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A SAMPLE PATH APPROACH TO MEAN BUSY PERIODS
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Abstract

The mean busy period of a Markov-modulated queue or fluid model is computed
by an extension of the time-reversal argument connecting the steady-state distribu­
tion and the maximum of a related Markov additive process.
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1. Introduction

For many queuing processes, one can identify the stationary distribution with the
distribution of the maximum of the time-reversed net input process. This idea can be traced
back at least to Lindley [9] and has turned out to be a fruitful tool in the study of queues
exploited by many authors. In particular, an early classical paper is Loynes [11] which deals
with a general stationary set-up; some references relevant for the present paper are the
studies [2], [6], [3], [5] by the authors which consider various Markov-modulated models.

The purpose of this note is to point out a less established extension of the time reversal
relation, and to show how it leads to a simple way of calculating mean busy periods in terms
of steady-state quantities, a problem which is easy for most simple queues but non-trivial in a
Markov-modulated setting.

The details will be given for a fluid queueing model arising in the study of recent ATM
(asynchronous transfer mode) technology in telecommunications (the study of traditional
queueing models is similar and the formulas are stated at the end of the paper).

2. Preliminaries

The process {(Jo V:)}/~ under study is defined by {JJ being an irreducible Markov process
with finite state space E, and {V;} having piecewise linear paths with slope r, on intervals
where it = i, v: > 0, and reflection at O. We can represent {V;} as the reflected version

(1) ~ = St- min Sv
O~v:iiit

Received 8 July 1993; revision received 13 June 1994.
* Postal address for both authors: Institute of Electronic Systems, Aalborg University, Fr. Bajersv. 7,

DK-9220 Aalborg, Denmark.

1117

https://doi.org/10.2307/1427907 Published online by Cambridge University Press

https://doi.org/10.2307/1427907


1118

of the net input process

(2)
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(thus {5,} is a continuous-time Markov additive process defined on {I,}). The stability condition
ensuring the existence of a limiting steady state is

L n.r, <0,
ieE

where '1T = (Hj)jeE is the stationary distribution of {J,}, and we let (J, V) denote a pair of
random variables having the limiting stationary distribution _of_(J

"
~). Let A = (Aij)i,jeE

denote the intensity matrix for {J,}. The time-reversed version {J
"

5,} of the Markov additive
process {J

"
S,} is defined by letting the intensity matrix A of {I,} have elements Xij = H;Aj;/H;,

and letting {5,} be defined as {S,}, with the same rates r, but {~} replaced by {I,}. Further let
M,= SUPO::iu~1 Su, M= SUP,ii:O5"

weT) = inf {t ~ T :M, = MT } , w = inf{t > O:M, = M}.

The classical time-reversal argument [3] then yields

(3) lP(V E A, J = j) = HjlPj(M E A).

Clearly, M)s the Iifetime of the terminating Markov process {m(x)}xs:o that we obtain by
observing {J,} when is,} is at maximum values,

m(x) = IT(x) where rex) = inf {t > 0:5, = x}.

The state space is E + = {i E E:r, > O} (similarly, we write E_ = {i E E: r, < O}; for simplicity, it
is assumed that r, ¥= 0 for all i though this assumption is not crucial, cf. [3]). It follows by
standard facts on phase-type distributions [14] that

(4) IP(V E dx, I = j) = TrjQjeUXu, x> 0, lP(V = 0, J = j) = Hj(l - aje)

where aj = (ajk)keE+ is the row vector of initial IPrprobabilities for m(O), U = (Uij)i,jeE+ the
intensity matrix of {m(x)} and u = (Ui);eE+ = -Ue with e the column vector of ones.

Algorithms for computing U and the Q j are given in Asmussen [3] and Rogers [15] (cf. also
London et a1. [10] and Barlow et a1. [7]), whereas other approaches to the computation of the
distribution of (J, V) are discussed in a number of papers, see e.g. Anick et a1. [1], Gaver and
Lehoczky [8] for some early studies and [3], [15] for a more recent set of references.

For later use, we quote the following formula ([3] Theorem 3.1) connecting U and the a j :

Uii = _1_{HiAii + L TrkAkjaki}.
r.n, «es :

From this it follows by summing over j and using the stationary equation LjeE+uE_ HjAj; = 0
that

(5)

3. The mean busy period

A busy period of length P; = inf {t > 0: ~ = O} and type i E E + starts from Vo= 0 and Jo= i,
and ends at the time P; when the process returns to O. At any time T, we define IT as the type
of the busy cycle in progress. That is, IT = JK(T) where K(T) = sup {t ~ T: ~ = O}. We shall use
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the following generalization of (3), which contains the additional information on the joint
steady-state distribution of (V, I, I).

Proposition 3.1. P( V E A, I = j, I = i) = JrjPj(MEA, I w- = i).

Proof Let T < oc be fixed. Considering stationary versions, we may assume I, = I(T-t)- (left
limit), 5, = ST - ST-, for 0 ~ t ~ T. Then

K(T) = sup {t:O ~ t ~ T, sup (S, - Su)'= O}
O:iiu:iii,

T-K(T)=inf{t:O~t~T, sup (5v - S,) = 0} = w(T ).
T~v~,

Similarly, {VT E A} = {MT E A} (this is the classical time-reversal relation), and thus

P-n(VT E A, 10 = k, IT = j, IT = i) = IPK(VT E A, 10 = k, IT = j, I T- w ( 7) = i)

= IPK(MT E A, Jo = j, JT = k, Jw(T)- = i)

= JrjPj(MT E A, JT = k, I w(T)- = i).

Since M is attained at the finite time w, IT is asymptotically independent of M, w, and hence
letting T~ cc we get

IPn(VT E A, 10 = k, IT = j, IT = i) = JrjlPj(M E A, L. = i)fP(JT = k)

=1CjJrkfPj(M E A, I w- = i).

On the other hand, clearly

IPn(VT E A, 10 = k, IT = j, IT = i) = JrklPk(VT E A, IT = j, IT = i)

~ 1CklP(V E A, I =j, I = i).

Identifying the two limits yields the result.

Note that M E dx, t.: = i means that {m(x)} has Iifelength x and dies (exits) in state i. From
the interpretation of u as the exit rate vector [14], it thus follows that

(6)

where u, is the vector obtained from u by replacing all entries except the ith by zeros. Let
further e, be the column vector with 1 at the ith entry and 0 at the others.

Proposition 3.2. Let a = LjeE JrjQj . Then

lE
.p. = -aU-Ie;
I I •

n.r,
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Proof By Proposition 3.1 and (6),

IIJl(V > 0, I = i) = 2: rIIJl(V E dX,1 =i. I = i) dx
jeE 0

On the other hand,

1 IP(V > 0, I = i) = lim -IE I(Yr > 0, II = i) dt
r-c- T 0

1 iCC= lim -IE I(Yr > 0, II = i, K(t) ~ T) dt
T-+oc T 0
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(7)

(the last identity uses the fact that the mean residual length of the busy period in progress at
time T is o(T». Now when V = 0, J = k E E_, a busy period of type i is initiated at rate Aki

and has mean duration lEi~' Hence

IE roc J(Yr > 0, II = i, K(t) ~ T) dt = IE iT 2: I(V,- =0,1,- = k )Ak;IE;P; dt,Jo 0 keE_

P(V > 0, I = i) = 2: P(V = 0, i = k )AkilEiP;
keE_

= 2: 1rk Ak i( l - Qke )lEi~'
keE_

Putting the two expressions equal yields

lE.p. = -aU-lUi

I I LkeE_ 1rk Aki ( l - Qke) .

Now just use (5).

The treatment of fluid models carries over with minor changes to queues with Neuts'
Markovian arrival process [13]. Here there is still an environmental Markov process {iJ, but
we write now the intensity matrix A as C + D, such that dk1 is the intensity of a state transition
from k to I accompanied by an arrival (k = I is here allowed) and Ck 1 (k ~ I) is the intensity of
J, changing from state k to I without an arrival (the Ckk are determined by (C + D)e = 0). The
service time distribution of a customer arriving at a transition from k to I is B kl (say). Thus the
types of the busy periods are indexed by kl E E 2 rather than by i E E. If all B k / are phase-type,
there is an analogue of the Markov process {m(x)} as discussed in Asmussen and Perry [6],
and the proof of Proposition 3.2 carries immediately over to give the formula

-aU-IUkl
IEkiPk/ =-------­

L n; dki(l - Qki, e)
k,ieE

(in obvious notation) which is simpler than that of [6] or earlier references like Machihari
[12]. Asmussen and Bladt [5] discuss the related problem of computing the mean regenerative
cycle by using a queueing version of Proposition 3.1 in a somewhat different manner.

Also for fluid models, Proposition 3.2 is simpler than the computational schemes suggested
in Asmussen [4].
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