictly includes the
semiperfect ones as well. In these notes, we try to get an insight in Questions A and
B when the ring R is semiregular. We find that in case the Jacobson radical J(R) is left
T-nilpotent, the answer to A is yes (Theorem 2), while in case the transfinite powers of J
become eventually zero or the intersection of any descending chain of cyclic right ideals
is zero, the answer to Question B is affirmative by taking c ≥ @0, the infinite countable
cardinal (Theorem 3). In the general semiregular situation, we see that the answer to
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222 JUAN RADA AND MANUEL SAORÍN

Question A could only be negative in case there existed a proper direct summand of RR
which is the left annihilator of a finite subset of J(R) (Corollary 5). As a result we get a
list of previously unobserved properties that, added to the semiregularity of R, imply an
affirmative answer for A (Corollary 6).

In the last part, we see that some strict generalizations of the left T-nilpotency of J
still allow a lot of information on the structure of injective indecomposables (Theorem 7),
from which we can obtain new partial positive answers to A and B (Corollaries 8 and 9).

In the sequel “ring” means “associative ring with identity”. All modules are unital and
we shall write RM or MR when we want to stress that a module is left or right module. In
particular, RR and RR will denote the canonical structures of left and right R-module in
R. If R is a ring, its Jacobson radical will be denoted by J(R), or simply J if no confusion
appears. The left transfinite sequence of powers of J is defined as follows: J1 ≥ J and, in
case Jå has been defined for every ordinal å Ú ã, we put Jã ≥

T
åÚã Jå, when ã is limit,

and Jã ≥ JJã�1, when ã is non-limit. There exists a least ordinal ç such that Jç ≥ Jã,
for all ordinals ã ½ ç and we put J̄(R) ≥ Jç. The Jacobson radical J is left T-nilpotent
when, for every sequence x0, x1, . . . , xn, . . . of elements of J, there exists nèN such that
x0x1 Ð Ð Ð xn ≥ 0.

A ring R is called semiregular [8] when RÛJ is regular (in the sense of von Neumann)
and idempotents lift modulo J. That is equivalent to say that every finitely presented left
(or right) R-module has a projective cover. Such a ring has the property that, for every
finitely generated submodule M of a projective module P, P admits a decomposition
P ≥ P1 ý P2, where P1 � M and P2 \ M is a submodule of JP (note that then M ≥

P1 ý (P2 \ M)).
A ring R is called left FP-injective when the dual functor (�)Ł ≥ HomR(�, RR) pre-

serves exact sequences 0 ! K ! L ! M ! 0 in which RM is a finitely presented
module. More generally, R will be said left (cyclic) @0-injective (see [3]) when every
homomorphism f : I ! RR, where I is a finitely generated (cyclic) left ideal of R, extends
to a homomorphism f̂ : RR ! RR.

In order to deal with Question A we shall say that a ring R is left FGF(see [4]) when-
ever every finitely generated left R-module embeds in a free module (or, equivalently,
in a projective module). Question A can be hence reformulated as: Does left FGF imply
QF?

For all ring-theoretical terminology not defined here, the reader is referred to [1] and
[11].

From the explicit description of direct limits in R Mod given in [11, p. 17-18] follows
the next lemma which is crucial in the sequel.

LEMMA 1. Let M0
f0
�! M1

f1
�! M2 Ð Ð Ð �! Mn

fn
�! Mn+1 Ð Ð Ð be a sequence of

homomorphisms of R-modules. If lim
!
n

(Mn, ffng) ≥ 0 then, for every xèM0, there exists

an integer k ≥ k(x) ½ 0 such that (fk Ž Ð Ð Ð Ž f0)(x) ≥ 0. In particular, when M0 is finitely
generated there exists an integer k ½ 0 such that fk Ž Ð Ð Ð Ž f0 ≥ 0.
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THEOREM 2. Let R be a ring such that RÛJ(R) is regular and J(R) left T-nilpotent.
If R is left FGF then R is QF.

PROOF. We will prove that every finitely generated left R-module is essentially em-
beddable in a projective module. The result will follow then by [5, Corollary 3.5].

Let M be a finitely generated left R-module. Since R is semiregular left FGF, M has a
decomposition M ≥ PýM0 where P is projective and ñ0: M0 ! P0 is a monomorphism
such that P0 is finitely generated projective and Imñ0 � JP0. By viewing ñ0 as an
inclusion, we consider a pseudocomplement V0 of M0 in P0 and hence M0

ñ0
�! P0

ô

�!

P0ÛV0, where ô is the canonical projection, is an essential monomorphism. If P0ÛV0 is
projective we are done. If not, we have a decomposition P0ÛV0 ≥ P

0

0 ý V
0

0 where P
0

0 is
projective and V

0

0 is embeddable in the radical of a finitely generated projective module.
Now we lift this decomposition back to P0, so that P0 ≥ P

0

0 ýP
00

0 and V0 may be viewed
as a submodule of P

00

0. Thus we have a diagram as follows:

0 ý V0??y (0,ì0)

M0
ñ0
�! P00 ý P000

??y (1,p0)

P00 ý (P000ÛV0)

where ñ0: M0 ! P
0

0 ý P
00

0 is a monomorphism such that Imñ0 � JP
0

0 ý JP
00

0, p0: P
00

0 !

P
00

0ÛV0 is the canonical projection, 0 ý V0 is a pseudocomplement of Imñ0 in P
0

0 ý P
00

0

with canonical inclusion ì0: V0 ! P
00

0 and f0 ≥ (1, p0) Ž ñ0: M0 ! M1, where M1 ≥

P
0

0 ý (P
00

0ÛV0), is an essential monomorphism.
Proceeding in this way, since now P

00

0ÛV0 is embeddable in the radical of a finitely
generated projective module, we complete the diagram as follows:

0 ý V0??y (0,ì0)

M0
ñ0
�! P

0

0 ý P
00

0 0 ý 0 ý V1
??y (1,p0)

??y (0,0,ì1)

P
0

0 ý (P
00

0ÛV0)
(1,ñ1)
�! P

0

0 ý P
0

1 ý P
00

1
??y (1,1,p1)

P
0

0 ý P
0

1 ý (P
00

1ÛV1) Ð Ð Ð

where, for each n ½ 1, ñn: P
00

n�1ÛVn�1 ! P
0

n ý P
00

n is a monomorphism such that
Imñn � JP

0

n ý JP
00

n, pn: P
00

n ! P
00

nÛVn is the canonical projection, 0ý Ð Ð Ð ý 0
| {z }

n+1

ýVn is

a pseudocomplement of Mn ≥ P
0

0 ý Ð Ð Ð ý P
0

n�1 ý (P
00

n�1ÛVn�1) in P
0

0 ý Ð Ð Ð ý P
0

n ý P
00

n

with canonical inclusion ìn: Vn ! P
00

n and fn ≥ (1, . . . , 1
| {z }

n+1

, pn) Ž (1, . . . , 1
| {z }

n

,ñn): Mn ! Mn+1

is an essential monomorphism.
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Now for each n ½ 1, it can be easily seen that

V0 ≥ Ker(P
00

0 ! P
0

1 ý P
00

1 ! Ð Ð Ð ! P
0

1 ý Ð Ð Ð ý P
0

n ý P
00

n)

≥ Ker(P
00

0 ! P
0

1) \Ker(P
00

0 ! P
00

1 ! P
0

2) \ Ð Ð Ð \Ker(P
00

0 ! Ð Ð Ð P
00

n)

where P
00

i ! P
0

i+1 and P
00

i ! P
00

i+1 (the components of ñipi: P
00

i ! P
0

i+1ýP
00

i+1) have images
contained in JP

0

i+1 and JP
00

i+1 respectively. As a result, the sequence P
00

0 ! P
00

1 ! P
00

2 ! Ð Ð Ð

has the property that Im(P
00

i ! P
00

i+1) � JP
00

i+1 and from this follows that if we take
F ≥ lim

!
n

(P
00

n, fP
00

n ! P
00

n+1g), then F ≥ JF. Consequently, the left T-nilpotency of J yields

F ≥ 0 and so Lemma 1 applies. That is, for n sufficiently large P
00

0 ! Ð Ð Ð ! P
00

n is zero.
Hence,

V0 ≥ Ker(P
00

0 ! P
0

1) \Ker(P
00

0 ! P
00

1 ! P
0

2) \ Ð Ð Ð \Ker(P
00

0 ! Ð Ð Ð P
00

n�1 ! P
0

n)

and so the top row of the diagram

P
0

0 ý P
00

0 �! Ð Ð Ð �! P
0

0 ý P
0

1 ý Ð Ð Ð ý P
0

n ý P
00

n
ô1
�! P

0

0 ý P
0

1 ý Ð Ð Ð ý P
0

n
??y

??y

M1
f1
�! Ð Ð Ð

fn
�! Mn+1

ô
0

1
�! P

0

0 ý P
0

1 ý Ð Ð Ð ý P
0

n

has kernel 0 ý V0, where ô1 and ô
0

1 are the canonical projections onto the first n + 1
components. Therefore, the composition in the bottom row has to be a monomorphism,
from which it follows, since fn Ž Ð Ð Ð Ž f1 is an essential monomorphism, that ô

0

1 Ž fn Ž Ð Ð Ð Ž
f1: M1 ! P

0

0 ýÐ Ð ÐýP
0

n is also an essential monomorphism (and even more P
00

nÛVn ≥ 0).
Finally, 1P ý (ô

0

1 Ž fn Ž Ð Ð Ð Ž f1 Ž f0) : M ≥ PýM0 ! PýP
0

0ý Ð Ð Ð ýP
0

n is an essential
embedding into a projective module and so R is QF.

Now we can go further and answer Question B in a particular situation.

THEOREM 3. Let R be a semiregular ring satisfying one of the following two condi-
tions:

1. J̄(R) ≥ 0.
2. For every sequence x1, . . . , xn, . . . of elements of J(R),

T
n½1 x1 Ð Ð Ð xnR ≥ 0.

If every countably generated left R-module embeds in a free module, then R is QF.

PROOF. (1) Take the same F as in the proof of the above theorem. All we need to
show is that F ≥ 0 and the same argument of that proof would apply. Suppose F Â≥ 0 and
consider, since F is a countably generated flat left R-module, a non-zero homomorphism
f : F ! R. By taking I ≥ Im f and bearing in mind that JF ≥ F, we get JI ≥ I and from
that follows easily that I � Jã for every ordinal ã. So I � J̄(R) which contradicts the
assumption that J̄(R) ≥ 0.

(2) Let x1, . . . , xn, . . . be a sequence in J(R) and consider the sequence of homomor-
phisms RR

ö1
! RR

ö2
! RR ! Ð Ð Ð

ön
! RR ! Ð Ð Ð, where ön is the right multiplication
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by xn for each n ½ 1. By passing to the direct limit, F
0

≥ lim
!
n

(RR, ön) is a count-

ably generated flat left R-module. If we are able to prove that F
0

≥ 0, Lemma 1 tells
us that x1 Ð Ð Ð xn ≥ 0 for some n ½ 1 and so J will be left T-nilpotent, which im-

plies that R is QF by Theorem 2. We then prove that F
0

≥ 0. Let F
0 f
! RR be any

homomorphism. Since F
0 ¾≥ R(N)ÛK, where K is the submodule of R(N) generated by

(1,�x1, 0, . . .), (0, 1,�x2, 0, . . .), . . . (0, . . . , 0, 1,�xn, 0, . . .), . . . , f is given by a homo-
morphism ß: R(N) ! RR such that K � Kerß. Suppose ß is right multiplication by
the column matrix (b0, b1, . . . , bn, . . .)>. From K � Kerß we get bi ≥ xi+1bi+1 for all
i ≥ 0, 1, . . . and so biè

T
n½i+1 xi+1xi+2 Ð Ð Ð xnR. Condition 2 yields bi ≥ 0 for all i ≥ 0, 1, . . .

and so f � 0. Hence HomR(F
0

, RR) ≥ 0 and the embedding hypothesis entails that
F

0

≥ 0.

EXAMPLE. For a semiregular ring, both Conditions 1 and 2 in the above theorem
are strictly more general than that of left T-nilpotency, as can be seen by considering a
(commutative) discrete valuation domain.

In the following two results we just assume the semiregularity of R and try to identify
what might provoke a negative answer for Question A.

PROPOSITION 4. Let R be a semiregular left FGF ring and M a finitely generated
left R-module. If no non-zero direct summand of M embeds in the radical of a finitely
generated free left module then M is projective and injective.

PROOF. Let xèE(M) (the injective hull of M). Then by the FGF assumption, M + Rx
embeds in a free module, which by the finite generation of M + Rx can be assumed to be
Rm for an integer m Ù 0. Since R is semiregular, M admits a decomposition M ≥ Pý N
where P is a direct summand of Rm and N � JRm. By hypothesis N ≥ 0 so M ≥ P is
projective. Furthermore, M is an essential direct summand of M + Rx. Thus M ≥ M + Rx
and so M is injective.

From now on l(X) (resp. r(X)) will denote the left (resp. right) annihilator of the subset
X of R.

COROLLARY 5. Let R be a semiregular left FGF ring. The following conditions are
equivalent:

1. RR is not injective;
2. There exists an idempotent e Â≥ 1 in R and elements x1, . . . , xn in J(R) such that

Re ≥ l(x1, . . . , xn);
3. There exists a finitely presented left R-module whose projective dimension is ex-

actly 1.

PROOF. (1) ) (3). By Proposition 4, there is a non-zero direct summand Re of RR
and an embedding ñ: Re ! RRn, for some n, such that Imñ � JRn. Now M ≥ Cokerñ
is the desired finitely presented module.

(3) ) (2). The assumption and the semiregularity of R guarantee the existence of an
embedding 0 ! P1

ñ

! P0, where P1 and P0 are non-zero finitely generated projective
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and Imñ � JP0. Moreover, since every non-zero finitely generated projective module
is isomorphic to a direct sum of left ideals of the form Rf, with f èR-f0g idempotent [8,
Theorem 2.11], it is not restrictive to assume P1 ≥ Rf and P0 ≥ RRn, for some n ½ 1. In
that case, if ñ(f ) ≥ (x1, . . . xn) (hence x1, . . . , xnèJ) one easily gets that R(1� f ) ≥ l(f ) ≥
l(x1, . . . , xn) and thus e ≥ 1 � f is the desired choice.

(2) ) (1). Let e and x1, . . . , xn as in (2). Then there exists a well-defined monomor-
phism R(1�e) !

Ln
i≥1 Rxi !̈ JRn given by r(1�e) (rx1, . . . , rxn)). If RR is injective

then R(1�e) is a direct summand of Rn which is contained in JRn. This is a contradiction
and so RR is not injective.

REMARK. Although we do not know if the above equivalent conditions ever hold,
the corollary helps to understand the precise obstacle for Question A to have an affirma-
tive answer. Furthermore, it is definite to state that answer in many partial cases, as the
following shows.

COROLLARY 6. Let R be a semiregular left FGF ring. Each of the following condi-
tions forces R to be QF:

1. J � Z(RR);
2. Soc(RR) is essential as a left ideal of R;
3. HomR(X, RR) Â≥ 0 for every cyclic finitely presented right R-module X;
4. R is left FP-injective;

PROOF. (1) For elements x1, . . . , xn in J, l(x1, . . . , xn) is an essential left ideal of R.
Consequently, it cannot be a non-zero direct summand of R. It follows from Corollary 5
that RR is injective and by [2] or [12], that R is QF.

(2) Since Soc(RR) � l(J) we know that l(J) is an essential left ideal of R which implies
that J � Z(RR). The result follows now from (1).

(3) If R is not QF then by Corollary 5 there exist elements x1, . . . , xn in J and e Â≥ 1
an idempotent in R such that Re ≥ l(x1, . . . , xn). Then X ≥ (1 � e)RÛ

Pn
i≥1 xiR is cyclic

finitely presented and HomR(X, RR) ≥ 0 (Observe that xièr(Re) ≥ (1 � e)R).
(4) When R is left FP-injective every sequence 0 ! P1 ! P0 ! M ! 0, with P0

and P1 finitely generated projective, splits. Hence Condition 3 in Corollary 5 fails, which
implies that R is left self-injective and so QF.

Now we go back to impose some preconditions, but strictly weaker than the T-nil-
potency of J.

THEOREM 7. Let R be a semiregular left FGF ring and suppose that, for every se-
quence x1, . . . , xn, . . . in J-f0g, there exists n ½ 1 such that l(x1 Ð Ð Ð xn) Â≥ l(x1 Ð Ð Ð xn+1).
Then every indecomposable injective left R-module is isomorphic to a direct summand
of RR.

PROOF. Let E be an indecomposable injective left R-module and take U0 a finitely
generated submodule of E. If E ≥ E(U0) is not projective then U0 is not projective and
injective so by Proposition 4, U0 embeds in the radical of a finitely generated free module.
In fact, it is possible to embed U0 in J. Indeed, assumeï: U0 !̈ Rn is an embedding such
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that Im(ï) � JRn and for i ≥ 1, . . . , n let ôi: Rn ! R be the canonical projections. Then
the fact that 0 ≥ Ker(ï) ≥

Tn
i≥1 Ker(ôi Ž ï) implies that Ker(ôj Ž ï) ≥ 0 for some

jèf1, . . . , ng, because U0 is uniform. Thus ñ0 ≥ ôj Ž ï: U0 ! R is a monomorphism
which clearly satisfies Im(ñ0) � J as desired. Now we adapt the Proof of Theorem 2 and,
taking a pseudocomplementV0 of Im(ñ0) in R, we can define an essential monomorphism
U0

ñ0
�! R

p0
�! RÛV0 where p0 is the canonical projection. It follows that E(U0) ≥

E(RÛV0) and so U1 ≥ RÛV0 is a finitely generated uniform module such that E(U1) is
not projective. We can repeat this argument to construct a diagram as follows:

V0??y ì0

U0
ñ0
�! R V1

??y p0

??y ì1

U1
ñ1
�! R

??y p1

U2 Ð Ð Ð

where for each ièN, ñi: Ui ! R is a monomorphism such that Im(ñi) � J, Vi is a pseu-
docomplement of Im(ñi) in R with canonical inclusion ìi: Vi ! R, Ui ≥ RÛVi�1 and
pi: R ! Ui+1 is the canonical projection. Now for each ièN, ñi Ž pi�1: R ! R is right
multiplication by an element xièJ. Therefore

l(x1 Ð Ð Ð xn) ≥ Ker(ñn Ž pn�1 Ž ñn�1 Ž Ð Ð Ð Ž ñ1 Ž p0)

for every n ½ 1. We claim that

Ker(ñn+1 Ž pn Ž ñn Ž Ð Ð Ð Ž ñ1 Ž p0) ≥ Ker(ñn Ž pn�1 Ž ñn�1 Ž Ð Ð Ð Ž ñ1 Ž p0).

One inclusion is clear. To see the other we take x 2 Ker(ñn+1 Ž pn Ž Ð Ð Ð Ž ñ1 Ž p0). Since
ñn+1 is a monomorphism

(ñn Ž pn�1 Ž Ð Ð Ð Ž ñ1 Ž p0)(x)èKer(pn) \ Im(ñn) ≥ Vn \Un ≥ 0.

Hence xèKer(ñn Ž pn�1 Ž Ð Ð Ð Ž ñ1 Ž p0) as desired. It follows that for each n ½ 1
l(x1 Ð Ð Ð xn) ≥ l(x1 Ð Ð Ð xn+1) which is a contradiction. As a consequence, E is a projec-
tive module. Moreover, since every projective is isomorphic to a direct sum of left ideals
of the form Re, with eèR idempotent, it follows that E is isomorphic to a direct summand
of RR.

REMARK. The annihilator hypothesis of Theorem 7 is trivially satisfied when J is
left T-nilpotent. But it is not the only case. If R is left (cyclic) @0-injective then, for every
pair (x1, x2) of elements of J � f0g, the inequality l(x1) Â≥ l(x1 Ð x2) holds. Indeed, let x1

and x2 be non-zero elements in J and assume l(x1) ≥ l(x1 Ð x2). Then ß: Rx1x2 ! Rx1

defined by ß(rx1x2) ≥ rx1 (rèR) is a well-defined isomorphism. Since R is left (cyclic)
@0-injective there exists a homomorphism h: R ! R such that h Ž i ≥ j Ž ß where
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i: Rx1x2 !̈ R and j: Rx1 !̈ R are the canonical inclusions. Now h is right multiplication
by an element yèR, so for each rèR we have that rx1 ≥ ß(rx1x2) ≥ h(rx1x2) ≥ rx1x2y.
Taking r ≥ 1 it follows that x1(1 � x2y) ≥ 0 and since x2yèJ then 1 � x2y is invertible.
Hence x1 ≥ 0 which yields a contradiction.

EXAMPLE. Every local left self-injective ring which is not left perfect satisfies the
annihilator hypothesis of Theorem 7 and its Jacobson radical cannot be left T-nilpotent
(For an example of a local left self-injective ring which is not left perfect see [9, Exam-
ple 1]).

Given a ring R, we shall denote by Ω(R), I (R) and P (R), respectively, the sets of
isomorphism classes of simple, indecomposable injective and indecomposableprojective
left R-modules. On the other hand, C (R) will stand for the set of isomorphism classes of
simple left R-modules which are isomorphic to minimal left ideals of R. We shall make an
abuse of notation and use the same letter to denote a module and its isomorphism class.
Then the “injective envelope map” E(�): Ω(R) ! I (R) is an injective map and, when
R is semiregular, so is the “top map” ¯(�): P (R) ! Ω(R) that takes P onto P̄ ≥ PÛJP,
since every indecomposable projective is local [8, Corollary 2.13].

COROLLARY 8. Let R be a ring as in Theorem 7. Then each of the following condi-
tions forces R to be QF:

1. Ω(R) is a finite set;
2. RÛJ is left CS;
3.

L
PèP (R) P is a self-generator (see e.g., [13, p. 120]).

PROOF. (1) By Theorem 7 we have a composition of injective mappings

Ω(R)
E(�)
�! I (R) � P (R)

¯(�)
�! Ω(R).

If Ω(R) is finite then this composition must be bijective. Consequently, every simple left
R-module has a projective cover and so R is semiperfect. Moreover, R is left self-injective
since I (R) ≥ P (R) and R ≥

Ln
i≥1 Rei where each ei (i ≥ 1, . . . , n) is a local idempotent

of R. It follows from [2] or [12] that R is QF.
(2) For every PèP (R) we know that PÛJP èC (RÛJ). Then by Theorem 7,

Ω(RÛJ) ≥ Ω(R)
E(�)
�! I (R) � P (R)

¯(�)
�! C (RÛJ) � Ω(RÛJ)

is a composition of injective mappings which implies that the cardinality of Ω(R) coin-
cides with that of C (RÛJ). Now since RÛJ is regular and left CS it follows from [5](see
note below) that Ω(R) must be finite. Consequently, by (1), R is QF.

(3) Let S be a simple left R-module. By Theorem 7, E(S)èP (R) and so S is isomorphic
to a submodule of

L
PèP (R) P. Since

L
PèP (R) P is a self-generator, S is a factor of some

PèP (R). Consequently S ¾≥ PÛJP thus showing that every simple left R-module has a
projective cover. Hence R is semiperfect and, again by (1), R is QF.
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NOTE. In Lemma 2.3 of [5] the authors give a modified proof of a result of Osofsky
[9], essentially stating that if Q is regular and left self-injective then jC (Q)j infinite im-
plies jC (Q)j Ú jΩ(Q)j (jXj denotes the cardinality of the set X). We have checked that
Gómez Pardo and Guil Asensio’s proof works “mutatis mutandi” when “self-injective”
is replaced by “CS”. In other words, the following is true:

If Q is a regular left CS ring such that C (Q) is an infinite set, then jC (Q)j Ú jΩ(Q)j.

This is the result that we have used in the Proof of Corollary 8(2).

In the following result, TrR(I) denotes the trace ideal of I in R, i.e., TrR(I) ≥
P
fIm f :

f èHomR(I, RR)g.

COROLLARY 9. Let R be a ring as in Theorem 7 with the extra property that TrR(I) ≥
IR for every minimal left ideal of R. If Soc(RR) is essential as a left ideal of R then R is
QF.

PROOF. All we need to prove is that Soc(RR)J ≥ 0 for then l(J) is an essential ideal
of R and so J � Z(RR) which, by Corollary 6, implies the statement.

Take a minimal left ideal I of R and assume first that I � Re for some idempotent eèR
with the property that Re is injective. If Ix Â≥ 0 for some xèJ then öx: I ! Ix defined by
öx(y) ≥ yx for each yèI is an isomorphism with inverse map ï: Ix ! I (given by yx y).
Now, due to the injective condition of Re, there exists a homomorphism ï̂: RR ! Re
making the following diagram commute:

Ix !̈ RR??y ï

??y ï̂

I !̈ Re.

Choose bèRe such that ï̂(r) ≥ rb for all rèR. Then for all yèI, yxb ≥ y and so y(1�xb) ≥
0. Since xèJ, 1 � xb is an invertible element and, as a consequence, I ≥ 0 which is a
contradiction. Hence, IJ ≥ 0 in this case.

Let us come back now to the general case in which I is an arbitrary minimal left ideal
of R. We know, by Theorem 7, that E(I) ¾≥ Re for certain local idempotent eèR. Then
there exists a monomorphism f : I ! R such that f (I) � Re. Applying our assumption,
bearing in mind that we have a composition f (I)

¾

! I !̈ RR, we get that I � f (I)R. Thus,
IJ � f (I)J ≥ 0 and so Soc(RR)J ≥ 0.

EXAMPLE. As two particular examples in which the trace hypothesis of the forego-
ing corollary holds we can give:

1. When Ext1R(RÛI, RR) ≥ 0, for every minimal left ideal I of R (e.g. if R is left
(cyclic) @0-injective). Hence, in particular, if R is semiregular left (cyclic) @0-
injective and Soc(RR) is left essential, then R left FGF implies R QF.

2. If RR contains exactly one isomorphic copy of each simple left R-module.
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Universidad de Los Andes
Mérida, Venezuela
e-mail: juanrada@ciens.ula.ve

Departamento de Matemáticas
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