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Abstract

Employing a simple and direct geometric approach, we prove formulas for a large class
of degeneracy loci in types B, C, and D, including those coming from all isotropic
Grassmannians. The results unify and generalize previous Pfaffian and determinantal
formulas. Specializing to the Grassmannian case, we recover the remarkable theta- and
eta-polynomials of Buch, Kresch, Tamvakis, and Wilson. Our method yields streamlined
proofs which proceed in parallel for all four classical types, substantially simplifying
previous work on the subject. In an appendix, we develop some foundational algebra
and prove several Pfaffian identities. Another appendix establishes a basic formula for
classes in quadric bundles.
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Introduction

A fundamental problem asks for a formula for the cohomology (or Chow) class of a degeneracy
locus, as a polynomial in the Chern classes of the vector bundles involved. In its simplest form,
the answer is given by the Giambelli–Thom–Porteous formula: the locus is where two subbundles
of a given vector bundle meet in at least a given dimension, and the formula is a determinant.

The aim of this article is to prove formulas for certain degeneracy loci in classical types. One
has maps of vector bundles, or flags of subbundles of a given bundle; degeneracy loci come from
imposing conditions on the ranks of maps, or dimensions of intersections. The particular loci we
consider are indexed by triples of s-tuples of integers, τ = (r,p,q) (in type A) or τ = (k,p,q)
(in types B, C, and D). In type A, each (ri, pi, qi) specifies a rank condition on maps of vector
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Chern class formulas for classical-type degeneracy loci

bundles rk(Epi → Fqi) 6 ri; in other types, E• and F• are flags of isotropic or coisotropic bundles

inside some vector bundle with bilinear form, and each (ki, pi, qi) specifies dim(Epi ∩ Fqi) > ki.
In each case, we will write Ωτ ⊆ X for the degeneracy locus. Its expected codimension

depends on the type. In fact, to each triple we associate a partition λ(τ ) (again depending on

type), whose size is equal to the codimension of Ωτ .

The resulting degeneracy loci of type A have a determinantal formula which generalizes

that of Giambelli–Thom–Porteous. The loci corresponding to triples are exactly those defined

by vexillary permutations according to the recipe of [Ful92]; building on work of Kempf and

Laksov, Lascoux and Schützenberger, and others, it was shown in [Ful92] that

[Ωτ ] = ∆λ(τ )(c(1), . . . , c(`)) := det(c(i)λi+j−i)16i,j6`.

Here each c(k) is a (total) Chern class c(Fqi − Epi) = c(Fqi)/c(Epi), and ∆λ is a Schur

determinant ; more details will be given in § 1.

In other classical types, work of Pragacz and his collaborators showed that Pfaffians should

play a role analogous to determinants in type A, at least for cases where there is a single bundle

E and all F• are isotropic [Pra88, Pra91, PR97, LP00]. More recent work of Buch, Kresch,

and Tamvakis exploits a crucial insight: both determinants and Pfaffians can be defined via

raising operators, and by adopting the raising operator point of view, one can define theta-

and eta-polynomials, which interpolate between determinants and Pfaffians. These provide

representatives for Schubert classes in nonmaximal isotropic Grassmannians; here one has a

single isotropic E, and a flag of trivial bundles F•, some of which may be coisotropic [BKT17,

BKT15, Tam14]. Wilson extended this idea to define double theta-polynomials, and conjectured

that they represent equivariant Schubert classes in nonmaximal isotropic Grassmannians [Wil10].

This was proved in [IM15], and, via a different method, in [TW16].

We will introduce triples τ for each classical type, and study degeneracy loci defined by

dim(Epi ∩ Fqi) > ki, with all E• isotropic, and F• either isotropic or coisotropic. When the F•
are all isotropic, the formulas are (multi-)Pfaffians (as in the preprints [Kaz00] and [AF12]);

allowing coisotropic conditions presents some subtleties, but leads directly to the definitions of

multi-theta polynomials Θλ and multi-eta-polynomials Hλ. Our main theorem is stated in terms

of these polynomials.

Theorem. Let τ be a triple, and let Ωτ be the corresponding degeneracy locus (of type C, B,

or D).

(C) In type C, we have

[Ωτ ] = Θλ(τ )(c(1), . . . , c(`)).

(B) In type B, we have

[Ωτ ] = 2−kaΘλ(τ )(c(1), . . . , c(`)).

(D) In type D, we have

[Ωτ ] = 2−kaHλ(τ )(c(1), . . . , c(`)).

The entries c(i) vary by type, and along with the definitions of Θλ and Hλ, these are specified
in Theorems 2, 3, and 4. For now, let us mention some special cases. When the triple has all
qi > 0, the loci are defined by conditions on isotropic bundles, and each formula is a Pfaffian.
If the triple has all pi = p, the loci come from Grassmannians; in the type C case, we recover
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the formulas of [IM15] and [TW16], and in case the F are trivial, we recover the formulas of
[BKT17, BKT15]. (The general type D formula includes a definition of double eta-polynomial,
which is new even in the Grassmannian case.1)

The structure of the argument in each type is essentially the same. First, one has a basic
formula for the case where the only condition is Ep1 ⊆ Fq1 , and furthermore Ep1 is a line bundle.
Next, there is the case where Epi has rank i, and the conditions are Epi ⊆ Fqi ; the formula here
is easily seen to be a product, and one uses some elementary algebra to convert the product into
a raising operator formula. (In type A, these loci correspond to dominant permutations.) The
‘main case’ is where the conditions are dim(Epi ∩ Fqi) > i; such loci are resolved by a birational
map from a dominant locus, and the pushforward can be decomposed into a series of projective
bundles. Finally, a little more elementary algebra reduces the general case to the main case.

Proving the theorem requires only a few general facts. Some of these are treated in the
appendices, but we collect four basic formulas here for reference. Let E be a vector bundle of
rank e on a variety X.

(a) If L is a line bundle on X, then

ce(E − L) = ce(E ⊗ L∗).

(b) If L is a line bundle on X, for any b > 0 and j > e we have

(−c1(L))b cj(E − L) = cb+j(E − L).

(c) If F ′ is a subbundle of a vector bundle F , then

c(E − F/F ′) = c(E − F ) c(F ′).

(d) Let π : P(E) → X be the projective bundle, and Q = π∗E/O(−1) the universal quotient
bundle. For any σ ∈ A∗X, we have

π∗(π
∗σ · cj(Q)) =

{
σ if j = e− 1,

0 otherwise.

(Identities (a)–(c) are easy to deduce from the Whitney sum formula, and (d) follows from the
formula for A∗P(E) as an algebra over A∗X.)

We conclude this introduction with some remarks on the development and context of our
results. The double Schubert polynomials of Lascoux and Schützenberger, which represent type
A degeneracy loci, have many wonderful combinatorial properties. A problem that received a
great deal of attention in the 1990s was to find similar polynomials representing loci of other
classical types. First steps in this direction were taken by Billey and Haiman, who defined
(single) Schubert polynomials for types B, C, and D [BH95]; double versions were obtained by
Ikeda et al. [IMN11] and studied further by Tamvakis [Tam14]. A simplified development of these
double Schubert polynomials follows from the degeneracy locus formulas proved here. We should
point out that in types B, C, and D, any theory of Schubert polynomials involves working not in
a polynomial ring, but in a ring with relations; modulo these relations, however, stable formulas
are essentially unique. See [AF12], or the survey [Tam16a], for more perspective on this history.

The Schubert varieties and degeneracy loci in types B, C, and D are indexed by signed
permutations, and it is natural to ask whether certain signed permutations correspond to
Pfaffians, by analogy with the determinantal formulas for vexillary permutations in type A.

1 Tamvakis recently announced that he has also found such polynomials [Tam16b].
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In the preprint [AF12], we identified such a class of vexillary signed permutations,2 defined
via triples τ such that all qi > 0. Following ideas of Kazarian [Kaz00], we proved Pfaffian
formulas for vexillary loci, and also studied the relationship between these Pfaffians and the
double Schubert polynomials of [IMN11]. We plan to revisit the combinatorics and algebra of
Schubert polynomials in separate work.

In the present work, we focus on the Pfaffian formulas and their generalizations. The
setup is heavily influenced by Kazarian’s preprint [Kaz00]. We wish to emphasize that our key
contribution is the argument itself: by including the more general vexillary loci, we separate
algebra (showing a product equals a determinant or Pfaffian, in the ‘dominant’ case of the proof)
from geometry (constructing a resolution of singularities and pushing forward the formula, in
the ‘main’ case).

In revisiting our earlier approach, we found the situation was clarified by making explicit the
role of raising operators. For this, we owe a great debt to the work of Buch, Kresch and Tamvakis,
whose remarkable theta- and eta-polynomial formulas have convincingly demonstrated the utility
of raising operators in geometry. This inspired us to apply our geometric method to more general
loci, simultaneously generalizing their formulas and yielding shorter and more uniform proofs.

Finally, although the recent prominence of raising operators is due to Buch, Kresch and
Tamvakis, it was Pragacz who first brought them to geometry. We take both combinatorial and
geometric inspiration from his work, and dedicate this article to him on the occasion of his
sixtieth birthday.

1. Type A revisited

The determinantal formula describing degeneracy loci in Grassmann bundles, or (more generally)
vexillary loci in flag bundles, is, by now, quite well known; see [KL74, Ful92] for recent versions.
However, our reformulation of its setup and proof will provide a model for the (new) formulas
in other types, so we will go through it in detail.

A triple of type A is the data τ = (r,p,q), where each of r, p, and q is an s-tuple of
nonnegative integers, with

0 < p1 6 p2 6 · · · 6 ps and

q1 > q2 > · · · > qs > 0.

Setting ki = pi − ri and li = qi − ri, we further require that

0 < k1 < k2 < · · · < ks and

l1 > l2 > · · · > ls > 0.

The last condition is equivalent to requiring

ki − ki−1 6 (qi − qi−1)− (pi − pi−1) (a)

for all i.
Associated to a triple there is a partition λ = λ(τ ), defined by setting λki = li, and filling

in the remaining parts minimally so that λ1 > λ2 > · · · > λks > 0. (An essential triple specifies
only the ‘corners’ of the Young diagram for λ, so in a sense it is a minimal way of packaging this
information.)

2 Although not obvious from the definitions, the vexillary signed permutations of [AF12] correspond to certain
vexillary elements of the hyperoctahedral group, defined and studied by Billey and Lam [BL98]. It should be
interesting to study the permutations arising from the more general triples to be considered here; see the remarks
at the end of § 2.
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Given a partition λ = (λ1 > · · · > λ` > 0) and symbols c(1), . . . , c(`), the associated Schur

determinant is

∆λ(c(1), . . . , c(`)) := det(c(i)λi+j−i)16i,j6`.

For a positive integer `, let R(`) be the raising operator

R(`) =
∏

16i<j6`

(1−Rij), (1)

where Rij = Ti/Tj is the operator defined in Appendix A.2. A simple application of the

Vandermonde identity shows that

∆λ(c(1), . . . , c(`)) = R(`) · (c(1)λ1 · · · c(r)λ`), (2)

and we will use this observation crucially in proving the degeneracy locus formula.

Here is the geometric setup. On a variety X we have a sequence of vector bundles

Ep1 ↪→ Ep2 ↪→ · · · ↪→ Eps
ϕ−→ Fq1 � Fq2 � · · ·� Fqs ,

where subscripts indicate ranks; for each i, there is an induced map Epi → Fqi . The degeneracy

locus corresponding to the triple τ is

Ωτ := {x ∈ X | rk(Epi → Fqi) 6 ri for 1 6 i 6 s}.

This comes equipped with a natural subscheme structure defined locally by the vanishing of

certain determinants.

Let c(ki) = c(Fqi − Epi), and set c(k) = c(ki) whenever ki−1 < k 6 ki. We also set ` = ks,

and by convention we always take k0 = 0. With this notation, the degeneracy locus formula can

be stated as follows.

Theorem 1 (Cf. [KL74, Ful92]). We have [Ωτ ] = ∆λ(τ )(c(1), . . . , c(`)).

The case where there is only one F , so q1 = · · · = qs, was proved by Kempf and Laksov,

starting the modern search for such formulas. The general case was proved in [Ful92].

These formulas are to be interpreted as usual: when the bundles and the map ϕ are sufficiently

generic, then Ωτ has codimension equal to |λ| and the formula is an identity relating the

fundamental class of Ωτ with the Chern classes of E and F . In general, the left-hand side

should be regarded as a refined class of codimension |λ|, supported on Ωτ ; see [Ful98].

The proof proceeds in four steps.

1.1 Basic case

Assume s = 1, p1 = 1, r1 = 0, so τ = (0, 1, q1). The locus is where E1 → Fq1 vanishes, so it is

the zeroes of a section of E∗1 ⊗ Fq1 , a vector bundle of rank q1. Therefore

[Ωτ ] = cq1(E∗1 ⊗ Fq1) = cq1(Fq1 − E1),

using identity (a) to obtain the second equality.
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1.2 Dominant case
Assume pi = i and ri = 0 for 1 6 i 6 s, so ki = i and li = qi. By imposing one condition at a
time, we obtain a sequence

X = Z0 ⊇ Z1 ⊇ Z2 ⊇ · · · ⊇ Zs = Ωτ ;

Z1 is the locus where E1→ Fq1 is zero; Z2 is where also E2/E1→ Fq2 is zero; and generally Zj
is defined on Zj−1 by the condition that Ej/Ej−1→ Fqj be zero. This is an instance of the basic
case, and using the projection formula, it follows that

[Ωτ ] =
s∏

j=1

cqj (Fqj − Ej/Ej−1). (3)

Writing c(j) = c(Fqj −Ej) and ti = −c1(Ei/Ei−1), an application of identity (c) transforms (3)
into

[Ωτ ] =

s∏

j=1

[
c(j) ·

j−1∏

i=1

(1− ti)
]

qj

. (4)

Using identity (b), this becomes

[Ωτ ] =

( ∏

16i<j6s

(1−Rij)
)
· (c(1)q1c(2)q2 · · · c(s)qs)

= R(s) · (c(1)q1c(2)q2 · · · c(s)qs). (5)

In other words, the product (3) is equal to the determinant ∆λ(c(1), . . . , c(s)), where λ = (q1 >
q2 > · · · > qs). (To deduce (5) from (4), use identity (b) and descending induction on k to show
(4) equals

( ∏

16i<j6s
k<j

(1−Rij)
)
· c′(1)q1 · · · c′(k)qk · c(k + 1)qk+1

· · · c(s)qs ,

where c′(k) = c(Fqk −Ek/Ek−1) = c(k) ·
∏k−1
i=1 (1− ti). The case k = s is (4), and the case k = 1

is (5).)

1.3 Main case
Assume ki = pi − ri = i for 1 6 i 6 s. There is a sequence of projective bundles

X = X0← X1 = P(Ep1)← X2 = P(Ep2/D1)← · · ·← Xs = P(Eps/Ds−1),

where, suppressing notation for pullbacks of bundles, Dj/Dj−1 ⊆ Epj/Dj−1 is the tautological

line bundle on Xj . Let us write π(j) : Xj → Xj−1 for the projection, and π : Xs → X for the
composition of all the projections π(j).

On Xs, there is the locus Ω̃ where Di/Di−1 → Fqi is zero for 1 6 i 6 s. This is an instance
of the dominant case, so in A∗Xs we have

[Ω̃] = R(s) · c̃(1)
λ̃1
· · · c̃(s)

λ̃s
, (6)

where λ̃j = qj and c̃(j) = c(Fqj − Dj). Furthermore, π maps Ω̃ birationally onto Ωτ ; it is an
isomorphism over the dense open set where rk(Epi → Fqi) = ri. (Take Di to be the kernel.)

So [Ωτ ] = π∗[Ω̃].
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To compute this pushforward, use identity (c) to write c̃(j) = c(j) · c(Epj/Dj), recalling that

c(j) = c(Fqj −Epj ). Note that Epj/Dj is the tautological quotient bundle for π(j) : Xj → Xj−1.
By identity (d), we have

π
(j)
∗ (c(j)a · cb(Epj/Dj)) = c(j)a

when b = pj − j, and this pushforward equals 0 otherwise. Therefore

π
(j)
∗ (c̃(j)k) = π

(j)
∗

( ∑

a+b=k

c(j)a · cb(Epj/Dj)

)
= c(j)k−pj+j .

Applying π∗ to (6) and using linearity of the raising operator yields

[Ωτ ] = π∗(R
(s) · c̃(1)

λ̃1
· · · c̃(s)

λ̃s
)

= R(s)π∗(c̃(1)
λ̃1
· · · c̃(s)

λ̃s
)

= R(s)c(1)λ1 · · · c(s)λs
= ∆λ(c(1), . . . , c(s)).

1.4 General case
Any triple τ = (r,p,q) can be ‘inflated’ to τ ′ = (r′,p′,q′) with k′i = p′i−r′i = i, without essentially
altering the locus Ωτ or the polynomial representing it. Suppose ki−ki−1 > 1, so either qi−1 > qi
or pi−1 < pi (or both). If qi−1 > qi, then inserting (ri + 1, pi, qi + 1) between the (i − 1)st and
ith positions produces a new triple τ ′ with λ(τ ) = λ(τ ′). If there is a bundle Fqi+1 fitting into
Fqi−1 � Fqi+1 � Fqi , then one easily checks Ωτ ′ = Ωτ . In general, it can be arranged for such an
Fqi+1 to exist by passing to an appropriate projective bundle; then the locus Ωτ ′ maps birationally
to the original Ωτ . (In the case qi−1 = qi, then pi−1 < pi−1 and one proceeds similarly, by inserting
a bundle between Epi−1 and Epi .) The fact that ∆λ(c′(1), . . . , c′(`)) = ∆λ(c(1), . . . , c(`)) is a
special case of §A.3, Lemma A.1.

This concludes the proof. 2

2. Type C: symplectic bundles

A triple of type C is τ = (k,p,q), with

0 < k1 < k2 < · · · < ks,

p1 > p2 > · · · > ps > 0,

q1 > q2 > · · · > qs.

The qi are allowed to be negative, but not zero, and if ps = 1 then all qi must be positive. Since
the difference between positive and negative q plays a major role, let a = a(τ ) be the index
such that qa > 0 > qa+1 (allowing a = 0 and a = s for the cases where all qi are negative or
all qi are positive, respectively). We will also require five further conditions, listed as (c1)–(c5)
below, which arise naturally from the geometric setup. Consider an even-rank vector bundle V ,
equipped with a symplectic form and two flags of subbundles

Ep1 ⊂ Ep2 ⊂ · · · ⊂ Eps ⊂ V,
Fq1 ⊂ Fq2 ⊂ · · · ⊂ Fqs ⊂ V.

When q > 0, the subbundles Fq are isotropic; when q < 0, Fq is coisotropic; and all the bundles
Ep are isotropic. If the rank of V is 2n, the isotropic bundles Ep and Fq (for q > 0) have rank
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n+1−p and n+1−q, respectively; and for q < 0, the coisotropic bundles Fq have rank n−q. (So
the order on the pi and qi is compatible with the inclusion of bundles of corresponding ranks.)

The degeneracy locus is

Ωτ = {x ∈ X | dim(Epi ∩ Fqi) > ki for 1 6 i 6 s}.

Note that E⊥1 = E1, so a condition on its intersection with a coisotropic space is equivalent to
one for the intersection with an isotropic space; we shall prefer the latter, and this explains why
negative qi are prohibited when p = 1. Demanding that the rank conditions be feasible, and
generically attained with equality, leads to the further requirements on the triple τ .

The conditions on τ are likely to appear somewhat technical at first. The reader may find
it helpful to first assume all qi are positive, which is the simplest case. The next easiest case is
when ki = i for all i, which corresponds to the ‘main case’ in the proof. Linear-algebraic reasons
for the conditions, as well as combinatorial explanations and the relationship with [BKT17], can
be found in the remarks at the end of this section.

In what follows, when indices fall out of the range [1, s], we use conventions so that the
inequalities become trivial, e.g., k0 = 0, q0 = +∞, and qs+1 = −∞.

First, for i 6 a, we require

ki − ki−1 6 (pi−1 − pi) + (qi−1 − qi). (c1)

When ki = i for all i, this says that either pi−1 > pi or qi−1 > qi. When all qi are positive, this
is the only condition required of a triple τ .

The other requirements on τ concern negative q, so they describe intersections of an isotropic
Ep with a coisotropic Fq.

For each j 6 a, let m(j) = min{m | qj + (kj − kj−1 − 1) > qm}. The second condition is as
follows.

The negative values

−qj , −qj − 1, . . . , −qj − (kj − km(j)−1 − 1)

are all prohibited as values of qi for i > a. (c2)

(Here is an equivalent, algorithmic condition: let N0 = {1, 2, 3, . . .}; form N1 by removing the
k1 consecutive elements of N0 starting at q1; then form N2 by removing k2 − k1 consecutive
elements of N1, starting at the q2th element; and so on up to Na. The absolute values of qi for
i > a are required to lie in Na.) When ki = i for all i, this simply says that a negative value qi
cannot appear if |qi| has already appeared as some qj for j < i.

Next, for each i > a, so qi < 0, we define

ρki := kj ,

where j is the index such that qj > −qi > qj+1, and require that

ki − ρki 6 −qi. (c3)

When ki = i for all i, ρ has an easy characterization as ρi = #{j < i | qj > −qi}.
The fourth condition is that

(ki − ki−1) + (ρki−1
− ρki) 6 (pi−1 − pi) + (qi−1 − qi) (c4)

for i > a+ 1. This is a refinement of the first requirement (c1).
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Figure 1. The shape for a ρ(τ )-strict partition λ(τ ). The boxes of ρ are shaded.

The fifth and final condition is that

ki > 1− pi − qi + ρki (c5)

for i > a. (In conjunction with (c4), it suffices to require (c5) only for i = s.)
As in type A, a triple of type C has an associated partition λ = λ(τ ), defined by

λki =

{
pi + qi − 1 if i 6 a,
pi + qi + ki − 1− ρki if i > a.

The conditions on τ imply that

λk1 > λk2 > · · · > λka > λka+1 > · · · > λks > 0.

The other parts of λ are defined by filling in λk minimally subject to these inequalities (strict if
k < ka, weak if k > ka).

Generally, given a sequence of nonnegative integers ρ = (ρ1, . . . , ρ`), we will say that a
partition λ = (λ1 > · · · > λ`) is ρ-strict if the sequence µj = λj + ρj is nonincreasing. (See
Remark 3 for the relation with the corresponding notion from [BKT17].)

From this point of view, it is useful to extend the definition of ρ given above to a unimodal
sequence of integers ρ(τ ) = (ρ1, ρ2, . . . , ρks), as follows. As before, for i > a, define ρki = kj ,
where qj > −qi > qj+1. For k 6 ka, set ρk = k − 1. Then fill in the remaining entries by setting
ρk = ρki for i > a and ki−1 < k 6 ki. This means ρka+1 > · · · > ρks .

The conditions (c1) and (c3)–(c5) are equivalent to requiring that

λ(τ ) is a ρ(τ )-strict partition, with λka > λka+1.

For example, suppose τ = ( 1 3 5 6 7 9 , 9 7 6 5 2 2 , 6 3 2 5 7 9 ), using a bar to indicate negative
integers. Here a= 2, ρ= (0, 1, 2, 3, 3, 1, 0, 0, 0), and λ(τ ) = (14, 10, 9, 5, 5, 4, 1, 1, 1). (See Figure 1.)

Given an integer ` > 0, a sequence of nonnegative integers ρ = (ρ1, . . . , ρ`) with ρj < j, define
the raising operator

R(ρ,`) =

( ∏

16i<j6`

(1−Rij)
)( ∏

16i6ρj<j6`

(1 +Rij)
−1
)
.

Inspired by [BKT17], given symbols c(1), . . . , c(`), and a ρ-strict partition λ, we define the
theta-polynomial to be

Θ
(ρ)
λ (c(1), . . . , c(`)) = R(ρ,`) · (c(1)λ1 · · · c(`)λ`).

When ρ = ∅, Θ
(ρ)
λ is a Schur determinant, and when ρj = j − 1, Θ

(ρ)
λ is a Schur Pfaffian.

For a triple and the corresponding geometry described above, let c(ki) = c(V − Epi − Fqi),
and for general k, take c(k) = c(ki) where i is minimal such that ki > k. Set ` = ks.
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Theorem 2. We have [Ωτ ] = Θ
(ρ(τ ))
λ(τ ) (c(1), c(2), . . . , c(`)).

The proof follows the same pattern as the one we saw in type A. As before, there are four
cases. The appearance of Pfaffians in the formulas can be traced to a basic fact about isotropic
subbundles: if D ⊂ V is isotropic, then the symplectic form identifies D⊥ with (V/D)∗. This is
used in the second case.

2.1 Basic case
Take s = 1, k1 = ` = 1, and p1 = n, so En is a line bundle and we are looking at Ωτ = {x |En ⊆
Fq1}. Equivalently, En→ V/Fq1 is zero, so identity (a) lets us write

[Ωτ ] = cλ1(V/Fq1 ⊗ E∗n) = cλ1(V − Fq1 − En),

where

λ1 = rk(V/Fq1) =

{
n+ q1 − 1 if q1 > 0,

n+ q1 if q1 < 0.

2.2 Dominant case
Now take ki = i and pi = n+ 1− i, for 1 6 i 6 s. Write Di = Epi , so this is a vector bundle of
rank i, and we have D1 ⊂ D2 ⊂ · · · ⊂ Ds ⊂ V . Letting Zj be the locus in X where Di ⊆ Fqi for
all i 6 j, we have

X ⊇ Z1 ⊇ · · · ⊇ Zs−1 ⊇ Zs = Ωτ .

On Zj−1, we have Dj−1 ⊆ Fqj−1 ⊆ Fqj ⊆ V . Since Dj is isotropic, we automatically have

Dj ⊆ D⊥j−1, so Zj is defined by the condition

Dj/Dj−1 ⊆ (Fqj ∩D⊥j−1)/Dj−1 ⊆ D⊥j−1/Dj−1,

or equivalently, Dj/Dj−1→ D⊥j−1/(Fqj ∩D⊥j−1) is zero.

When j 6 a, the bundle Fqj is isotropic, and this implies Fqj ⊆ D⊥j−1. In this case, Zj is

equivalently defined by Dj/Dj−1 ⊆ Fqj/Dj−1 ⊆ D⊥j−1/Dj−1, and the basic case says

[Zj ] = [Zj−1] · cλj (D
⊥
j−1/Dj−1 − Fqj/Dj−1 −Dj/Dj−1),

with λj = qj + pj − 1 = qj + n− j. (That is, λj = rk(D⊥j−1/Fqj ).)
When j > a (so qj < 0), we have

D⊥j−1/(Fqj ∩D⊥j−1) = (Dj−1 ∩ F⊥qj )⊥/Fqj = D⊥ρj/Fqj

by property (∗) from Remark 1. (Recall that ρj = i, where qi > −qj > qi+1.) The basic case says

[Zj ] = [Zj−1] · cλj (D
⊥
ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1),

with λj = n+ qj − i = pj + qj + j − 1− ρj . (That is, λj = rk(D⊥ρj/Fqj ).)
With ρj = j − 1 for 1 6 j 6 a, it follows that

[Ωτ ] =

( s∏

j=1

cλj (D
⊥
ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1)

)
.

Using the symplectic form to identify D⊥ρj with (V/Dρj )
∗, we have

c(D⊥ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1) = c(V −Dj − Fqj ) · c(Dj−1 −D∗ρj );
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setting tj = −c1(Dj/Dj−1) and applying identity (c), this becomes

[Ωτ ] =

s∏

j=1

[
c(V −Dj − Fqj )

∏j−1
i=1 (1− ti)∏ρj
i=1(1 + ti)

]

λj

. (7)

Setting c(j) = c(V −Dj − Fqj ) = c(V − Epj − Fqj ) and applying identity (b), this is

[Ωτ ] = R(ρ,s)c(1)λ1 · · · c(s)λs . (8)

2.3 Main case
Here we only assume ki = i, for 1 6 i 6 s. For j 6 a, we set ρj = j − 1, and for j > a, we have
ρj = i, where qi > −qj > qi+1. We have the same sequence of projective bundles as in type A,

X = X0← X1 = P(Ep1)← X2 = P(Ep2/D1)← · · ·← Xs = P(Eps/Ds−1);

again, Dj/Dj−1 ⊆ Epj/Dj−1 is the tautological subbundle on Xj . Write π(j) : Xj → Xj−1 for
the projection, and π : Xs→ X for the composition.

On Xs, we have the locus Ω̃ = {Di ⊆ Fqi | for 1 6 i 6 s}. By the previous case, as a class in
A∗Xs we have

[Ω̃] = R(ρ,s)c̃(1)
λ̃1
· · · c̃(s)

λ̃s
,

where c̃(j) = c(V −Dj − Fqj ) and

λ̃j =

{
qj + n− j if j 6 a,
n+ qj − ρj if j > a.

Furthermore, π maps Ω̃ birationally onto Ωτ .
For each i, using identity (d) we have

π
(i)
∗ c̃(i)λ̃i = c(i)λi ,

where λ = λ(τ ). (Note that λi = λ̃i − rk(Epi/Di) = λ̃i − n− 1 + pi + i.)
This case follows, since

π∗[Ω̃] = π∗R
(ρ,s)c̃(1)

λ̃1
· · · c̃(s)

λ̃s

= R(ρ,s)π∗c̃(1)
λ̃1
· · · c̃(s)

λ̃r

= R(ρ,s)c(1)λ1 · · · c(s)λs
= Θ

(ρ)
λ (c(1), . . . , c(s)).

2.4 General case
As in type A, any triple τ = (k,p,q) can be inflated to a triple τ ′ = (k′,p′,q′) having k′i = i,
for 1 6 i 6 ` = ks, so that τ and τ ′ define equivalent degeneracy loci. To do this, it suffices to
insert (k′, p′, q′) between (ki−1, pi−1, qi−1) and (ki, pi, qi) whenever ki−ki−1 > 1. If pi−1 > pi, one
can always insert (ki − 1, pi + 1, qi). If qi−1 > qi, when i 6 a, one can insert (ki − 1, pi, qi + 1).
(Condition (c2) ensures the result is still a triple.) When i > a, one can insert (ki − 1, pi, q

′),
where q′ is the smallest negative integer greater than qi which is allowed by condition (c2).

When all the additional bundles Ep′i and Fq′i are present on X, one has Ωτ ′ = Ωτ ; otherwise,
they can be found by appropriate projective bundles, producing a birational map Ωτ ′ → Ωτ .

1756

https://doi.org/10.1112/S0010437X18007224 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007224


Chern class formulas for classical-type degeneracy loci

The ‘main case’ provides a theta-polynomial formula using the triple τ ′ and classes c′(k′i) =
c′(i) = c(V − Ep′i − Fq′i). For k 6 ka and m > λk, we have relations

c(k)2m + 2
∑

j>0

(−1)j c(k)m+j c(k)m−j = 0.

Indeed, we may suppose k = ki for some i, so the left-hand side can be written

∞∑

j=−∞
(−1)jc(k)m+j c(k)m−j = (−1)mc2m(V − Epi − Fqi + V ∗ − E∗pi − F

∗
qi)

= (−1)mcm(E⊥pi/Epi + (F⊥qi /Fqi)
∗),

which vanishes because the bundle in the last line has rank 2λk − 2. These are the relations

required in the hypothesis of §A.3, Lemma A.1, which shows that Θ
(ρ)
λ (c′(1), . . . , c′(`)) =

Θ
(ρ)
λ (c(1), . . . , c(`)). 2

As mentioned above, in extreme cases the theta-polynomial is a determinant or Pfaffian.
To include the case where ` is odd, we recall that Pfaffians can be defined for odd matrices (mij)
by introducing a zeroth row, m0j (see §A.1).

Corollary. If all qi > 0, then

[Ωτ ] = Pfλ(c(1), . . . , c(`)),

where the right-hand side is defined to be the Pfaffian of the matrix (mij), with

mij = c(i)λi c(j)λj + 2
∑

a>0

(−1)ac(i)λi+a c(j)λj−a,

and when ` is odd, the matrix is augmented by m0j = c(j)λj for 0 < j 6 `.

This follows from the proposition of §A.2. Our conventions for Pfaffians, as in Appendix A,
are that one forms a skew-symmetric matrix by defining mji = −mij for i < j, and mii = 0.
(In fact, following the proof of [Kaz00, Theorem 1.1], it is equivalent to define the mij for all i, j
by the formula of the above corollary, but we do not need this.)

Remark 1. Here are geometric reasons for the conditions on a triple. Only elementary linear
algebra and basic facts about nondegenerate bilinear forms are needed: an isotropic subspace
has dimension at most half that of the ambient space; (E ∩F )⊥ = E⊥+F⊥; and (V/E)∗ ∼= E⊥.

Condition (c1) has a simple explanation:

(Epi ∩ Fqi)/(Epi−1 ∩ Fqi−1) ⊆ Epi/Epi−1 ⊕ Fqi/Fqi−1 .

Condition (c3) arises from asking that the coisotropic condition imposed by Fqi be
independent of any isotropic conditions, in the following sense. With i and j as in the definition
of ρ, so i > a and ρki = kj , we have Fqj ⊆ F⊥qi (and this is the largest among the Fq which is

contained in F⊥qi ). For generic Ep ⊇ Epj , we require

dim(Ep ∩ F⊥qi ) = dim(Epj ∩ F⊥qi ) = dim(Epj ∩ Fqj ) = kj ,
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and in particular this holds for p = pi and p = pi−1. Thus

ρki = dim(Epi ∩ F⊥qi ) = dim(Epi−1 ∩ F⊥qi ) (∗)

for generic spaces, a formulation which is used in proving the main theorem of this section.
Now Condition (c3) is a consequence of (∗) and the fact that

(Epi ∩ Fqi)/(Epi ∩ F⊥qi ) = ((Epi ∩ Fqi) + F⊥qi )/F⊥qi ⊆ Fqi/F
⊥
qi .

(Since dim(Fqi/F
⊥
qi ) = −2qi, an isotropic subspace has dimension at most −qi.)

Condition (c4) is similar to (c1): one has

(Epi ∩ Fqi)/(Epi−1 ∩ Fqi−1) ↪→ Epi/Epi−1 ⊕ Fqi/Fqi−1 � (Epi + Fqi)/(Epi−1 + Fqi−1),

and one sees dim((Epi + Fqi)/(Epi−1 + Fqi−1)) > ρki−1
− ρki from the following diagram.

(V/(Epi + Fqi))
∗ ⊂- (V/(Epi−1 + Fqi−1))∗ -- ((Epi + Fqi)/(Epi + Fqi))

∗

Epi ∩ F⊥qi
∪

6

⊂ - Epi−1 ∩ F⊥qi−1

∪

6

-- (Epi−1 ∩ F⊥qi−1
)/(Epi ∩ F⊥qi )

α

∪

6

The map α is injective because (E⊥pi ∩ F
⊥
qi ) ∩ (Epi ∩ F⊥qi ) = Epi ∩ F⊥qi .

Condition (c5) comes from writing Epi ∩ Fqi as the kernel of

Epi → (E⊥pi + Fqi)/Fqi .

Finally, for (c2), consider the case of a single qi = q; if Ep and Fq are isotropic subspaces
such that dim(Ep ∩ Fq) = k, then for generic subspaces Fq ⊃ Fq+1 ⊃ · · · ⊃ Fq+k, one has

E⊥p ∩ F⊥q = E⊥p ∩ F⊥q+1 = · · · = E⊥p ∩ F⊥q+k.

For any isotropic Ep′ ⊇ Ep, it follows that

Ep′ ∩ F⊥q = Ep′ ∩ F⊥q+1 = · · · = Ep′ ∩ F⊥q+k,

so we should only impose rank conditions on the first of these. Writing F⊥q = F−q+1, F
⊥
q+1 = F−q,

etc., this means the values −q,−q − 1, . . . ,−q − k + 1 should be prohibited. Accounting for
intersections previously imposed leads to the above condition (c2).

Remark 2. A type C triple determines a signed permutation w(τ ), as follows. Starting in position
p1, first place k1 consecutive integers in increasing order, ending with q1. Then starting in position
p2 (or the next available position to the right of p2), place k2 − k1 integers, consecutive among
those whose absolute values have not been used, ending in at most q2. Continue until ks numbers
have been placed, and finish by filling in the gaps with the smallest available positive integers.

The conditions on τ can be understood combinatorially: they guarantee that the length of
the signed permutation w(τ ) is equal to the size of the partition λ(τ ); this can be checked
directly from the construction, using the combinatorial characterization of length from [BB05,
§ 8.1]. They also ensure that ρki is the number of entries of w which are less than −|qi|; that
the ka entries of w placed in the first a steps of the above recipe are all negative; and that the
entries placed after the first a steps are all positive.
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For example, consider τ = ( 1 3 5 6 7 9 , 9 7 6 5 2 2 , 6 3 2 5 7 9 ). The corresponding signed
permutation is built in seven steps:

· · · · · · · · 6 · ,
· · · · · · 4 3 6 · ,
· · · · · 1 4 3 6 2 ,

· · · · 5 1 4 3 6 2 ,

· 7 · · 5 1 4 3 6 2 ,

· 7 8 9 5 1 4 3 6 2 ,

w(τ ) = 10 7 8 9 5 1 4 3 6 2 .

Since a = 2, the ka = 3 negative entries all appear in the first and second steps. The partition
λ(τ ) is the one displayed in Figure 1, and a computation shows that `(w(τ )) = |λ(τ )| = 50.

It would be interesting to know more about the combinatorial properties of signed
permutations arising this way. For example, are they characterized by pattern avoidance?3

Remark 3. When all pi = p, then a ρ-strict partition λ(τ ) is one so that all parts of size greater
than p−1 are distinct; that is, it is a (p−1)-strict partition as defined in [BKT17]. Geometrically,
all Epi have rank n + 1 − p, so the locus comes from an isotropic Grassmannian. Conversely,
given a (p− 1)-strict partition λ, following [BKT17] define

Pj(λ) = n+ p− 1 + j − λj −#
{
i < j

∣∣λi + λj > 2p− 2 + j − i
}
.

If we define a type C triple by setting kj = j, pj = p, and

qj =

{
n− Pj when Pj > n,

n+ 1− Pj when Pj 6 n,

one recovers λ = λ(τ ). Indeed, one can check that ρ(τ ) is given by

ρj = #
{
i < j

∣∣ qi + qj > 0
}

= #
{
i < j

∣∣λi + λj > 2p− 2 + j − i
}

in this situation.
Similarly, for a triple τ with all pi = p and ki = i, the characteristic index χ used in [IM15]

is given by χi = qi − 1 for i 6 a, and χi = qi for i > a.

3. Type B: odd orthogonal bundles

A triple of type B is the same as in type C, as are the definitions of the sequence ρ(τ ), the
partition λ(τ ), the raising operator R(ρ,`), and the theta-polynomial.

The geometry starts with a vector bundle V of rank 2n+ 1, equipped with a nondegenerate
quadratic form. We have two flags of subbundles,

Ep1 ⊂ Ep2 ⊂ · · · ⊂ Eps ⊂ V,
Fq1 ⊂ Fq2 ⊂ · · · ⊂ Fqs ⊂ V ;

the isotropicity and ranks of these are exactly as in type C. The degeneracy locus is

Ωτ = {x ∈ X | dim(Epi ∩ Fqi) > ki for 1 6 i 6 s}.
3 Silva has recently found a pattern-avoidance criterion for these signed permutations [Sil17].
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Let M be the line bundle detV , and note that

M ∼= F⊥/F,

for any maximal isotropic F ⊂ V . In fact, we have M ∼= det(D⊥/D) for any isotropic D ⊂ V .
Given a triple, let ` = ks and r = ka, recalling that a is the index such that qa > 0 > qa+1.

For i 6 a let c(ki) = c(V −Epi −Fqi −M), and for i > a, let c(ki) = c(V −Epi −Fqi). As before,
when ki−1 < k 6 ki, we set c(k) = c(ki).

Theorem 3. We have 2r [Ωτ ] = Θ
(ρ(τ ))
λ(τ ) (c(1), c(2), . . . , c(`)).

The four steps of the proof are almost the same as in type C. We will indicate the differences.

3.1 Basic case
Take s = 1, k1 = ` = 1, and p1 = n, so En is a line bundle and Ωτ is the locus where En ⊆ Fq1 .
When q1 > 0, so Fq1 is isotropic, the proposition of Appendix B gives

2 [Ωτ ] = cn+q1−1(V − Fq1 − En −M).

On the other hand, when q1 < 0, so Fq1 is coisotropic, the locus is defined (scheme-theoretically)
by the vanishing of En→ V/Fq1 , and

[Ωτ ] = cn+q1(V/Fq1 ⊗ E∗n) = cn+q1(V − Fq1 − En)

in this case.

3.2 Dominant case
Now take ki = i and pi = n + 1 − i, for 1 6 i 6 s, and write Di = Epi . As in type C, we have
a filtration by Zj , the locus where Di ⊆ Fqi for all i 6 j, so that Z0 = X and Zs = Ωτ . When
j 6 a (so qj > 0), the basic case says that

2 [Zj ] = [Zj−1] · cλj (D
⊥
j−1/Dj−1 − Fqj/Dj−1 −Dj/Dj−1 −M);

and when j > a (so qj < 0),

[Zj ] = [Zj−1] · cλj (D
⊥
ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1);

where in each case ρj and λj is defined as in type C. We therefore have

2a [Ωτ ] =

( a∏

j=1

cλj (D
⊥
ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1 −M)

)

×
( s∏

j=a+1

cλj (D
⊥
ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1)

)
,

as before.
The rest of the proof proceeds exactly as in type C. 2

As in type C, we recover a Pfaffian formula for vexillary signed permutations.

Corollary. If all qi > 0, then

2` [Ωτ ] = Pfλ(c(1), . . . , c(`)).
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4. Type D: even orthogonal bundles

A triple of type D is τ = (k,p,q), with

0 < k1 < k2 < · · · < ks,

p1 > p2 > · · · > ps > 0,

q1 > q2 > · · · > qs.

The value q = −1 is prohibited, and if ps = 0, then all qi > 0. Set a = a(τ ) to be the integer
such that qa > −1 > qa+1.

A quick way to characterize the further requirements on a type D triple is as follows.
Form τ+ by replacing each pi in τ with pi + 1, and replacing each qi > 0 in τ with qi + 1;
then a type D triple is one such that τ+ is a type C triple.

To be completely clear, we will spell out the conditions. Their geometric explanations are
analogous to those for type C. For i 6 a,

ki − ki−1 6 (pi−1 − pi) + (qi−1 − qi), (d1)

and, as before, this is the only condition when all qi are nonnegative.
For each i 6 a, let m(i) = min{m | qi + (ki − ki−1) > qm}. The negative values

−qi − 1, −qi − 2, . . . , −qi − (ki − km(i)−1) (d2)

are prohibited as values of qj for j > a.
The sequence ρ(τ ) is defined similarly as in type C. Set ρk = k − 1 for k 6 ka. For i > a,

set ρki = kj , where j is the index such that qj > −qi > qj+1 + 1. Then fill in the other parts
minimally subject to ρka+1 > · · · > ρks > 0. We require

ki − ρki 6 −qi (d3)

for all i > a.
Finally, for i > a+ 1,

(ki − ki−1) + (ρki−1
− ρki) 6 (pi−1 − pi) + (qi−1 − qi), (d4)

and
ks > −ps − qs + ρks . (d5)

The associated partition λ(τ ) is defined by

λki =

{
pi + qi if i 6 a,
pi + qi + ki − ρki if i > a,

filling in the other parts minimally subject to

λ1 > · · · > λka > λka+1 > · · · > λ` > 0,

where ` = ks. That is, λ(τ ) is a ρ(τ )-strict partition.4 (In contrast to type C, we allow λka =
λka+1.)

4 In the case where ki = i and pi = p for all i, the ρ-strict partition λ(τ ) constructed from a type D triple is p-strict
in the sense of [BKT15]. The ‘type’ defined in [BKT15] arises from geometry. Fix a maximal isotropic bundle E
containing the bundle Ep. When no part of λ is equal to p, the type is 0. If some part of λ is equal to p, then some
qi = 0, and in this case, the type is defined to be 1 or 2 depending on whether n + dim(E ∩ F0) is odd or even.
See the remark at the end of this section.
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A key difference in type D is that λ(τ ) may have a part equal to 0, and this is included in

the data. (For example, this happens when ps = qs = 0; in this case, the total number of parts

determines the dimension of the intersection of two maximal isotropic subspaces.)

The raising operators and polynomials require some setup; details are explained in

Appendix A. We will have elements c(i) = d(i) + e(i), so that c(i)k = d(i)k + e(i)k. We will

also have operators δi, which acts on a monomial c(1)α1 · · · c(`)α`
by replacing c(i)αi with d(i)αi ;

that is, δi sends e(i) to zero and leaves everything else unchanged.

Given integers 0 6 r 6 `, and a sequence of nonnegative integers ρ = (ρ1, . . . , ρ`) with ρj < j

and ρj = j − 1 for 1 6 j 6 k, we define the raising operator

R̃(ρ,r,`) =
∏̀

j=r+1

∏r−1
i=1 (1−Rij)∏ρj
i=1(1 +Rij)

∏

r6i<j6`

(1−Rij)
∏

16i<j6r

(
1− δiδjRij
1 + δiδjRij

)
,

and using these, the eta-polynomial for a ρ-strict partition is defined as

H
(ρ)
λ (c(1), . . . , c(`)) = R̃(ρ,r,`) · (c(1)λ1 · · · c(`)λ`).

Here is the geometry. We have a vector bundle V of rank 2n, equipped with a nondegenerate
quadratic form taking values in the trivial bundle. There are flags of subbundles,

Ep1 ⊂ Ep2 ⊂ · · · ⊂ Eps ⊂ V,
Fq1 ⊂ Fq2 ⊂ · · · ⊂ Fqs ⊂ V ;

each Ep has rank n− p and is isotropic; and each Fq has rank n− q, and is isotropic when q > 0

and coisotropic when q < 0. Note that F⊥q = F−q.

The degeneracy locus is defined as before, by

Ωτ = {x ∈ X | dim(Epi ∩ Fqi) > ki for 1 6 i 6 s}.

The usual type D caveat applies: this acquires its scheme structure via pullback from a Schubert

bundle in a flag bundle, and even there it must be taken to mean the closure of the locus where

equality holds (see, for example, [FP98, § 6] or [Tam16a, § 6.3.2]).

Now given a type D triple, set ` = ks and r = ka. Let d(ki) = c(V −Epi −Fqi), and for i 6 a
(so qi > 0), set e(ki) = e(Epi , Fqi), where the latter is defined as

e(Epi , Fqi) := (−1)dim(E∩F ) c(E/Epi + F/Fqi),

for some maximal isotropic bundles E ⊇ Epi and F ⊇ Fqi . (Only the Euler class epi+qi(Epi , Fqi)

appears in our formulas, and this is independent of the choice of such maximal E and F .) When

i > a, we set e(ki) = 0; and as usual, when ki−1 < k 6 ki, we set d(k) = d(ki) and e(k) = e(ki).

Finally, let

c(k) = d(k) + (−1)ke(k).

Theorem 4. We have 2r [Ωτ ] = H
(ρ(τ ))
λ(τ ) (c(1), c(2), . . . , c(`)).
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Most of the proof proceeds exactly as in type B. We will go through the outline briefly, to

point out the differences.

4.1 Basic case
Here s = 1, k1 = ` = 1, and p1 = n − 1, so En−1 is a line bundle and Ωτ is the locus where
En−1 ⊆ Fq1 . Just as before, we have

2 [Ωτ ] = cn+q1−1(V − Fq1 − En−1)− en+q1−1(En−1, Fq1) when q1 > 0,

[Ωτ ] = cn+q1(V − Fq1 − En−1) when q1 < −1.

The proof is the same as in type B.

4.2 Dominant case
Now ki = i for 1 6 i 6 s, and pi = n − i, so Di = En−i has rank i. Let Zj be the locus where
Dj ⊆ Fqj , so Z0 = X and Zs = Ωτ . When j 6 a, applying the basic case with V replaced by
D⊥j−1/Dj−1, we obtain

2 [Zj ] = [Zj−1] · (cλj (D
⊥
j−1/Dj−1 − Fqj/Dj−1 −Dj/Dj−1)

−eλj (Dj/Dj−1, Fqj/Dj−1))

= [Zj−1] · (cλj (D
⊥
j−1/Dj−1 − Fqj/Dj−1 −Dj/Dj−1)

+ (−1)jeλj (Dj , Fqj )),

where λj = n− j + qj .

When j > a, using D⊥j−1/(Fqj ∩D⊥j−1) = D⊥ρj/Fqj (by (∗) as in type C), the locus is given by

the vanishing of Dj/Dj−1→ D⊥ρj/Fqj , so the basic case says

[Zj ] = [Zj−1] · cλj (D
⊥
ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1),

where ρj and λj are defined as above.
It follows that

2a [Ωτ ] =

( a∏

j=1

(cλj (D
⊥
ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1) + (−1)jeλj (Dj , Fqj ))

)

×
( s∏

j=a+1

cλj (D
⊥
ρj/Dj−1 − Fqj/Dj−1 −Dj/Dj−1)

)
.

This leads to

2a [Ωτ ] = R̃(ρ,a,s)c(1)λ1 · · · c(s)λs , (9)

with c(j) = d(j)+(−1)je(j) for j 6 a and c(j) = d(j) for j > a, as defined above. The deduction
of (9) differs slightly from the previous cases (e.g., deducing (8) from (7)): one must verify

tbi · (cλi(D
⊥
i−1/Di−1 − Fqi/Di−1 −Di/Di−1) + (−1)ieλi(Di, Fqi))

= cλi+b(D
⊥
i−1/Di−1 − Fqi/Di−1 −Di/Di−1)

for i 6 a, where ti = −c1(Di/Di−1), since this shows that ti acts as δiTi on the factor c(i)λi .
To do this, by replacing D⊥i−1/Di−1 with V one may reduce to the case i = 1; one also reduces

1763

https://doi.org/10.1112/S0010437X18007224 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007224


D. Anderson and W. Fulton

to the case b = 1 by applying identity (b). In this case, we compute

t1 · (cn−1+q1(V − Fq1 −D1)− en−1+q1(D1, Fq1))

=

n+q1∑

k=1

tk1 cn+q1−k(V/Fq1) + (−1)dim(E∩F )cn+q1(E + F/Fq1)

= cn+q1(V −D1 − Fq1)− cn+q1(V/Fq1) + (−1)dim(E∩F )cn(E) cq1(F/Fq1)

= cn+q1(V −D1 − Fq1) + cq1(F/Fq1)
(
(−1)dim(E∩F )cn(E)− cn(F ∗)

)
,

and apply the relation (−1)dim(E∩F )cn(E) = cn(F ∗), due to Edidin and Graham [EG95].
The remainder of the proof proceeds as in the other types. To deduce the general case, one

needs to apply §A.3, Lemma A.2. The relations in the hypothesis of that lemma require that

(d(k)m − (−1)`e(k)m)(d(k)m + (−1)`e(k)m) + 2
∑

j>0

(−1)jd(k)m+j d(k)m−j

vanish for all m > λk. This expression may be re-written as

∞∑

j=−∞
(−1)jd(k)m+jd(k)m−j − (e(k)m)2

= (−1)m c2m(E⊥pi/Epi + (F⊥qi /Fqi)
∗)− cm(E/Epi + F/Fqi)

2,

which vanishes if m > λk = pi + qi, since this is the rank of E/Epi + F/Fqi . When m = λk, we
have (−1)λk c2λk(E⊥pi/Epi + (F⊥qi /Fqi)

∗) = cλk(E/Epi +F/Fqi)
2, so the relation holds in this case

as well. 2

To extract a Pfaffian from the case where a = s, so all qi > 0, one needs a little algebra,
given by the theorem of §A.2. Applying this proves the following.

Corollary. If all qi > 0, then

2` [Ωτ ] = Pfλ(c(1), . . . , c(`)). (10)

Unpacking the definition of the c(i), the right-hand side is the Pfaffian of the matrix (mij),
with

mij = (d(i)λi − (−1)`e(i)λi)(d(j)λj + (−1)`e(j)λj ) + 2
∑

t>0

(−1)td(i)λi+t d(j)λj−t,

for 1 6 i < j 6 `, and m0j = d(j)λj + e(j)λj for 0 < j 6 ` if ` is odd.

Remark. A Schubert variety in an orthogonal Grassmannian OG(n−p, 2n) is defined by a triple
τ with all pi = p. To obtain all of these as degeneracy loci according to our setup, one should use
two different maximal isotropic spaces in the reference flag F•. In fact, given a complete isotropic
flag, there is a unique maximal isotropic subspace F1 ⊂ F ′0 ⊂ F1 which is distinct from F0; both
F0 and F ′0 must be used to define Schubert varieties.

For example, consider τ = (1, p, 0), so λ = (p). In the setup of [BKT15], there are two
Schubert varieties whose p-strict partition is λ, given by dim(Ep∩F0) > 1 and dim(Ep∩F ′0) > 1,
respectively. (When p = n − 1, these are the two maximal linear spaces in the quadric.) The
respective formulas are cp(V −Ep−F0)− ep(Ep, F0) and cp(V −Ep−F ′0)− ep(Ep, F ′0). Note that
ep(Ep, F

′
0) = −ep(Ep, F0). (Compare [BKT15, Example A.3].)
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Appendix A. Algebra of Pfaffians and raising operators

A.1 A Pfaffian identity
Given aij in a commutative ring A, for 1 6 i < j 6 n, and n even, we denote by Pf(aij) the
Pfaffian of the skew-symmetric matrix (aij) with entries aij for i < j, and aii = 0 and aij = −aji
for i > j. That is, for n = 2m,

Pf(aij) =
∑
±ai1j1ai2j2 . . . aimjm , (A.1)

the sum over all permutations i1j1i2j2 . . . imjm of 12 . . . n, with i1 < i2 < · · · < im and ir < jr for
all r, the sign being the sign of the permutation. The same notation is used whenever 12 . . . n is
replaced by any set consisting of an even number of integers in increasing order. For example,
the expansion along the first row can be written

Pf(aij) =

n∑

k=2

(−1)k−1a1k Pf(aij)1̂,k̂,

where the hats denote that the integers are taken from the first n− 2 positive integers, omitting
1 and k.

We will often want formulas for odd as well as even n. For this, when n is odd, we will use
the integers from 0 to n. In addition to the aij for 1 6 i < j 6 n we also need to specify a0j for
1 6 j 6 n. Then the Pfaffian is given by the identity

Pf(aij) =
n∑

k=1

(−1)k−1a0k Pf(aij)k̂,

with i < j taken from positive integers not equal to k.
Assume now that the ring A contains elements δ1, . . . , δn satisfying δ2i = δi for all i. Set

εi = 2δi − 1, so ε2i = 1 and εiδi = δi for all i. (The classical case is when δi = 1, so εi = 1, for
all i.) Set δ0 = 1.

Let T1, . . . , Tn be indeterminates, and let B be the localization of A[T1, . . . , Tn] at the
multiplicative set of non-zero-divisors (which includes all Tj , and all Tj − δiδjTi for all i < j).
Set, for 1 6 i < j 6 n,

Hij =
Tj − δiδjTi
Tj + δiδjTi

.

Also set T0 = 0, and H0j = 1 for 1 6 j 6 n.
Our goal is to write the product

∏
16i<j6nHij as a Pfaffian. The classical case is due to

Schur: ∏

16i<j6n

Tj − Ti
Tj + Ti

= Pf

(
Tj − Ti
Tj + Ti

)
, (A.2)

where, if n is odd, the (0, j) entry of the matrix is 1, for 1 6 j 6 n. Our generalization is as
follows.
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Theorem. Set aij = εn−i+1
i εn−jj Hij , for 1 6 i < j 6 n, and set a0j = εn−jj for 1 6 j 6 n. Then

∏

16i<j6n

Hij = Pf(aij).

We will deduce this from a result of Knuth [Knu96], as simplified by Kazarian [Kaz00].
Following their notation, define, for x < y nonnegative integers,

f [xy] = εxHxy = εx
Ty − δxδyTx
Ty + δxδyTx

.

Note that f [0y] = ε0H0y = 1. Set f [xx] = 0 and f [xy] = −f [yx] for x > y > 0. For a word
α = x1 · · ·xn, with each xi a nonnegative integer, define f [α] to be the Pfaffian of the matrix
whose (i, j) entry is f [xixj ], for n even; for n odd, define f [α] to be f [0α]. Note that f [α] vanishes
if two letters in α coincide, and it changes sign if the positions of two letters are interchanged.

Proposition. For all n > 2, and nonnegative integers x1, . . . , xn,
∏

16i<j6n

f [xixj ] = Pf(f [xixj ]).

Proof. By [Knu96] and [Kaz00], this identity holds for all n if it holds for n = 3.5 For n = 3, it
asserts that, for x < y < z positive integers,

ε2xεyHxyHxzHyz = εyHyz − εxHxz + εxHxy,

or, HxyHxzHyz = Hyz − εxεyHxz + εxεyHxy. Clearing denominators, this amounts to a simple
identity among cubic polynomials in the three variables Tx, Ty, and Tz, which is an easy exercise.

2

Corollary. Let 1 6 x1 < x2 < · · · < xn. Set aij = εxiHxixj for 1 6 i < j 6 n and a0j = 1 for
1 6 j 6 n. Then

∏

16i<j6n

Hxixj =
n∏

i=1

εn−ixi · Pf(aij).

Equivalently, setting bij = εn−i+1
xi εn−jxj Hxixj for 1 6 i < j 6 n and b0j = εn−jxj for 1 6 j 6 n,

∏

16i<j6n

Hxixj = Pf(bij).

Proof. The proposition says that
∏
i<j εxiHxixj = Pf(εxiHxixj ), which yields the first statement.

The second follows from the first, using the basic identity

Pf(εmi
i ε

mj

j aij) =

n∏

i=1

εmi
i Pf(aij)

for any aij , i < j and εi in the given ring, and nonnegative integers mi. (This identity follows
immediately from the definition (A.1) of the Pfaffian.) 2

The theorem of this section is the special case of the corollary when xi = i for 1 6 i 6 n.

5 This follows by an induction on n from the Tanner identity

f [α]f [αwxyz] = f [αwx]f [αyz]− f [αwy]f [αxz] + f [αwz]f [αxy]

for any word α and letters w, x, y and z (see [Knu96, (1.1) and (4.2)]).
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A.2 Raising operators
Formula (A.2) can be rewritten

∏

16i<j6n

1− Ti/Tj
1 + Ti/Tj

= Pf

(
1− Ti/Tj
1 + Ti/Tj

)
. (A.3)

With Ti/Tj interpreted as a raising operator Rij , this formula leads to a classical Pfaffian formula
for Schur Q-functions (see [Mac95, § III.8]). Our goal here is a small generalization, to be applied
to types C and B, and a larger one, using the theorem from §A.1, to be applied to type D.

We will take raising operators Rij , for 1 6 i < j 6 n, to operate on sequences s = (s1, . . . , sn)
in Zn, by raising the ith index by 1, and lowering the jth index by 1, keeping the others the
same:

Rij(s1, . . . , sn) = (s1, . . . , si + 1, . . . , sj − 1, . . . , sn).

These operators commute with each other, and satisfy the identities RijRjk = Rik for i < j < k.
By a raising operator we mean any monomial R =

∏
i<j R

mij

ij in these Rij . Any raising operator
acts bijectively on the set Zn of s values.

We will follow the tradition of using raising operators to act on expressions
∑
ascs, for cs

certain fixed elements of a ring A, and the as varying elements of A, with R taking
∑
ascs

to
∑
ascR(s). Some care needs to be taken here, as the cs will evaluate to 0 when any entry

si of s is negative, but such s need to appear in the expressions in order for the action of
the raising operators to be associative and commutative. (For example, R23(R12(c(1,0,1))) =
R23(c(2,−1,1)) = c(2,0,0), which is R12(R23(c(1,0,1))) = R12(c(1,1,0)).) In addition, one wants only
finite expressions

∑
ascs, but one wants to apply infinitely many raising operators, in expressions

like (1−Rij)/(1 +Rij) = 1 + 2
∑

k>0(−1)k(Rij)
k. Garsia [Gar92] described one way to deal with

these problems in another setting. We offer here a simple alternative, well suited to our situation.
Let P ⊂ Zn be the set of s = (s1, . . . , sn) satisfying the inequalities

sk + sk+1 + · · ·+ sn > 0 for 1 6 k 6 n.

The idea is that any cs can be set equal to 0 if s is not in P , because any raising operator R
takes such a s to an R(s) that is also not in P . We will use the following fact, which is easily
proved by induction on n.

Lemma. For any s ∈ Zn, there are only finitely many raising operators R such that R(s) is in P .

Now let A be any commutative ring. Assume we are given elements c(i)r in A, for 1 6 i 6 n
and r ∈ Z, with c(i)r = 0 if r < 0. For s ∈ Zn, we write cs for c(1)s1c(2)s2 · · · c(n)sn . By an
expression we mean a finite formal sum

∑
s∈P ascs, with as in A. For any raising operator R,

we define R(
∑
ascs) to be the sum

∑
R(s)∈P ascR(s); that is, one applies R to the index s of

each cs, but discards the term if R(s) is not in P .6 This gives an action of the polynomial ring
A[Rij ]16i<j6n on expressions:

(∑
bRR

)(∑
ascs

)
=
∑

t∈P

( ∑

R(s)=t

bRas

)
ct.

6 Logically, an expression is a function a : P → A, taking s to as, which vanishes for all but a finite number of s;
R(a) is the function that takes s to aR−1(s).
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By the lemma, this extends to an action of the power series ring A[[Rij ]]16i<j6n on the set of
all expressions.7 By the evaluation of an expression

∑
ascs we mean the corresponding element∑

asc(1)s1 · · · c(n)sn in A.
The following is a version of the classical result that suffices for our application to types C

and B. It follows from the identity (A.3).

Proposition. Fix s = (s1, . . . , sn) in P . The evaluation of
( ∏

16i<j6n

1−Rij
1 +Rij

)
· cs

is the Pfaffian of the matrix whose entries are

mij = c(i)sic(j)sj + 2
∑

k>0

(−1)kc(i)si+kc(j)sj−k

for 1 6 i < j 6 n, with m0j = c(j)sj for 1 6 j 6 n when n is odd.

For type D we need a strengthening of this proposition, in which each c(i)r is written as a
sum:

c(i)r = d(i)r + e(i)r,

for elements d(i)r and e(i)r in A, with d(i)r = e(i)r = 0 for r < 0.
New operators δi, for 1 6 i 6 n act on these expressions, with δi sending d(i)si + e(i)si to

d(i)pi , leaving the other factors alone. That is, δi changes e(i) to 0. Note that the operators δi
commute with each other and with the raising operators, and δ2i = δi for all i. Set εi = 2δi − 1;
this has the effect of changing d(i)si + e(i)si to d(i)si − e(i)si .

Theorem. Fix s in P . The evaluation of( ∏

16i<j6n

1− δiδjRij
1 + δiδjRij

)
· cs

is equal to the Pfaffian of the matrix whose entries are

mij = (d(i)si + (−1)n−i+1e(i)si) · (d(j)sj + (−1)n−je(j)sj ) + 2
∑

k>0

(−1)kd(i)si+kd(j)sj−k,

for 1 6 i < j 6 n, with m0j = d(j)sj + (−1)n−je(j)sj for 1 6 j 6 n when n is odd.

Proof. By the theorem of §A.1,
∏

16i<j6n

1− δiδjRij
1 + δiδjRij

= Pf

(
εn−i+1
i εn−jj

1− δiδjRij
1 + δiδjRij

)
.

The conclusion follows, since the evaluation of εn−i+1
i εn−jj ((1− δiδjRij)/(1 + δiδjRij)) on cs is

mij ·
∏
k 6=i,j c(k)sk . 2

Example. The case needed for the type D application is when e(i) = (−1)iẽ(i) for 1 6 i 6 n.
In this case

mij = (d(i)si − (−1)nẽ(i)si) · (d(j)sj + (−1)nẽ(j)sj ) + 2
∑

k>0

(−1)kd(i)si+kd(j)sj−k,

with m0j = d(j)sj + ẽ(j)sj .

7 Traditionally, one allows arbitrarily long sequences (s1, . . . , sn), but also requires that c(i)0 = 1 for all i. Our
conventions apply for such sequences, provided that there is an N such that c(i)0 = 1 for i > N .

1768

https://doi.org/10.1112/S0010437X18007224 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007224


Chern class formulas for classical-type degeneracy loci

A.3 A theta-polynomial identity
We need a preliminary identity, which holds in any commutative ring A. For any Laurent series
B = B(t) =

∑
r br t

r, with coefficients bi in A, we define FB = FB(t) =
∑
FBp tp by

FB(u) = B(−t) ·B(t),

with u = −t2. For any C =
∑

r cr t
r, with (BC)(t) = B(t) · C(t), it follows that FBC(u) =

FB(u) · FC(u), and hence

FBCr =
∑

p+q=r

FBp · FCq . (A.4)

In particular, if for some λ′ > λ, the relations FBp = 0 and FCq = 0 hold in A for all p > λ′ − λ
and q > λ, then FBCr = 0 for all r > λ′.

We will write c(i) for a collection of elements c(i)r, for 1 6 i 6 ` and r ∈ Z, and write c for
(c(1), . . . , c(`)). If c(i) = c(j), then writing C(t) =

∑
r c(i)r t

r =
∑

r c(j)r t
r, we have

FCp =

(
1−Rij
1 +Rij

)
· (c(i)p c(j)p). (A.5)

Fix an integer k, 0 6 k 6 `, and a unimodal sequence ρ = (ρ1, . . . , ρ`) such that ρj = j − 1
when j 6 k, and k > ρk+1 > · · · > ρ` > 0. A partition λ = (λ1 > · · · > λ` > 0) is called ρ-strict
if the sequence λ1 + ρ1, . . . , λ` + ρ` is nonincreasing. (As with any partition, such a λ belongs to
the set P .) Given a ρ-strict partition λ, the theta-polynomial is

Θ
(ρ)
λ (c) = R(ρ,`) · cλ,

where R(ρ,`) is the raising operator

R(ρ,`) =
∏

16i6ρj<j6`

(1 +Rij)
−1 ·

∏

16i<j6`

(1−Rij)

=
∏̀

j=k+1

∏k−1
i=1 (1−Rij)∏ρj
i=1(1 +Rij)

·
∏

k6i<j6`

(1−Rij) ·
∏

16i<j6k

(
1−Rij
1 +Rij

)
.

Let Rα, Rβ, and Rγ be the three indexed products in the second line, so R(ρ,`) = Rα · Rβ · Rγ .
Note that Rβ is a determinant and Rγ is a Pfaffian.

Lemma A.1. Fix a ρ-strict partition λ, integers 1 6 m < n 6 `, and elements b1, . . . , bn−m in
the ring A. Assume c(m) = c(m+ 1) = · · · = c(n). Let c′(m) = c(m) · (1 + b1 + · · ·+ bn−m), and
c′(i) = c(i) for i 6= m.

(i) Suppose k 6 m < n 6 `, and λm = λm+1 = · · · = λn. Then

Θ
(ρ)
λ (c′) = Θ

(ρ)
λ (c).

(ii) Suppose 1 6 m < n 6 k, and λm = λm+1 + 1 = · · · = λn + n −m. Assume that for each
1 6 i 6 k, with C =

∑
c(i)r t

r, the relations FCp = 0 hold for all p > λi. Then

Θ
(ρ)
λ (c′) = Θ

(ρ)
λ (c),

and the relations FC
′

p = 0 hold for all p > λi, where C ′ =
∑
c′(i)r t

r.
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Proof. When k 6 m < n 6 `, we claim Rβ · c′λ = Rβ · cλ. Indeed, when one expands the left-
hand side using multi-linearity of the determinant, one finds the right-hand side, plus a linear
combination of determinants which have repeated rows, and therefore vanish.

When 1 6 m < n 6 k, we claim that Rγ · c′λ = Rγ · cλ in the ring A. Indeed,

cλ′ = cλ +

n−m∑

i=1

bi c(1)λ1 · · · c(m)λm−i · · · c(`)λ` ,

and by assumption c(m)λm−i = c(m + i)λm+i
. We also assumed these satisfy FCλm+i

= 0, so

applying Rγ kills all terms except cλ on the right-hand side. (Cf. [Kaz00], proof of Theorem 1.1.)
The final statement is a consequence of (A.4). 2

A similar statement holds for eta-polynomials. These are defined using raising operators
R̃(ρ,k,`) = Rα ·Rβ · R̃γ , with Rα and Rβ as above, and

R̃γ =
∏

16i<j6k

(
1− δiδjRij
1 + δiδjRij

)
,

which, like Rγ , is a Pfaffian by the theorem of §A.2. For 1 6 i 6 `, given elements c(i)r =
d(i)r + e(i)r, with e(i) = 0 for i > k, the eta-polynomial is defined as

H
(ρ)
λ (c) = R̃(ρ,k,`) · cλ.

Given such c(i), with C(t) =
∑
c(i)r t

r and D(t) =
∑
d(i)r t

r, let F̃Cp = FDp − e(i)2p; if
d(i) = d(j) and e(i) = e(j), this is

F̃Cp =

(
1− δiδjRij
1 + δiδjRij

)
· (c(i)p c(j)p).

Lemma A.2. Assume the hypotheses and notation of Lemma A.1.

(i) With the same hypotheses as in Lemma A.1(i), we have

H
(ρ)
λ (c′) = H

(ρ)
λ (c).

(ii) With the hypotheses of Lemma A.1(i), assume additionally that d(m) = d(m+ 1) = · · · =
d(n), so also e(m) = · · · = e(n). Assume that for each 1 6 i 6 k, the relations F̃Cp = 0 and
e(i)q = 0 hold for all p > λi and q > λi. Then

H
(ρ)
λ (c′) = H

(ρ)
λ (c),

and the relations F̃C
′

p = 0 and e′(i)q = 0 hold for all p > λi and q > λi, where C ′ =
∑
c′(i)r t

r

and e′(i) = e(i) · b.

The proof is similar to that of Lemma A.1. For the last statement, concerning the relations,
when i 6= m there is nothing to check, since F̃C

′
= F̃C by definition. For i = m, observe that

F̃C
′

p = FBDp − e′(m)2p,

where e′(m)p = e(m)p + b1e(m)p−1 + · · · . Since e(m)q = e(n)q = 0 for q > λn, and bq = 0 for
q > n −m, we have e′(m)p = 0 for p > λn + n −m = λm, and e′(m)λm = bn−me(m)λm−n+m.

Similarly, the relations F̃Cp imply FDp = 0 for p > λn, so using (A.4) we have FBDp = 0 for p > λm

and FBDλm = b2n−mF
D
λm−n+m. It follows that F̃C

′
p = 0 for p > λm, and F̃C

′
λm

= b2n−mF̃
C
λm−n+m = 0

as well.
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Appendix B. On quadric bundles

Let V be a vector bundle on X of rank either 2n+ 1 or 2n, to be specified, and equip V with a

nondegenerate quadratic form taking values in the trivial line bundle. We will compute a basic

degeneracy class on X.

Let Ep ⊂ V be an isotropic subbundle; when the rank of V is odd, Ep has rank n + 1 − p,
and in the even rank case, Ep has rank n−p. Let F ′ ⊂ V be an isotropic line bundle. We assume

Ep ⊆ E and F ′ ⊆ F are contained in some fixed maximal isotropic subbundles (of rank n).

The quadratic form induces isomorphisms V ∼= V ∗, and more generally V/E⊥ ∼= E∗, for

isotropic subbundles E ⊂ V .

We assume that the bundles Ep and F ′ are in general position, so the locus on X where

dim(Ep∩F ′) > 1 has codimension p+n−1. This locus, Ω = {x ∈ X |Ep ⊇ F ′}, is the one whose

class we will compute.

Let Q(V )
π−→ X be the quadric bundle associated to V , with tautological bundle S = S1 ⊂ V .

The line bundle F ′ defines a section

s : X → Q(V ),

and the task is to compute [Ω] = s∗[P(Ep)].

Proposition. When V has odd rank, we have

2s∗[P(Ep)] = cp+n−1(V − Ep − F ′ −M),

where M = F⊥/F . When V has even rank, we have

2s∗[P(Ep)] = cp+n−1(V − Ep − F ′)− e(Ep, F ′),

where e(Ep, F
′) = (−1)dim(E∩F )cp+n−1(E/Ep + F/F ′).

Recall that the parity of dim(E ∩ F ) is constant in (connected) families, so the sign is well

defined.

The proof of the proposition relies on the presentation of the Chow ring of quadric bundles.

Theorem ([EG95, Theorem 7], [And11, Theorem B.1]). With the notation as above, write
f = [P(F )] in A∗Q(V ) and h = c1(S

∗). Then A∗Q(V ) = (A∗X)[h, f ]/I, where I is generated by

2f = hn + c1(V/F
⊥)hn−1 + · · ·+ cn(V/F⊥), (B.1)

f2 = (−1)n(cn(F ) + cn−2(F )h2 + · · ·)f (B.2)

when V has rank 2n+ 1, and by

2hf = hn − c1(F )hn−1 + · · ·+ (−1)ncn(F ), (B.3)

f2 = (−1)n−1(cn−1(F ) + cn−3(F )h2 + · · ·)f (B.4)

when V has rank 2n.
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We need a lemma.

Lemma. Let k > 0. If the rank of V is odd, then we have

2π∗(h
kef) = ck+1(V − E − F⊥) = ck+1(V − E − F −M).

If the rank of V is even, we have

2π∗(h
kef) =

{
ck(V − E − F ) if k > 0,

1− (−1)dim(E∩F ) if k = 0.

Proof. First suppose V has rank 2n+ 1. Let ρ : P(E)→ X be the projection. Using the relation
(B.1), we get

2π∗(h
kef) = π∗(e · (hn+k + c1(V/F

⊥)hn+k−1 + · · ·+ cn(V/F⊥)hk))

= ρ∗(h
n+k + c1(V/F

⊥)hn+k−1 + · · ·+ cn(V/F⊥)hk)

= ck+1(V − E − F⊥),

as claimed.
In the case V has rank 2n, we have

ρ∗(h
k+n−1 + c1(V/F )hk+n−2 + · · ·+ cn(V/F )hk−1) = ck(V − E − F )

for k > 0. Using the relation (B.3), this yields the desired formula, 2π∗(h
kef) = ck(V −E − F ).

The case k = 0 is proved by taking X to be a point and applying, e.g., [EG95, Lemma 2]. 2

Proof of Proposition. We have s(X) = P(F ′), so that s∗[P(Ep)] = π∗([P(Ep)] · [P(F ′)]).
First consider the case when the rank of V is odd. Then [P(Ep)] = cp−1(E/Ep ⊗ S∗) · e and

[P(F ′)] = cn−1(F/F
′ ⊗ S∗) · f , so we must compute

2π∗(cp−1(E/Ep ⊗ S∗) · cn−1(F/F ′ ⊗ S∗) · ef).

Using the above lemma, this is equal to

2

p−1∑

i=0

n−1∑

j=0

π∗(cp−1−i(E/Ep) · cn−1−j(F/F ′) · hi+jef)

= 2

p+n−2∑

k=0

( ∑

i+j=k

cp−1−i(E/Ep) · cn−1−j(F/F ′)
)
· π∗(hkef)

= 2

p+n−2∑

k=0

cp+n−2−k(E/Ep + F/F ′) · π∗(hkef)

=

p+n−2∑

k=0

cp+n−2−k(E/Ep + F/F ′) · ck+1(V − E − F −M)

= cp+n−1(V − Ep − F ′ −M),

where the last line uses cp+n−1(E/Ep + F/F ′) = 0.
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Next consider the case where V has rank 2n. Now [P(Ep)] = cp(E/Ep⊗S∗) · e, and [P(F ′)] =
cn−1(F/F

′ ⊗ S∗) · f . An analogous computation gives

2π∗(cp(E/Ep ⊗ S∗) · cn−1(F/F ′ ⊗ S∗) · ef)

= 2

p+n−1∑

k=0

cp+n−1−k(E/Ep + F/F ′) · π∗(hkef)

= (1− (−1)dim(E∩F )) cp+n−1(E/Ep + F/F ′)

+

p+n−1∑

k=1

cp+n−1−k(E/Ep + F/F ′)ck(V − E − F )

= cp+n−1(V − Ep − F ′)− (−1)dim(E∩F )cp+n−1(E/Ep + F/F ′). 2

References

And11 D. Anderson, Chern class formulas for G2 Schubert loci, Trans. Amer. Math. Soc. 363 (2011),
6615–6646.

AF12 D. Anderson and W. Fulton, Degeneracy loci, Pfaffians, and vexillary signed permutations in
types B, C, and D, Preprint (2012), arXiv:1210.2066.

BH95 S. Billey and M. Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8
(1995), 443–482.

BL98 S. Billey and T. K. Lam, Vexillary elements in the hyperoctahedral group, J. Algebraic Combin.
8 (1998), 139–152.

BB05 A. Björner and F. Brenti, Combinatorics of Coxeter groups (Springer, Berlin, 2005).

BKT15 A. Buch, A. Kresch and H. Tamvakis, A Giambelli formula for even orthogonal Grassmannians,
J. Reine Angew. Math. 708 (2015), 17–48.

BKT17 A. Buch, A. Kresch and H. Tamvakis, A Giambelli formula for isotropic Grassmannians, Selecta
Math. (N.S.) 23 (2017), 869–914.

EG95 D. Edidin and W. Graham, Characteristic classes and quadric bundles, Duke Math. J. 78
(1995), 277–299.

Ful92 W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke
Math. J. 65 (1992), 381–420.

Ful98 W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Folge,
vol. 2, second edition (Springer, New York, 1998).

FP98 W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in
Mathematics, vol. 1689 (Springer, Berlin, 1998).

Gar92 A. M. Garsia, Orthogonality of Milne’s polynomials and raising operators, Discrete Math. 99
(1992), 247–264.

IM15 T. Ikeda and T. Matsumura, Pfaffian sum formula for the symplectic Grassmannians, Math. Z.
280 (2015), 269–306.

IMN11 T. Ikeda, L. Mihalcea and H. Naruse, Double Schubert polynomials for the classical groups,
Adv. Math. 226 (2011), 840–886.

Kaz00 M. Kazarian, On Lagrange and symmetric degeneracy loci, Preprint, Arnold Seminar (2000),
http://www.newton.ac.uk/preprints/NI00028.pdf.

KL74 G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132
(1974), 153–162.

Knu96 D. Knuth, Overlapping Pfaffians, Electron. J. Combin. 3 (1996), 13 pp.

1773

https://doi.org/10.1112/S0010437X18007224 Published online by Cambridge University Press

http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.arxiv.org/abs/1210.2066
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
http://www.newton.ac.uk/preprints/NI00028.pdf
https://doi.org/10.1112/S0010437X18007224


Chern class formulas for classical-type degeneracy loci

LP00 A. Lascoux and P. Pragacz, Schur Q-functions and degeneracy locus formulas for morphisms
with symmetries, in Recent progress in intersection theory, Bologna, 1997, Trends in
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