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Abstract. We obtain a necessary condition for a cohomology class on a compact locally sym-
metric space S(I') = I'\ X (a quotient of a symmetric space X of the non-compact type by a
cocompact arithmetic subgroup I' of isometries of X') to restrict non-trivially to a compact locally
symmetric subspace Sy(I') = A\ Y of I'\X. The restriction is in a ‘virtual’ sense, i.e. it is the
restriction of possibly a translate of the cohomology class under a Hecke correspondence. As
a consequence we deduce that when X and Y are the unit balls in C" and C", then low degree
cohomology classes on the variety S(I') restrict non-trivially to the subvariety Sy (I'); this proves
a conjecture of M. Harris and J-S. Li. We also deduce the non-vanishing of cup-products of
cohomology classes for the variety S(I')

Mathematics Subject Classifications (2000). 11F75, 22E40.
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Introduction

(0.1) In this paper we are concerned with restriction of cohomology (with C
coefficients) of a compact Shimura variety Sh(G, X) to a smaller Shimura variety
Sh(H, Y). In [C-V] we gave an explicit criterion (depending only on the imbedding
of H(R) in G(R)) for holomorphic cohomology classes to vanish on the smaller
Shimura variety. We exploited the fact that holomorphic forms on smooth projective
varieties are harmonic for a suitable (Kahlerian) metric.

Here we give such a criterion even when the cohomology class in question is not
holomorphic; the restriction of a (non-holomorphic) harmonic form ® on
Sh(G, X) to Sh(H, Y) does not appear to be harmonic in general (here, the form
o is harmonic with respect to the natural metric on Sh(G, X) arising from the Killing
form on the group G(R)). However, as we will show (Theorem 2), it is still possible to
give a criterion, based purely on the linear algebra of G(R), for the restriction of @ to
be non-zero. Here the restriction is in the sense of [Oda], [H-L], [C-V], [M-R]. We
assume throughout this paper that the degree of the cohomology class does not
exceed the complex dimension of Sh(H, Y).

As an application, we will prove that if G = SU(n, 1) and H = SU(n — 1, 1), then
the cohomology of Sh(G, X) in degrees < n — 1, restricts injectively to that of
Sh(H, Y). (See Theorem 4, (1)). This confirms a conjecture of Harris and Li (see
[H-L]). We also show that if G=SO(n,2) and H =SO(rn—1,2), then the
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cohomology of Sh(G, X) in degrees < n — 1 restricts injectively to that of Sh(H, Y)
(Theorem 4, (2)) (see [H-L] for similar statements).

The proof of our criterion is based on Theorem 1, which says that if we think of
ShAM(H,¥) as a cohomology class on ShX(G, X), then the span of the
G(Ay)-translates of this cycle class contains a nonzero G(Ar)-invariant vector. Here
K C G(Ay) is a compact open subgroup.

In Theorem 6, we refine the criterion of Theorem 2 mentioned above, in terms of
the ‘representation type’ A, of the cohomology class in question. Theorem 6 is
the analogue of a condition obtained for holomorphic classes in [C-V]. The criterion
of Theorem 6 can be used to obtain a condition for the vanishing of cup product
of classes in H*(Sh(G, X)) (Theorem 7). As an application (Theorems 8 and 9),
we show that cup products of low degree classes on Sh(G, X) do not vanish (in
a virtual sense), if the group G is SU(n, 1) or SO(2, n).

(0.2) We now describe the contents of the paper more precisely.

Let H and G be connected semisimple algebraic groups over @ all of whose Q
simple factors are isotropic over R. Let f: H — G be a morphism of (Q-algebraic
groups with finite kernel. Let g, and b, denote, respectively, the real Lie algebras
of G(R) and H(R). Let g, and b respectively denote the complexifications of the
real lie algebras g, and b,.

By assumption, the map f has finite kernel and, hence, induces an injection
f:hy — gg. Choose (as one may, by a Theorem of Mostow ([M])) a Cartan
involution 6 of g, whose restriction to ), is a Cartan involution on §,. Let K, (resp.
KX) denote the set of points of G(R) (resp. H(R)) fixed by 0. Then, K (resp.
K%) is a maximal compact subgroup of G(R) (resp. of H(RR)). Moreover, it is easy
to see that the group of real points of the kernel of the map f: H — G is contained
in KZ and that the inverse image of K, under f is precisely K. Write
X = G(R)/Kx and Y = H(R)/KX. The map f induces a map of symmetric spaces
Y — X which we again denote by f.

Let £y and £ denote the real Lie algebras of K, and KX, respectively. With respect
to the involution 0 write the ‘Cartan decompositions’ g, = ¥y & py and b, = fOH @ pg
of g, and by, respectively. Denote by f, ¥/, p and p”, respectively, the com-
plexifications of %y, &, py and p{.

From now on, we will make the simplifying assumption that the groups G(R) and
H(R) are connected. This is not, strictly speaking, necessary (because we may replace
G(R) by its connected component of identity), but it considerably simplifies the state-
ments and notation.

Denote by A, the ring of finite adeles over Q. The natural inclusion of Q in A,
induces an imbedding of the group G(Q) in the group G(Ar). Denote by G the
closure of G(Q) in G(Ay). Define Hy similarly.

Let K be a compact open subgroup of G(Ay) such that the group I' = G(Q) N K is
a torsion free subgroup of G(QQ). The groups I' are the (torsion free) ‘congruence
arithmetic subgroups’ of G(Q). Denote by S(I') the locally symmetric space
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IN\X. Denote by I'NH the inverse image of I' C G(QQ) under the map
f: H(Q) —» G(Q). Write Sy(I) for the locally symmetric space I' N H\ Y (note that
I'NH 1is not, in general, torsion free since it contains the finite group
Ker(f) N H(Q), where Ker(f) is the kernel of f; however, this finite group is con-
tained in the centre of H(R) and hence acts trivially on the symmetric space Y;
thus, Sy(I') is still smooth, and is covered by Y). We get a smooth map

J=J@): Su(T) — SI), (0)

for each torsion free congruence arithmetic subgroup I' of G(Q).

In the sequel, if V' is a topological space, we write H*(}") for the cohomology group
H*(V, C) of V with coefficients in C.

From now on we will assume that G and H are anisotropic over Q. Consequently
(by a Theorem of Borel and Harish-Chandra), the spaces S(I') are compact. By
the Matsushima formula (see (1.2)), the space of harmonic forms on S(I') may
be identified with

H*(S(I') = Homg (A*p, C*(T\G(R))(0)). ()

(We have already used the fact that S(I') is compact in identifying the cohomology of
S(I') with the space of harmonic forms.) Here, C*°(I'\G(R))(0) is the space of
C-valued smooth functions on the quotient I'\G(R), which are annihilated by
the Casimir of g.

Now Y isimbedded in X. Let ¥ and X be the compact duals of Y and X. Thereisa
natural metric on the dual symmetric space X which is invariant under the action of a
maximal compact subgroup of the group G(C) of complex points of the group G (see
(1.3)) under which, the space of harmonic forms on X may be identified with

H*(X) = Homg_(A"p, C). 2)

From (1) and (2), we obtain a natural inclusion of H '(5\( ) € H*(S(I")), by identifying
C with the space of constant functions on the quotient I'\G(R).

Suppose that I'" is a congruence arithmetic subgroup of G(Q) contained in I'. Then
there is a natural inclusion (", I") of H*(S(I')) in H*(S(I"")), induced by the finite
covering map S(I'") — S(T'). Thus we get a direct system of cohomology groups
H*(S(I')) indexed by congruence arithmetic subgroups of G(Q) and maps (T, ")
for every I' c T'. Consider the direct limit of the spaces H*(S(I')) as I varies through
congruence arithmetic subgroups of G(QQ). We denote this direct limit by H *(Sh’G)
(the notation seemingly implies that the direct limit is the cohomology of a suitable
topological space Sh’G; however, in the present paper, we will only use properties
of the direct limit, and hence for our purposes, H*(Sh’G) is merely an abbreviation
for the direct limit of the cohomology groups H*(S(I")).

The Matsushima formula (1) then takes the form (see Equation (6) of (1.2))

H*(Sh’G) = Homg_(A*p, C*(G(Q)\(G(R) x G/))(0)). 3)
(recall that Gy is the closure of G(Q) in G(Ay); in (3), G(Q) C G(R) x Gy where the
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diagonal map of G(Q) in the product imbeds G(QQ) as a cocompact discrete subgroup
of G(R) x Gy. In (3), C*(G(QO)\(G(R) x Gf))(0) denotes the space of ‘smooth’
functions (i.e. smooth on G(R) and invariant under an open compact subgroup
of the totally disconnected group Gr) on the quotient G(Q)\(G(R) x Gr) which
are annihilated by the Casimir of g. From (2) and (3) we get a natural imbedding
of H '(X’ ) in H*(Sh’G) identifying C with the space of constant functions on the
quotient G(Q)\(G(R) x Gy).

Now (3) shows that there is a natural action of the group Gy on the direct limit
H*(Sh’G), since Gy acts by right shifts on the space

CHGONG(R) x Gy)(0)

Given g € Gy denote again by g the map on H* (Sh’G) induced by right translation by
g on the space C*(G(Q)\(G(R) x Gr)(0). The space H '(X’ ) may be identified with the
space of Gy-invariants of H *(Sh’G). If T denotes the closure of ' in Gr C G(Ay) then
H*(S(I')) may be identified with the space of T-invariant vectors in H*(Sh’G) (see
Sections (1.2) and (1.3) for the proofs of these assertions).

Let m, n denote, respectively, the dimensions of the real manifolds Sy (I') and S(I').
Write n = m + (n — m). Now, closed differential forms on X of degree m can be
pulled back to the m-dimensional (oriented) submanifold Y and integrated on
Y. We thus get a linear form on H’”(X’ ) which may be identified, by Poincaré duality
for the cohomology of S(I'), with an element (the ‘cycle class’) [f’] of H”"”(? ) (see
(2.4)). Under the identification of H '(;\7 ) with the space of G, -invariants in
H*(Sh’G), we thus obtain an element in H””(Sh”G) which we again denote by [?].

Similarly, closed differential forms of degree m on S(I') can be pulled back to the
m-dimensional manifold Sy (I') under the map j(I') : Sy(I') — S(I') and integrated
over Sy(I'). We thus get a linear form on H™(S(I')), which may be identified, by
Poincaré duality for the cohomology of S(I'), with an element of H""(S(I)).
We denote this element (the ‘special cycle class’) by - = [Sy(I)] € H"(S(I')) (see
(2.5)). Note that by the last sentence in the preceding paragraph, the latter
cohomology group may be identified with a subspace of the direct limit
H"™(Sh’G). Thus, we view [Sy(I)] as an element of H""(Sh’G).

We are now in a position to state our first main result.

THEOREM 1. Denote by Vr the C-span of Gy-translates of the cycle class
Er = [Su(D)] in the direct limit cohomology group H"™Sh’G). Then the space of
Gy-invariants in Vr (is at most one dimensional and) is generated by [Y].

Theorem 1 is proved (see Section 2) by using the complete reducibility of the direct
limit H*(Sh’G) as a module over Gy. This is shown to imply that the space of
Gy-invariants in Vr is spanned by the projection y of the cycle class {r. By integrating
forms in H"(X) over n we obtain that these integrals are proportional to the
integrals over Y. This implies Theorem 1.
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(0.3) We will now define the ‘Restriction map’ which we mentioned briefly at the
beginning of the introduction (see (0.1)). Return now to the Equation (0). Take
the direct limit as I" varies over all the congruence arithmetic subgroups I' of
G(Q), in the Equation (0). We then get a map

j*: H*(Sh’G) — H*(Sh°H).

Now an element g € Gy acts on H *(Sh’G) as explained in the paragraphs preceding
Theorem 1. Denote by j; =j* o g the composite map. Define the ‘restriction map’
denoted Res, as the product

Res = l_[j;k : H*(Sh’G) —» l—[H°(ShOH)’ )

where the product is over all the elements g € G;.

Our main result is a necessary condition for the vanishing of the restriction map
defined in the foregoing. It is an easy consequence of Theorem 1. In the following,
if B,6 € H*(Sh’G) then f A 6 denotes the cup product of these two classes.

THEOREM 2. If « € H"(Sh’G), then Res(x) = 0 only if o A[Y] = 0.

Theorem 2 is proved by observing that the vanishing of the restriction of a class «
implies the vanishing of the cup-product j; () A ¢r for every g € G(Q). This in turn
implies (see Section (3)) the vanishing of « A g(¢r) for every g € Gr. By taking a
suitable linear combination of these g({r) and by using Theorem 1, we obtain
Theorem 2.

(0.4) Suppose now that X is an irreducible Hermitian symmetric domain, that Y is
also Hermitian symmetric and that the map f: ¥ — X is a holomorphic imbedding.
If G is the semisimple part of a reductive group G* satisfying the axioms in [D] and Z
is the centre of G*, then the space ShG =ger G(O\(X x Gy) is a connected
component of (the space of C-points of) the Shimura Variety Sh(G*, X) given
by Sh(G*, X)(C) =qer G*(Q\(X x G(Ar) where X = G*(R/Z(R)Kw.

If Y has codimension one in X, then Sy (I') is a divisor in S(I'). Moreover, it is
known that S(I') is a smooth projective variety ([B-B]). It can also be proved that
[/)7'] (upto +1) is a Lefschetz class on S(I') for each torsion free (cocompact) I
asin the foregoing. From Theorem 2 and Lefschetz’s theorem on hyperplane sections
we obtain

THEOREM 3. Ifdim(X) = 1 4+ dim(Y) and X is an irreducible Hermitian symmetric
domain, then

Res: H*(Sh’G) — ]‘[Hk(ShOH)

is injective for k < dim(Y)(=d =D —1).
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As an application, we obtain

THEOREM 4. (1) If G(R) = SU(n, 1) upto compact factors and HR) =SU(n — 1, 1)
upto compact factors, then

Res: H*(Sh'G) — [ [ H*(Sh’H)

is injective for all k <n—1.
(2) If G(R) = Spin(2, n) and H(R) = Spin(2,n — 1) up to compact factors then

Res: H*(Sh'G) — [ [ H*(Sh’H)

is injective for all k <n—1.
(3) If G(R) = Spy, H(R) = Sp, x Spy, then

Res: H*(Sh’G)) — [ [ H*(Sh’H))
is injective.

Remarks. In Theorem 4 the imbeddings of the non-compact factors of H(R) in
those of G(R) are the natural ones (e.g. as in Section 3 of [C-V]). For example,
in (1) of Theorem 4, SU(n — 1, 1) is that subgroup of SU(#, 1) which leaves invariant
the first basis vector ¢;. Here ¢, - - -, &,, &,41 1S the standard basis of C™! and the
latter is the standard representation of SU(n, 1). The other imbeddings (2) and
(3) of Theorem 4 are defined similarly. We do not specify the QQ-structures and
the Q-imbeddings involved, because the statement and the proof of Theorem 4
do not use the specific nature of the Q-imbedding.

The parts (1) and (2) of Theorem 4 were conjectured by Harris and Li ([H-L]) and
proved by them for a number of degrees k (see [H-L] for precise statements). In fact
our approach was suggested by an attempt to answer their question: does the linear
span of the divisors {g[Sh(H)]; g € G(/\y)} contain a very ample divisor? As we have
remarked in the paragraph preceding the statement of Theorem 3, the answer is
yes, and the ample divisor may be taken to be a divisor (upto £1) on the compact
dual X.

The analogue of (3) when G is isotropic over Q, i.e., G is the split Sp,, was proved
by Weissauer ([W]); he showed that H*(S(I')) injects into (a direct sum of) the
cohomology of a product of modular curves.

Theorem 2 also yields the following:

THEOREM 5. Suppose G(R) = SU(n, 1) and H(R) = SU(p, 1) upto compact factors
(with p <n—1). Then

Res: H*(Sh’G) — [] H*(Sh’H)
2eG(Q)

is injective for all k < p .
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We stress that in Theorem 5 we do not assume that G (over Q) contains a
Q-subgroup, whose real points form a group isomorphic (upto compact factors)
to SU(k, 1) for every k < n — 1 but only that G (over Q) contains a QQ-subgroup,
the group of whose real points — up to compact factors — is isomorphic to
SU(p, 1) for the integer p in question. Here again the imbedding of the real group
SU(p, 1) in the real group SU(xn, 1) is the natural one: if ¢, - - -, &, &,4 is the standard
basis of the standard representation C""!' of SU(n, 1), then SU(p, 1) is the subgroup
of SU(n, 1) which leaves the first n — p vectors of this standard basis invariant.
We do not need to specify the Q-imbedding of the group H in the group G, since
the statement (and the proof) of Theorem 5 does not depend on the (Q-imbedding.

(0.5) So far, our criteria have been independent of the ‘infinity type’ of the

cohomology class o but dependent only on the degree of the cohomology class.

We can split the cohomology of Sh’G in terms of the ‘representation type’ at infinity

and obtain more precise information on the vanishing of the restriction map.
Rewrite the Matsushima formula (cf. Lemme (3.5) (ii) of [CI 3])

H*(Sh’G) = @m(mae ® 1) H*(8, Koo, Too) ® Ty (5)

Here, H*(g, K, T) denotes the relative Lie algebra cohomology, 7, is (the space of
K..-finite vectors in) a unitary irreducible representation of G(R) and 7, a unitary
irreducible admissible representation of Gy. The number m(n, ® ns) is the
multiplicity with which the representation 7., ® ny of G(R) x G, occurs in the space
of square integrable (with respect to the Haar measure) functions on the compact
quotient G(Q)\(G(R) x Gy).

Assume now that X is Hermitian Symmetric.

The representations 7, with non-trivial (g, K. )-cohomology (such represen-
tations will be referred to as cohomological) are classified as the modules A4, (see,
e.g., [V-Z]) in terms of certain 0-stable parabolic subalgebras g of the complex
Lie algebra g ((recall that 6 is the Cartan involution on g induced by the pair
(G(R), Kx)). Given a parabolic subalgebra q as in Section (6.1), let o, = A4, be
the associated cohomological representation. Let u be its nilradical, denote by &
the dimension of the space uN p, and V' (q) the K -span of the top exterior power
of uNp in A¥p. Denote the top exterior power of uNp by e(q). This is a line in
Afp. Let u~ be the ‘opposite’ of u (see Section (6.1)). It can be shown that
dim[(uNp™) + @™ Np™h)] is also k = dim[uN p]. Write ¥ (q) for the K -span of
the top exterior power et(q) of (uN pt)+ ™ Np™h).

We will say that a cohomology class « € H*(Sh’G) is of type A, if under the
Matsushima isomorphism (5), « lies in the component corresponding to n, = A,
on the right hand side of (5). If, further, the degree k of the class « is the dimension
uNp as in the last paragraph, then we will say that « is strongly primitive of type
Aq.
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From now on, we will assume that X and Y are Hermitian symmetric and that
f:Y — X is holomorphic. For an integer k, denote by E(G, H, k) the K,.-span
of the kth exterior power A*p}; in the space AFp*.

THEOREM 6. With the foregoing notation, suppose that o is a strongly primitive
class of type A, of degree k. Suppose that Res(a) = 0. Then,

~

D V(" AlY]=0.
(2) The intersection V*(q) N E(G, H, k) = 0.

Remark. Note that [?] is an element of H'(y) =A p*. Here, p* is the dual of p. In
(1) of Theorem 6, V(gq)* CA p* similarly denotes the dual of V(q) and the Equation
(1) holds in the exterior algebra A p*. Similarly, Equation (2) of Theorem 6 holds
in the exterior algebra A p+.

Remark. If o is holomorphic, then (1) of Theorem 1 is equivalent to the condition
all the Gy-translates of o vanish on Sh'H. (0)

The equivalence of (0) and of (2) of Theorem 6 is exactly the criterion obtained in
[C-V] for holomorphic cohomology classes o.

0.6. CUP PRODUCTS

Note that if o and  are cohomology classes on S(I'), then the restriction to the
diagonal of the class o ® f on the product S(I') x S(I') is the cup product o A f.
Denote by A the diagonal in the product X x X. Let [K] be the associated cycle class
in H '(:\> x X ).

By using the criterion of Theorem 6 to the situation of cup products we obtain the
following.

THEOREM 7. Let o.and o be strongly primitive cohomology classes in H*(Sh’G) of
degrees k and k', and of type A, and Ay, respectively. If gla) Ao/ =0 for all
geGrand if k+ k' <D then (x @ ') A[A] = 0. Further, we have

EGx G G k+KYNn(VT(q)® V() =0 (1)
and
Vi@ A V() =0. (2

(Here D is the complex dimension of the Hermitian symmetric domain X.)
Moreover, these two conditions (1) and (2) are equivalent.

Remark. Note that if o and o’ are holomorphic classes, then ([C-V], Section 1)
V*(q) and V*(q) are irreducible and e(q) A koe(q’) generates V() A V() as a

https://doi.org/10.1023/A:1002600432171 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002600432171

COHOMOLOGY OF COMPACT LOCALLY SYMMETRIC SPACES 229

K -module, (here g is the longest element of the Weyl group of (K, T) and T is a
fixed maximal torus in K)). Then the condition V*(q) A V' (q') = 0 of Theorem
7, is equivalent to the condition

e(q) A roe(q) =0,

i.e. the intersection of uNp* and xo(’) N p™ in p* is non-zero. This is exactly the
criterion of [C1] for the vanishing of the cup product g*a A o for all g € Gy.
As applications, we have

THEOREM 8. Let G(R) = SU(n, 1) up to compact factors. Let o, o be non-zero
cohomology classes of degrees k, k' in H*(Sh°G) with k + k' < n. Then there exists
a g € Gy such that g(o) Ao # 0.

Remark. In the holomorphic case, this is proved in [S1] and [C2].

THEOREM 9. Let G(R) = Spin(n, 2) upto compact factors. Let o, be non-zero
cohomology classes of degrees k, k' with k, k' < [n2] (where [n2] is the integral part).
Then there exists a g € Gy such that g(o) Ao # 0.

Remark. Related results are proved in [Ku].

1. The Structure of H*(Sh’G) as a G; Module

1.1. THE STRUCTURE OF H*(Sh’G) AS AN ALGEBRA

As in the introduction, let G be a connected semisimple algebraic group defined over
Q. Therefore, G is an almost direct product of QQ-simple connected (Q-subgroups G;
of G: G = G,G; - - - G,. Assume that each (Q simple factor G; is isotropic over R (i.e.
that G;(R) is non-compact for each 7). We will assume that G(R) is connected.
Let Ky be a maximal compact subgroup of the group G(R) of real points of G.
Form the symmetric space X = G(IR)/K as in the introduction.

Let A be the ring of finite adéles over Q. The natural imbedding of Q in the finite
adeles A, induces an imbedding of G(Q) in the group G(Ar). Denote by Gy the
closure of G(Q) in the group G(Ay). Since G(Ay) is totally disconnected, so is
Gy and a fundamental system of neighbourhoods of identity in Gy is provided
by the intersections K = Ky N Gy where Ky runs through compact open subgroups
of G(Ay). Note that the group K is a compact open subgroup of Gy and that
the intersection I' = K N G(Q) is a congruence arithmetic subgroup of G(Q). Con-
versely, by definition, a congruence arithmetic subgroup I' of G(Q) is an intersection
K N G(Q) for a compact open subgroup K of Gy. Then the density of G(Q) in Gy
immediately implies that the closure of I' in Gy is precisely K. We now assume that
K is so chosen that the group I' = K N G(Q) is torsion-free. Then, I" acts properly
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discontinuously, without fixed points on the symmetric space X and thus
S(I') =T'\X is a manifold, covered by X.

If M is a manifold, denote by Q°*(M) the space of smooth differential forms on M
(i.e. sections of the exterior powers of the complexified cotangent bundle of M).
This is an algebra under wedge product (which is not commutative in general).
It contains as a subalgebra, the subspace Qj(M) of closed differential forms.
The space of exact forms is a two sided ideal in the algebra of closed forms. Thus
we get, by de-Rham’s Theorem, an algebra homomorphism from Qg(M) onto
the cohomology algebra H*(M) of M (with coefficients in C), whose kernel is
the space of exact forms.

Let g, T, p be, respectively, the complexified lie algebra of G, of K, and the orthog-
onal complement of f in g with respect to the Killing form. Then the space Q*(I'\ X)
may be naturally identified with

Homg_ (A®p, C*(IN\G(R)))

(e.g., see [R], Chapter 7, Section 3, Equation (7.14)). The latter is nothing but the
invariants of K in the tensor product A*p* ® C*°(I'\G(R)). The latter space is a
tensor product of the exterior algebra of p* (the dual of p) and the algebra of smooth
functions on the quotient I'\G(R). Therefore the tensor product (and the space of
K-invariants in it) gets a natural structure of an algebra and the foregoing
isomorphism

Q*(I"\X) = Homg_ (A®p, C*(IN\G(R))) (1

is an isomorphism of algebras.
Now the density of G(Q) in G, shows that

def

S(I) =T\X = GOO\(X x Gy)/K = SY,

where K is an open compact subgroup of Gy and I' = K N G(Q). Under the identi-
fication of S(I') with S%, the isomorphism (1) becomes

Q*(GQ\(X x Gy)/K)

2
= Homg,, (A*p, C*(G(Q\(G(R) x Gy)/K)) @

as an isomorphism of algebras. We often use both the descriptions S(I') and S%
interchangeably, according to our convenience. Since these two are isomorphic,
there is no cause for confusion.

By taking direct limits in Equation (2) as K varies through compact open sub-
groups of Gy we obtain

lim Q*(G(Q\X x G;/K)

3
= Homg (A"p, CZ(G(ON\(G(R) x Gy))), ®

as an isomorphism of algebras. Here lim denotes the direct limit as K varies through
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open compact subgroups of G;. We will denote the direct limit on the left side of
Equation (3) by Q*(Sh’G).

1.2. THE ACTION OF G; ON H*(Sh’G).

Fix g € Gy. We get an isomorphism Sy with S, induced by right translation by
g € Gy on the quotient G(Q)\(G(R) x Gy). Thus, translation by g yields an algebra
isomorphism of Q°*(S%) with Q‘(S0 IKg ). By taking direct limits over K we get an
action of the the group G, on Q‘(ShOG) under the isomorphism (3) of Section (1.1),
this action is the same as right translations on the space C* of smooth functions
on the right-hand side of (3). Note that G, acts by algebra automorphisms on
Q*(Sh’G), as is evident from the fact that g from Q° (S%) onto Q’(Sg,]Kg) is an algebra
isomorphism. It is clear that the action of Gy commutes with the differentials of the
complex Q*(Sh’G).

Now, as in the introduction, H*(Sh’G) is defined as the direct limit of H *(S%)as K
varies over compact open subgroups of Gy. Thus, H *(Sh’G) is a quotient algebra of
Q(')(ShOG), the algebra of closed differential forms in Q*(Sh’G). The group Gy acts
on this algebra H*(Sh’G), by algebra automorphisms since it commutes with the
differentials of Q*(Sh’G).

Let K C G be a compact open subgroup. By taking K invariants in (3) (in the
following, the space of K invariants in a C-vector space W on which K acts will
be denoted by WX), we obtain that

(Q*(Sh’G)* = Homg_ (A"p, C*(GIO\(G(R) x Gy)/K)). 4)

By Equation (2), the space on the right-hand side of (4) is precisely Q°(S%). By
observing that the differentials in the complex Q*(Sh°G) commute with the action
of G, and by averaging with respect to K, we obtain from Equation (4), that

H*(S%) = (H*(Sh°G))¥. ®)

From now on, we assume that G is anisotropic over Q .

There is a G(R)-invariant metric on X = G(R)/ K, which, at the tangent space pg
at the identity coset eK,, coincides with the restriction of the Killing form. This
descends to a metric on S(I') = S%. By the Matsushima formula (see [B-W]), the
space of Harmonic forms on S(I') for this metric is given by

Homg_ (A*p, C*(IN\G(R))(0))

where (as explained in the introduction) C*°(I'\ G(R))(0) denotes the space of smooth
functions on I'\G(R) killed by the Casimir of g.

Note that this space of harmonic differential forms is not an algebra in general,
since a wedge product of harmonic forms need not be harmonic. However, by
our assumption that G is anisotropic over (), we obtain — by Hodge Theory on
S(T) — that this space maps isomorphically onto the cohomology H*(S(I')) =
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H*(S%). By taking direct limits as K varies through compact open subgroups of G
we obtain an isomorphism

H*(Sh’G) = Homg_ (A"p, C(G(O\(G(R) x Gy))(0)). (6)

As we have said before, the right-hand side of (6) is not an algebra in general, butis a
space of closed forms in Q°*(Sh’G), which maps isomorphically onto the cohomology
algebra H*(Sh’G).

As before, the under the isomorphism (6), the G action on H*(Sh’G) is induced by
right translation by Gy on the space C*(G(Q)\(G(R) x Gy).

In particular, the space of Gy-invariants in H*(Sh’G) is isomorphic to
Homg_(A*p, C). This is because the space of Gy invariant functions on the space
G(ON\(G(R) x Gy) are just the constant functions (because of the density of
G(Q) in G(R); this is weak approximation). Moreover, the constant functions
are certainly killed by the Casimir of g.

1.3. THE COMPACT DUAL OF X

Consider the real Lie subalgebra g, = ) @ ip, where i is a square root of —1. Let
G(C) be the group of complex points of G. The analytic subgroup of G(C) whose
Lie algebra is g, is denoted G,,. As is well known, G, is a maximal compact subgroup
of G(C). Clearly, K, is a subgroup of G,. Form the quotient X= G,/K. This is a
compact symmetric space, which is the ‘compact dual’ of X.

The Killing form on g, is negative definite and its negative gives a K -invariant
metric on the space ipg (which may be identified with the tangent space at the 1dent1ty
coset eKy, of X = G, /Ks). By translation, we get a G, invariant metric on X. The
space of complex harmonic differential forms on X with respect to this metric is
by a theorem of E. Cartan, given by Homg_ (A*p, C). Note however, that this latter
space is indeed an algebra under wedge product, and it maps isomorphically onto
the cohomology of the compact manifold X:

H*(X) = Homg_(A"p, C). (7

Note that the isomorphism (7) is an isomorphism of algebras.

Now, the space Homg_(A®p, C) is a subalgebra of the algebra of closed (these
classes are even harmonic, by the Matsushima Formula) differential forms in
Q*(I'\X) for every torsion free cocompact I' as in the end of (1.2). The closed
differential forms map onto the cohomology algebra H*(S(I')) (and the harmonic
ones map bijectively onto H*(S(I)) = H*(S%) where K is the closure of ' in the
group Gy).

Thus, the cohomology algebra H ‘(:\7 ) may be thought of as a subalgebra of the
algebra H*(SY%). The latter, by Equation (5) of Section (1.2), is the subalgebra of
K-invariants in the direct limit cohomology algebra H*(Sh’G). The isomorphisms
(6) and (7) (of the Sections (1.2) and (1.3) respectively) show that under this
isomorphism, H'(X) is precisely the space of Gy-invariants of H*(Sh’G).
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1.4. A CANONICAL GENERATOR OF H"(S%)

Let (as in the introduction) n be the dimension of the real/ manifold X (or of the real
manifold S%). Our assumption on the connectedness of G(R) implies that K, being
a maximal compact subgroup of G(R), is connected and acts trivially on the top
exterior power of py, the tangent space at the identity coset of X = G(R)/ K. Hence,
by translation of an orientation of p, everywhere on X, we see that X is orientable
and that the orientation is preserved by G(R). By the same reasoning, since
G(C) and its maximal compact G, are connected, and K, is connected, it follows
that X = G,/K is also orientable, with an orientation preserved by G,. In par-
ticular, X is a compact oreintable manifold, and hence its top degree cohomology
is one dimensional: H”(X’ ) = Cwg. Here, we have fixed a generator wg of H”(X’ )
once and for all.

The orientability of S(I') implies that its top degree cohomology is also one
dimensional: H"(S(I')) = C. Now, by the first sentence of the last paragraph of Sec-
tion (1.3), there is a natural imbedding of H”(?) in H"(S(I')): thus, the (image
of the) generator wg of H"(X’ ) chosen in the foregoing paragraph, is a generator
of H"(S(I')). We will always use in the sequel, this generator wg of H"(S(I')). Note
that wg is not, in general, the unit volume form on S(I') because the volume of
S(I') with respect to ¢ goes to infinity as K (the closure of I in Gy) becomes smaller.

Thus H"(S(I')) = Cwg = H”(X’ ). By taking direct limits we obtain H"(Sh’G) =
Cowg = H'(X).

We will now collect together our conclusions on the structure of the direct limit
H*(Sh’G) as a G; module.

(1.5) PROPOSITION. Let G be a semisimple group defined and anisotropic over Q
satisfying the assumptions of (1.1). Let X be the symmetric space associated to
G(R). Then the following hold.

(1) As a module over the group Gy, The direct limit H*(Sh°G) is a direct sum of
irreducible smooth Gr-modules s, with each ny occurring with a finite multiplicity

m(my):
H*(ShG) = @5 m(ny)my.

(2) H*(Sh’G) is smooth and admissible as a Gy module. Further, Gy acts by algebra
automorphisms of the cohomology algebra H*(Sh’G).

(3) Thecohomology algebra H'(j\() of the compact dual X of X, under the imbedding (7)
defined by the Matsushima formula, is isomorphic (as an algebra) to the subalgebra
of Gr-invariants in H*(Sh’G).

(1.6) Remark. From now on, we will (as we may, thanks to (3) of Proposition (1.5))
think of H*(X) as a subalgebra of H*(Sh’G). We will ( as we may, because of
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Equation (5) of (1.2)) also think of H*(S(I')) as the subalgebra of K-invariants in
H*(Sh’G) where K is the closure of I' in Gy. This shows that H '()? ) is a subalgebra
of H*(S(I')) for every (torsion free, cocompact) congruence arithmetic subgroup
I' of G(Q).

Proof of Proposition (1.5). (1) is well known and follows from the Matsushima
Formula. For a reference see [C 3], Lemme (3.15), (ii) (in [C 3] (1) is stated for
the group G(4Ay) but the same proof goes through word for word, by replacing
the group G(Ayr) by Gy).

To prove (2), let K C Gy be a compact open subgroup. We may assume (by replac-
ing K by a smaller open subgroup if necessary) that I' = G(QQ) N K is torsion free.
Then, by Equation (5) of Section (1.2), the space of K invariants in H*(Sh’G) is
precisely H*(S%) = H*(S(I')) and the latter is finite-dimensional because S(I') is
a compact manifold. This proves the admissibility of H*(Sh’G) (recall that a
Gr-module W is admissible if the space of K invariants in W is finite-dimensional
for each open compact subgroup K of Gy). As H*(Sh’G) is the direct limit of
H*(SY), it follows that H*(Sh’G) is a smooth G, -module as well (a Gy-module
is smooth if every vector in the module is fixed by some open compact subgroup
of Gf)

Note that (3) simply restates the conclusion of the last paragraph of Section (1.3).

2. The Cycle Class [Sy(I')] and the Restriction Map
2.1. NOTATION

Let H be a connected semisimple algebraic group over Q (all of whose Q-simple
factors are isotropic over R). Assume that H(IR) is connected. Let /: H — G be
a morphism of algebraic Q-groups with finite kernel. Thus f induces an injection
of the Lie algebra ), of H(R) into gy. Assume that f and H have the following
properties: H(R)Nf~'(Kx) = K¥ is a maximal compact subgroup of H(R);
further, The Cartan decomposition g, = fy @ py when restricted to the subalgebra
by gives the Cartan decomposition b, = £/ @ p¥ where £ is the Lie algebra of
K and p{! is the intersection p Nhy; now Y o H(R)/K is a symmetric space
and f: Y — X is an imbedding of symmetric spaces.

2.2. THE RESTRICTION MAP

Let I' be a torsion free congruence arithmetic subgroup of G(Q). Denote by I' N H
the inverse image of I' in H(Q) under the map f: H(Q) — G(Q). Write
Sy(I') =T N H\Y. As explained in the introduction, Sy(I') is a manifold covered
by Y. The map f induces a smooth map j = j(I'): Sg(I') — S(I'). This induces a
homomorphism j* of the cohomology algebras:

J@O): HY(SI)) - H*(Su(I)). ()
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By taking direct limit of both sides of Equation (1) as I" varies through torsion free
congruence arithmetic subgroups of G(Q), we obtain a homomorphism of algebras

j*: H*(Sh’G) — H*(Sh’H). )

Fix g € Gy. Then g acts on H *(Sh’G) as in (1.2), by a linear transformation which we
again denote by g. Then the composite j; = j* o g is a homomorphism from H* (Sh°G)
into H*(Sh’H). The product over all g € Gy of these maps j;, is referred to as the
restriction map and is denoted Res:

Res = [ [/j;: H*(Sh°G) — [ H*(Sh°H). (3)

Maps similar to Res have been considered in [Oda], [H-L], [K-R], [C-V].

2.3. NOTATION

Let h be the complexification of b, (define similarly, the complex vector spaces f7 and
pf). Let b, = & @ ip. Then the map f: H — G induces an injective Lie algebra
homomorphism b, — g,. Let H(C) be the group of complex points of H (with
Lie algebra b). Then, the analytic subgroup H, of H(C) with Lie algebra b, is a
maximal compact subgroup of H(C) which clearly contains K. Form the ‘compact
dual’ ¥ = H,/K. The map f induces a natural imbedding of the compact dual
symmetric spaces J : Y > X.

2.4. THE CYCLE CLASS [Y]

Consider the imbedding j: ¥ — X. Let m be the real dimension of Y. Now by the
definition of wy, it generates the cohomology group H’"(’)\’). Therefore, given
o€ H"’(:X}), its pullback }'\*(oc) is of the form A(x)wy for some scalar A(x). Thus, A
defines a linear form on H"(X).
Given ff € H"™ ’”(?) we get a linear form /g on the space Hm(?) given by
5(0()60(; =aAp for all o e H’”(X ). By Poincaré duality for the cohomology of
X, it follows that every linear form on H’”(X) is of the form /g for some
pe H"™ ’"(X ). Therefore the linear form A of the previous paragraph is of the form
A~ for some element [Y] H"™ ’”(X ). We will refer to this element [Y] as the cycle
c{ass associated to the cycle Y in X.

2.5. DEFINITION OF THE CYCLE CLASS [Sy(I)]

We will now fix the congruence arithmetic subgroup I' of G(Q). As in (1.4), our
assumption that H(R) is connected ensures that the Sy(I') are all orientable.
Let m be the (real) dimension of the manifold Y (or of Sy(I')). Then, by replacing
G by H throughout in (1.4), we obtain a canonical generator-denoted wgy — of
the (one-dimensional) top degree cohomology H™(Sy(I')) = C of Sy(I'). This
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wy 1s, in fact, a generator of the cohomology of the compact dual Y, and there is a
natural isomorphism

Coy = H"(Y) = H"(Su(I)) )

(only in the top degree m) as explained in the last paragraph of (1.3).
Recall that the dimensions of X and Y are n and m respectively. Consider the
cup-product pairing

H"(S(I) x H""(S(I')) — H"(S(I)).

The pairing is non-degenerate by Poincare duality. From (1.4) we get that H"(S(I"))
is generated by wg. Given ff € H""(S(I')), we get a linear form /g defined by

N ,B = ;uﬁa)(; (5)

for all & € H"(S(I')). By Poincaré duality for the cohomology of S(I'), every linear
form on H™(S(I")) is of the form /4, for some n € H""(S(I")).

We will now define a linear form 2 on H"(S(I')). From Equation (1) of (2.2) we get
a map j(I)*: H"(S(T')) — H™(Sy(I')). From Equation (4), the latter space is
isomorphic to Cwy. Define A(x) by the formula

Moon = j(I) (). )

Thus, 4 is a linear form on H™(S(I")). By the conclusion of the preceding paragraph,
there is an element (denoted [Sy(I')]) in A"~ (S(I')) such that 4 = As,,r). This is the
cycle class associated to the special cycle Sy(I') of the manifold S(I').

Remark. If the level T" were fixed once and for all, then the cycle class could have
been defined in the usual way (by fixing an arbitrary generator of S(I')). But, since
the levels are varying, one needs to be careful in choosing generators of the top
degree cohomology of Sy (I') and S(I"). One can do this here because of the canonical
generators wy and wg arising from the cohomology of the compact duals Y and X.

(2.6) Remark. Let M and N be compact orientable manifolds of dimensions m and n
respectively. Fix (non-zero) generators wy and wy of H™(M) and H"(N)
respectively. Let j: M — N be a smooth map. We then get a linear form
oar—>A(ax) on H™(N) defined by j*(o) = A(e)wy. By Poincaré duality, there exists
an element [M] € H""(N) such that the wedge product a A [M] = Aa)wy.

If k < nis any integer and § € H*(N) is such that j*(f) = 0, then A [M] = 0. To
prove this, we may assume that k <m ( for otherwise,  A[M] is of degree
k+4+(n—m)>n and is zero anyway). Let o € H"%(N). Then, j*(a A ) = Loy
for some scalar 4. Then, by the definition of the cycle class [M], we get
a AP A[M]=loy. However, j*(« A ) = 0 since j*(f) = 0. Therefore, A =0 and
we get, a A fA[M] =0, for every o. by Poincaré duality for H*(M), we then
get fA[M]=0.
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(2.7) Remark. Let H*(X)C H*(Sh’G) and H*(Y) c H*(Sh’H) be the natural
imbeddings as in (1.3). Let j*: H*(X) — H*(Y) and j*: H*(Sh’G) — H*(Sh’H)
be the restriction maps. Then, for all « € H*(X) we have

(@) = j*(@). (7)

3. Proof of Theorem 1

Let V' = Vr be the C-span of Gy-translates of the cycle class & = & = [Sy(IN)]. Now,
& e H"(S(I')) (recall that m and n are the dimensions of the spaces Y and X,
respectively). Thus, V' is a submodule of the Gy-module H""(Sh’G). By Proposition
(1.5), H"™(Sh’G) is completely reducible as a Gr-module. Hence so is the submodule
V.

Now, V' is a cyclic module containing £ as a cyclic vector. Hence the space of
Gy-invariant linear forms on V is at most one dimensional (since such a linear form
is determined completely by its value on the vector £). Now complete reducibility
of V implies that the space V° of G-invariant vectors in V' is also at most one
dimensional. Write V' = V°@® V! where V' is a Gy-invariant subspace of V
supplementary to V0. Since V! has no invariant vectors, complete reducibility of
7'! shows that it has no Gy-invariant linear forms on it either. Write { =y + & ! where
neV®and & e V. We will show that

n=I[Y]. (D
This will prove Theorem 1 because 7 is a generator of the space V' of G/-invariants in
V' and is a linear combination of G-translates of the cycle class ¢ (because every
element of V is).
To prove the Equation (1), we proceed as follows. Let

% e H"(X) C H"(Sh’G)

be an arbitrary, but fixed, vector. Consider the wedge product v A o for v € V. Now
H”(X’ ) maps isomorphically onto H"(Sh’G) = Cw¢ (see the end of (1.4); wg is
the canonical generator chosen in (1.4)). Note that v Ao e H"(Sh’G) for all
v € V. Thus we may write v A o = 4,(v)wg. We first show that 4, is a Gy-invariant
linear form on V. Fix g € Gy and v € V. Then,

g A a) = g(v) A g(), 2
because g acts by algebra automorphisms ((1.2)). Since v A o is a class of degree n and
H"(Sh’G) is H”(/A}), it follows that g(v A o) =v Aa. Moreover, o € H'”(?) is
Gy-invariant. Thus we get v Ao =g(v) Ao from Equation (2). By the definition
of Z,, this means that 4,(v) = 4,(g(v)). Thus, 4, is a Gy-invariant linear form on
V. Therefore, it vanishes on V' (recall that V' has no invariant forms). Con-
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sequently, 4,(¢) = A,(n) and by the definition of 4,, we obtain
nAo=¢EAa. (3)
We will now show that
aAE=aAn[Y]. 4)

By the definition of [’1\’], oA [’)\’] = uwg where p € C is such that 7*(0() = uwg.

Let f be an arbitrary element of H”(S(I')) and write j*(f) = log € H"(Sy(I))
where 4 is a scalar (which depends on the class 5, of course). Then by the definition
of the cycle class &, we get § A £ = dwg. By substituting o for the arbitrary element
p we get j*(o) = Aoy with a A & = dwg.

But by Equation (7) of (2.7), we get that j*(y) :7*())) for all elements y € H™ (X’ ). In
particular, the foregoing paragraphs imply that 4 = p. This is equivalent to (4).

Since the degrees of « and ¢ are m and n — m, respectively, we obtain that

aAE=(=1)""MENg A = (=1 Ao (5)
Now the Equations (3), (4) and (5) imply
oan [/)?] =aAy

for all « € H™(X). By Poincaré duality for the cohomology of X, we then obtain (1).
This completes the proof of Theorem 1.

4. Proof of Theorem 2
4.1. NOTATION

Let & € H"™(S(I')) be the cycle class [Sy(T")] as before. Suppose that I is a congru-
ence arithmetic subgroup of G(QQ) which is a normal subgroup of I'. Let
Ep = [Sy(T)] € H*™(S(I™)) be the cycle class for the level I". We will view all these
cohomology groups as subgroups of H""(Sh’G).

Let K and K’ be the closures in G, of I" and I'', respectively. Then the imbedding of
I' in K induces a map of finite groups I'/T” — K /K’ which is an isomorphism since I’
is dense in K.

Recall that G operates on H"™(Sh’G) as in (1.2).

LEMMA (4.2). With the notation of (4.1), we have
> 0(¢r) = mér

where m is the order of the group K/K' =T /T".

Here, the sum is over all the elements of the finite group K/K’. The action of K’ on
Ere H'™(SY,) is trivial by the identification of the latter cohomology group as
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the space K’ invariants of H"™™(Sh’G). The equation of the Lemma (makes sense
and) holds in the cohomology group H""(Sh’G).

Proof of Lemma (4.2). Let o € H"(S(I")). Form the wedge product (3~ 0(&1)) A o
Now, the action by 6 preserves cup products in H*(S(I")). Note that
0(Er) Ao € H'(S(I)). Further, H(S(I")) = H"(X) = Cwg and 0 acts trivially on
H”(y). Therefore, 0(¢r) Ao = & A0~ (o). But, since o € H"(S(I')), the class o
is invariant under the action of K/K’. Therefore, 0(ép) Ao =& Aa for all 0
and we get

(Z 0(5r,)) Ao =mép A

To prove the Lemma, we must then show that £ A o = & A o By the definition of
the cycle class ¢r (see (2.4)), &r A o 1s a multiple Jwg of the canonical class wg
where A is defined by j(I')*(2) = Awy. We are thus reduced to showing that
JAIY () = j(I)*(2) for all o« € H™(S(I')). This is immediate from the definition
of the imbedding of H™(S(I')) in H™(S(I")) as the space of K invariants in
H™(ST)).

(4.3) Proof of Theorem 2. Suppose that o € H*(Sh’G) with Res(x) = 0. Let g € Gy
be arbitrary but fixed. Now, « € H*(S(I')) = H*(S%) for some congruence arithmetic
subgroup I' of G(Q). Here, K is the closure of I' in Gy. Thus, g(«) e
HX(S(I'") = H*(SY,) for some congruence arithmetic subgroup I of G(Q). We
may assume, by replacing I'" by a smaller subgroup if necessary, that I'" is a normal
subgroup of finite index in T'. Let & = [Sy(I)] be the cycle class corresponding
to I'". Define ¢ similarly.

We have the map j(I") : Sp(I") — S(I')) and j; = j(I")" o g. Since Res is a product
of j; and Res(a) = 0 it follows that j(I")" o g(«) = 0. By Remark (2.6), we obtain
that g(o) A [SgT)] =0, i.e,

g Aép =0. ey

Now Equation (1) still holds if we replace g by 0~ 'g where @ is any element of K since
the action of 0 on H*(Sh’G) leaves the subspace H*(S(I'")) = (H*(Sh’G))X" stable
(recall that K normalises K’). Thus

07" g(o) A & = 0 = g(o) A O(Ep). 2)

By summing over all § € K/K’ in Equation (2) and using Lemma (4.1), we obtain
that g(o) A &r = 0. This is equivalent to saying that o A g({r) =0 for all g € Gy.
By choosing a suitable linear combination and by using Theorem 1 we obtain that
oA [T’] = 0. This is Theorem 2.
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5. Hermitian Symmetric Domains

5.1. NOTATION

In this section, we will assume that X and Y are Hermitian symmetric domains and
that the imbedding f: ¥ — X is holomorphic. The complex tangent space p at
the identity coset eK,, of X = G(R)/K, then decomposes into a direct sum
p=p" ®p where pT(resp. p~) denotes the holomorphic (resp. anti-holomorphic)
tangent space at the identity coset. We have similarly a decomposition
Py = pi; @ py, with pj; C pt (and similarly p; C p~.

Denote by D and d the complex dimensions of the complex manifolds X and Y. In
our earlier notation (of Section 1), n = 2D and m = 2d.

Let x € sym?(py)* denote the restriction to p, of the Killing form on
go = Lie(G(R). Then, x defines a positive definite symmetric bilinear form on p,
which is K, invariant. It can be extended to a C-linear symmetric bilinear form
Kc on p=py® C.

The connected component C of identity of the centre of K, acts nontrivially on p.
Indeed, there exists an element J € C such that under the adjoint action, J acts by the
scalar i on p* (see [He], Chapter (VII), Theorem (4.5); there our element J is
denoted s9). We may thus write p* as the set of elements x — (£i)J(x) with x € p,.

Denote by v—7 the complex conjugation on g = gy ® C which leaves g, pointwise
fixed and acts by complex conjugation on the coefficients C. Then it is clear from the
last paragraph that the complex conjugation maps p* to p~. If v =x —iJ(x) € p*
with x € py then

kc(v, ¥) = k(x, x) + k(J(x), J(x)).

This shows that the Hermitian form 4 : (z, w) = kc(z, w) (with z, w € p™T) is positive
definite on p™.

5.2. THE CLASS L

By definition, the element J of the centre of K, (defined in Section (5.1)) acts by —1
on the tensor space p* ® p* (and similarly on p~ ® p~). In particular, there are
no K,-invariant vectors in the space p"®p" and in p  ®p~. Thus,
ke € () ® (p7)* C sym?(p*). However, the tensor representation (p*)* ® (p~)*
also occurs in

2 2 * 2 —\* * —\*

AP =ADOAG)®ED) @0 )"
Thus k¢ gives an element of

Homg_(A%p, C) = HX(X).

We denote the element of H 2(? ) thus obtained by Ls. When the group G is fixed, we
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will denote Lg by L. Note that for every torsion free cocompact I' as in (1.2), this
element L lies in H*(S(IN)).

Let (e) be any orthonormal basis of (p*)* under the dual of the Hermitian form 4
defined on p* in (5.1). Then,

L=Y eneenp". (1)

5.3. THE LEFSCHETZ THEOREM FOR L

We note that ([B-B]) the spaces S(I') are smooth projective varieties. It is also known
([B-B]) that the class L is (upto a scalar multiple) the class of an ample divisor on
S(I). It is then a consequence of the Lefschetz hyperplane section Theorem for
S(T) that if k < D, then the map a+>a A L/ on the space H/(S(T)) is injective
for all j < D — k. The injectivity can also be proved directly, as in Section 9, pages
60-61 of [A]).

5.4. NOTATION

We now take for Z the variety S%G for some open compact subgroup K C Gy such
that K N G(Q) is neat. Then one has a finite map j: SYx — S%. As in (1.3), let
¢ = [S%,,] denote the cycle class of the cycle S, in H*P~2(SY).

If we assume that X = G(R)/K, is an irreducible Hermitian symmetric domain,
then K, acts irreducibly on p*. Now

HX(X, C) = Homg_(A (p* ®p~). C) = Homg_(p* ® p~. C) = C

since p~ is the dual of p* as a K,-representation. We know that H 2()? , C) contains
L’ = —L. Hence the space of Gy-invariants in H*(Sh%(G, X)) is CL.

(5.5) Proof of Theorems 3 and 4. Now by assumption SHnK is a divisor in SY.
Therefore Y is a divisor in X and so, by the last paragraph, [ Y] is a non-zero multiple
of L. By Theorem 1 and 2, we get that if « € H*(Sh’G) is such that Res (2) = 0 then
a/\[ Y]=0. That is, A L = 0. Since d + 1 = D and the degree of « is k < d, the
Lefschetz hyperplane section Theorem tells us that o = 0. This proves Theorem 3.

Theorem 4 follows immediately since the pairs (G, H) of Theorem 4 satisfy the
hypotheses of Theorem 3.

(5.6) Proof of Theorem 5. If H(R) = SU(p 1), upto compact factors, then its
compact dual is ¥ = P? ¢ P" = X. Hence [Y] = L"". If Res (x) =0 for some
« € H"(Sh’G) with m < p, then by Theorem 2, o A [/)\’] = 0. But [,)\’] =L"" and
therefore o A L"7 = 0 (and the degree of « is m < p). By the Lefschetz hyperplane
section Theorem, we then have « = 0. Therefore, we have proved Theorem 5.
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6. Schubert Cells and the Cohomology of X

6.1. NOTATION

Let T C Ky be a maximal torus. Then, as is well known (and is easy to prove), T is a
maximal torus in G(R) as well. Let tg = Lie(7), t = t,Qr C, ®(t, T) = roots of T in
f, ®(g, T) =roots of Tc in g, ¥ (f, T) = a system of positive roots on f fixed once and
for all, ®* (g, T) = ®*(f, T) U ®(p*, T), where ®(p™, T) = the roots of T(C) in p*.

Given X €i Lie (T) such that p(X) >0 for all ‘positive compact roots’
v e ®F(§, T), we set

a=aX) = g"Dyn=08. £=0". u=dyu-0g,
where g* = centralizer of X in g. Then g(X) is stable under the Cartan involution 0
for the pair (g, fo). We have unp=unptr@unp . Let p =dimunNp*) and
g=dim(unp), and let k =p +q.

The complex conjugation on g = g, ® C leaving g, fixed pointwise, acts by (—1) on
ity, and hence converts positive roots into negative roots and takes p~ into (p)*;
denote the complex conjugation by vV on g and again by wW on the exterior
algebra (or the tensor algebra) of g. Then we set

et (q) =R unphHA A unNph) C}C\ pt (1)

and V' (q) = the smallest K,,—stable subspace of /k\ p* containing e (q) (note that if
uNnp- =0ie. g =0, then qis ‘holomorphic’ and V*(q) = V(q) = Ks,—span of e(q),
is irreducible as a K,,—module). However, ¥ *(q) need not be irreducible in general.

Note also that uN 1 = 0 (this is because the element X acts by strictly positive
eigenvalues on u and strictly negative eigenvalues on u~) Therefore, e*(q) # 0. Write
V(q) for the K, —span ofk e(q). Then V(q) Cf\ e A p~ and V(q) is a
K —irreducible subspace of A p(k = p+ ¢) (the irreducibility can be proved by
observing that the line e(q) is stabilised by the Borel subalgebra bx of the f which
is the sum of t and all the root spaces corresponding to the positive compact roots
occurring in f).

If (v;);c; is a basis of u N p, then complete it to a basis (v;)j € J of p. Let (vj’f)j € J be
the dual basis in p*. Define e(q* as the top exterior of the span of v (i € I). Let V(q)*
be the K, span of (e(q)*. Then V(q)* is indeed the dual of ¥ (q). Moreover, it is known
that the multiplicity of ¥(q) in A*p is exactly one ([V-Z], Section 6). Thus, V(q)* is
independent of the basis chosen.

By a Theorem of Kostant ([Kos]), the K-representation Ap™ is multiplicity free.
In particular,

VI () =EI0E® - ®E 2

with each E; irreducible as a K,-module, and E; # E; if i #j.
The exterior algebra A p is stable under complex conjugation and V(g) A p.
Moreover, kK < D = dim(p") < 2D = dim(p). We may form the wedge of V(q)
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and V(q) in Ap:
V(q) A V(q) C Ap.

Now V(q) ® V(q) contains e(q) ® e(q) as a cyclic vector. For, first consider the
translates of e(q) ® e(q) under Bg C K(C), where By is the Borel subgroup of
K(C) with Lie algebra bx = t®,c¢+.1)8,- Since Bk leaves e(q) stable and e(q) is
By invariant, we obtain all the vectors of the form e(q) ® Bg Bxe(q) in the K(C)-span
of e(q) ® e(q). Now By By is a Zariski open set in K(C) since By is opposite to Bg.
Hence e(q) ® V(q) lies in the K¢-span. Now translating elements of e(q) ® V(q)
by elements of Kc, we get: e(q) ®e(q) generates V(q)® V(q). Therefore
e(q) A e(q) generates V(q) A V(q).

From (1) we obtain e(q) = en(q) A ean(q), where ep(q) (resp. eahgq)) is the
holomorphic part A (unpt) of e(q) (resp. the antiholomorphic part A (1N p7)).
Therefore e(q) A e(q) is the same as

(en(a) A ean(a)) A (en(q) A ean(q)).

k
The first vector e;(q) A ean(q) is precisely et (q) € V(q) CA pT. By taking the
K,-spans we obtain:

Vo)A V(g) C V(@) @ V(). 3)

6.2. PRELIMINARY RESULTS

We wish to compute the integral

fk k(e (a) ® eF(@)duk)

. . .k k .
(1 is a Haar measure on K,,) which has values in A p™® A p~. Write
@M=&+ +¢&

according to the decomposition (2). By orthogonality (E; ® F_,-)K =01ifi #j. There-
fore we get

4
k(e*(q) ® eF(a)du(k) = /K k(& ® E)du(k). ©)
i=1 =~

Ky

Since e™(q) is a cyclic vector for V*(q), it follows from (2) that &; # 0 for each i.

Suppose p : Koo — U(n) is a unitary irreducible representation of K., on an
n—dimensional vector space C" =V, let ve V —{0}. Write v =ci&; + -+ cy&,
for the standard unitary basis ¢j,...,&, of V. Let ¢},..., ¢ be a dual basis of
V*, the dual of V. Consider the tensor representation V' ® V* of K. Write
k(v ® w) for the action of k € K, on an element v@w € V' ® V*. If v is as above,
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write v* =¢ref + - - - +¢,¢5. Then,
/ k(v @ v)du(k) = e / k(e; ® €)dpu(k).
K v K

It follows from Schur’s Lemma that

3y (&
/ p(k)(e,@e;f)du(k)=#<Zar®e:> )
o0 r=1
and
[ owve v = (D1ar) =0, 5
Kwp M) = i L, e

where Acry =Y 7 6 ® & .
Now let ’IE,* € E;®QE;, CApt® A p~ be the tensor corresponding to the space E;.
From (4) and (5) we obtain

—— (&P
/K ke (@) @ F@)duth) = Z( i Ei)AE;. (6)

i=1
We note that | & |? /dimE; = b; > 0 for each i. Now

e@re@erp=rpt ®@Ap~ and e(q) A e(q) = e*(q) ® e ().

Therefore, we get

4
[ ket neaut = > i ™

where each b; is strictly positive. We emphasize that (7) is not entirely formal, and
depends on the multiplicity one result of Kostant in (2).

Consider the ‘wedging map’ V(q) ® V(q) = V(q) A V(q) C Ap. By Schur’s
Lemma, (V(q) ® V(q))** = C and (7) shows that (V(q) A V(q)) > # 0. Therefore
the wedging map is an isomorphism on K -fixed vectors. From (5°) and (7) it follows
that for any & € V(q) — (0)

o ER
| KEA DA = (L Y b )

for some K,.-fixed inner product on V(q) (which is unique upto multiples anyway);
here again, b; > 0 for each i.

https://doi.org/10.1023/A:1002600432171 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002600432171

COHOMOLOGY OF COMPACT LOCALLY SYMMETRIC SPACES 245

We may replace in (8) & € V(q) by & € V(q)* where V(q)* is the dual of V(q). We
then get analogously, for & € V(q)*,

o HER .
| HEABUN) = [ Y b, (89

with b; > 0 for each i.

CHARACTERISATION AND PROPERTIES OF SCHUBERT CELLS

(6.3) It will be convenient to think of elements of H ’()? ) as elements of A p*. The
Killing form « is negative definite on ip, and hence identifies p with its dual. Under
this, (p)™ and (p)~ are dual to each other as K, representations. Note that under
the map v~V defined in (6.1), A*p*™ maps onto A*p~. If E C A¥p* is a K, stable
subspace and E is its image under the foregoing map, then E C Akp~ is the dual
of E.

Now by a Theorem of Cartan (see Equation (7) of Section (1.3))

H*(X) = Homg_(A (p* @ p"), C).

By the Theorem of Kostant quoted in (2) the representation A (p)" is multiplicity
free and we may write

k
APt = @pex E ©)

where each F is irreducible. The E; which occur in the decomposition (2) are again
elements of X;. Define i} s as the generator of the one dimensional vector space
(E ® (E))5 c (A (pH)*'® A (p7)*)** which is given by

IE= ) ene (10)

where the sum runs over an orthonormal basis e of E* (under the natural Hermitian
inner product on E* induced by the Killing form x; see (5.1)).

A theorem of Kostant ([Kos], Theorem (6.15)) says that these Az are proportional
to the cycle classes corresponding to the Schubert Cells in X= G(C)/P~(C). Here,
P~(C) is the connected subgroup of G(C) whose Lie algebra is & p~. We will abuse
notation slightly and refer to Az as ‘Schubert Cells’.

We will now gather together some properties of these ‘Schubert Cells’ Ag. If
E* C A"(pT)* and F C A*(p™)*, denote by E* A F* the span of vectors of the form
enf with e € E* and [ € F*.

(6.4) LEMMA. Let E and F be irreducible K., stable subspaces of N'p™ and p™
respectively. Then

ie A= (=1)"Y " cuir,
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where the sum is over all the irreducible subspaces F,, of E A F and each c,, is strictly
positive.

Proof. Equation (10) applied to Az and Ap implies that Az A Ap =Y e ACAf ASf
where the sum is over orthonormal bases (¢) and (f) of E* and F*, respectively.
Rewrite this as

ig N ip= (=1 (e Af) A@AS). (11)

Since 1g A A is K -invariant, we may replace both sides of the Equation (11) by
their integrals over K. Write E* A F* = @F M where each F,, C AfpT is irreducible.
Then, for every vector of the form e A f, we get (as in (8*) of (6.2))

[ kenn n @t = b2,

where b, = 0 for each p and is the norm of the projection of e A f" to the component
F:j of E* A F*. Therefore,

| ke nn A @nTidnt =3 e

where ¢, is the sum over all the b, as e and /" vary.

Since (e) and (f) form bases of E* and F*, it follows that if F, be fixed, then for
some e and f, the projection to Fy; of e A f is non-zero; therefore the corresponding
b, is strictly positive. Hence, all the ¢, are strictly positive. The Lemma now follows
from integrating both sides of Equation (11) over K.

(6.5) LEMMA. Let L be the element of Homg_(p™ A p~, C) defined in Section 5.
Then, for every integer k < D (with D = dim(X)), we get

Lk = (—l)k(k_l)/z Z Cf;LE.,

where F; runs over all the Ky, irreducible subspaces of N*p* and each ¢; is strictly
positive.

Proof. The proof is by induction. Assume k£ = 1. Then, by the definition of the
Hermitian inner product on p, we see that L =) e A€ where e runs over any
orthonormal basis of (pT)*. Write p* as a sum of irreducible representations E;
for the action of K, and pick an orthonormal basis (e;) for each j. Choose for
(e) the union of the bases (¢;) over all j. Then, we get (by (1) of Section (5.2))

L= Z ene= Z ;LE/
and the Lemma holds for k = 1.
Assume now that the Lemma holds for k& and write

Lf = (=DM gy,
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as in the Lemma. Then,
Lk+1 — (_l)k(kfl)/2 ZciiEj A AE”

where the sum is over all the irreducible E; C p* and all the irreducible E; C Nept
Now, by Lemma (6.4), we get

/115] AN iE,v = (—1)k ZCH;VFN,

where the sum is over all the irreducible representations F, C E; A E; and ¢, > 0.
Therefore,

LR = (=)D Zci Z Wi, (12)

where the sum is over all i, all j and all irreducible F, C E; A E; C AR+t and ¢, > 0.
In Equation (12), first fix F, and sum over all the 7 and j such that F, C E; A E;. We
then obtain Lemma (6.5) for LFt1.

(6.6) Remark. Suppose we are given any K.o-invariant metric on the real vector space
qo. This yields a K, invariant C-linear form p™ ® p~ C A%p which we denote by L.
The lemma (6.5) applies to L' as well (the proof is exactly the same). We will
use this remark later, where we take H for G and the restriction of Lg to Y for L.

(6.7) LEMMA. Let ff € H2k(?) be a non-negative linear combination of Schubert
Cells A and let L' be as in (6.6). If B A (L)P™* =0 then p=0.

Proof. Suppose to the contrary, that f§ is a positive linear combination of some
Schubert Cells 1g. Let ¢ = (—1)KP-ROHD-RD=K=D/2) Then Lemmas (6.4), (6.5)
and Remark (6.6) imply that ef A (L)’ is a non-negative linear combination
of Schubert Cells Ar,. Thus, to prove Lemma (6.7), we may assume that f§ is a
Schubert Cell /z. Then Lemma (6.5) shows that ef A (L))” *isa strictly positive
linear combination of 45, where F, is an irreducible subspace of E A AP~ p*. Thus,
B A (L)P~% vanishes if and only if E A AL~¥p+ = 0. This is impossible since the
wedge product pairing between AfpT and AP ¥p* (with values in the one
dimensional space A?p*) is non-degenerate. Thus, f = 0.

(6.8) LEMMA. Let Ag € Hk()?) be a ‘Schubert Cell ofj\( as before. Let}'\: Y — X be
the embedding of (1.5). Then, the restriction of Ag to Yisa non-negative sum of
‘Schubert Cells’ of Y: 7*(/15) = ) _ajig, where Fj runs through the set of irreducible
representations of KX occurring in Ak(p}}) and a; = 0 for each j. Moreover, the
restriction 7*(&15) =01ifand only if ENE(G, H, k) =0.

Proof. We will view the restriction /jK*(}VE) as K2 invariant linear form on
At @ Afpr. I v e Afpl and w e AFpy, then *(Ap)(v @ w) = Ap(ne(v) @ nz(w))
where 7z denotes the K., equivariant projection of AKp* to E (similarly define
np). Let F; C Akpl be K% irreducible. Then, it has (up to multiples) a unique
KT invariant linear form on it which may be chosen to be 1r,. Thus, there is a scalar
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¢ such that for all v € F; and w € F;, we have}'\*(}vg)(v ®w) = cjAr,(v ® w). Let v be
arbitrary and choose w =7. Then, ?‘().E)(v Qw)=Ap(v® w) > 0. Similarly,
25 (v ® w) = 0 which shows that ¢; > 0 for each j. If the restriction of 1g vanishes,
then the same equation shows that the K,.-equivariant projection to E vanishes
on the space A¥p}; and hence vanishes on its Ky-span E(G, H, k). By the multiplicity
one theorem of Kostant, this is equivalent to saying that £ N E(G, H, k) = 0. This
completes the proof.

(6.9) LEMMA. Let f = ) ¢ciAg, be a cohomology class in HZk(/)?) where E; are certain
irreducible subspaces of N*v* and for each E;, the coefficient c; is strictly positive. If
the restriction J*(B A L9~%) = 0 then (®E;) N E(G, H, k) = 0.

Proof. We need only prove the Lemma when k < d = dim(Y) since otherwise the
restriction of f is trivially zero and E(G, H, k) also vanishes because /\"p}, =0.
Assume k <d. Suppose B =ger 7*(,8). Let L’ :}'\*(L) be the restriction of
Le H X)to Y. Let y = B A (L)

By (6.6) (applied to the space Y), (— 1)@ @—k=D/2 rd—k i 4 strictly positive linear
combination of Az where F runs through a/l K irreducible subspaces of AY~*p};. By
Lemma (6.8), ' is a non-negative sum of Schubert cells on Y.

Hence Lemma (6.7) applied to Y shows that B A (L)% = 0if and only if / = 0.
By the second part of Lemma (6.8), This happens if and only if
E;NE(G, H, k) =0 for each E; occurring in the expression of § as a non-negative
linear combination of Schubert cells 41z,. The multiplicity one Theorem of Kostant
then implies the conclusion of Lemma (6.9).

7. Proof of Theorem 6

(7.1) We prove Theorem 6. Suppose that « € H*(Sh’G) is strongly primitive of type
A,. Suppose Res(x) = 0. Then, the criterion of Theorem 2 says that «a A[Y] = 0.
Recall (from Equation (6) of Section (1.2)) a version of the Matsushima formula:

H*(Sh’G), C) = Homg(A p, C*(GQ\(G(R) x G/))(0).

We temporarily denote by C*°(0) the space of smooth functions on the quotient

G(ON(G(R) x Gy)
which are killed by the Casimir. Let {£;; I} be an orthonormal basis of V(q)* Cf\ p*
(for the natural Hermitian metric / as in Section (5.1), extending the Killing form
on py to p =py ® C). Let
a= ;& € H"(Sh’G) CA p* ® C(0) (1)
T

(the inclusion arising from the Matsushima formula).
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Our class « is of type g, and
2 € (V(9)" ® C*(0)) = Homg (V(q), C*(0));

write o = >_ @;&;. Now, V(q) is irreducible. Hence the map o : V(q) — C™(0) (being
Ky -equivariant) is injective. In particular, the ¢, are linearly independent.
Now a A [Y]=0. Then (1) shows that

aA[Y] =D & A Do, )

o~

Since the functions ¢; are linearly independent, (2) shows that & A[Y] =0 for

o~

each I i.e. V(q)* A[Y]=0. This proves the first part of Theorem 6.

Since e(q)* generates V' (q)* as a K, module, the condition ¥V (q)* A[Y] = 0is equiv-
alent to e(q)* A[Y] = 0. This implies in particular, that

e(a)* A e(@) A[Y]=0. 3)

Translate both sides of (3) by elements k € K, and integrate over K.,. We obtain
from Equation (7) of (6.2) and the K., invariance of [/}\’] that O  bilg )N [/)\’] =0.
Note that here the sum is over all the E; which are irreducible subspaces of
V*(q) and that b; > 0. Therefore, by the definition of the cycle class [/Y], the
restriction of }_ b;Ag. A L7 to the cycle Y is zero. Then, Lemma (6.9) implies that
(®E)NE(G, H, k) =0. But ®F; = V*(q). Therefore, V*(q) N E(G, H, k) = 0. This
completes the proof of Theorem 6.

8. Cup Products

(8.1) Now let G imbed diagonally in G x G. By the Kunneth isomorphism
H*(Sh%(G x G)) = H*(Sh’G) ® H*(Sh’G). Moreover, Res (2 ® f) = o A B, if Res
is the restriction from Sh%(G x G) to Sh’G.

Let a,0/ be strongly primitive classes of degrees &k and k' with
k+k <dim(X) = D, of type q, q'. By Theorem 2, if g(«) A o/ = 0 for all g € Gy, then
(®a) A [K] = 0. This is the first part of Theorem 7.

We will now prove that the criterion (1) of Theorem 7 holds. By the general cri-
terion of Theorem 6, the product g(a) A &’ = 0 for all g € Gy only if the intersection
E(GxG, G k+K)YNVT(q®dq)=0 (it is easily checked that o ® o/ is strongly
primitive of type m = A,py Where m corresponds to the parabolic subalgebra
qa®q of gdg). It is also immediate from the definition of VT that
VHa®q)=Vt(q) ® VT(q'). Therefore it is immediate from Theorem 6 that if
gla) Ao/ =0 for all g € Gy then

EGxX G, G k+Kyn(V(q) ® V*(q)) =0.
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We now prove that the conditions (1) and (2) of Theorem 7 are equivalent. Con-
sider the natural wedging map

k K k+k'
PAPT®ADPT = A ph.

Now pt @ pTis a (K x Ky )-module and the above wedging map is equivariant for
K., with K, acting diagonally on the left.

Let U(D) be the unitary group of the Hermitian metric preserved by K on its
action on p*. Then /\k pT is an irreducible representation of U(D) and occurs with
multiplicity one in the (k 4 k')—fold tensor product (p)* ® --- ® (p)* (this is well

(k+k")—times
known by the Theory of Young Diagrams:ksek? [F-H], Theorem (6.3), (2), applied

toA=(,1,---,1) ?nd d = k + k). Hence hy p*™ occurs with multiplicity one in
the representation A p+® /\ pt

But the inclusion of /\ A(p*) (where A(p*) = the diagonal in pt @ p*) in
/\ (p* @ p™) induces an inclusion /\ pres APt l/c\ pT. On the other hand there
is a natural (wedging) projection A p+®l/€\p 2 /\k pT; both these maps are
g (D)—k equwarlar}ct » and U(D) D A(Ky) where K, acts diagonally as
APT® A p+ Since A p™ occurs with multiplicity one, Kerep = Orthogonal comp-
lement of /\ A(pT) in }\ PR /k\ pT under a metric (, ) on the latter space invariant
under U(D) x U(D) action.

Suppose now V*(q) A V(q') = 0. Then

. ) ko \T
V()@ V(q) cKerp=| A Ap .

Ktk
Let & € p A(pT),and v € V(q) ® V(q), and k € Ky, x Kx. Since V*(q) @ V(q) is
K x Ky-invariant, we get

0= <k(V)’ 6) = <V, k(&))

k4!
forall k € Koo X K, and all & € A A(p™). By taking the (K, x Ky)-span of &, we
obtain

(v, E(G x G, G, k+k))y =0 (¥v e VT (q) @ VH({)).

Therefore: V' (q)® V'(q) is in the orthogonal complement of E =
EGxG,G k+K),ie.,

V(@ ® V(@)]NE=0.

Conversely, suppose [V*(q)k®,V+(q/)] NE =0.Then V*(q) ® V(¢) C E*. In par-
ticular, V*(q) ® V*(q) C ( ~ A(p™)T = Kerg. Therefore (V1 (q) ® V1(q) =0
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i.e.
Vi@ A V() =0.

We have shown that (1) < (2). This completes the proof of Theorem 7.

(8.2) Proof of Theorem 8. Let a, o be non-zero classes of type q,q on Sh’G,
G = U(n, 1) of degrees k and k' with k + k' < n. Note that D = n in this section .
The compact dual of X is P"(C), whose cohomology is generated by a non-zero
element L of H*(P"(C)). Let A be the diagonal in the product of P"(C) with itself,
and [K] the associated cycle class in the cohomology of the product. Then the
Kunneth isomorphism implies that

[Al =)Ll ® L") (1)

where the sum is over i from 0 to n and ¢ = +1.
Suppose to the contrary, that g(a) A «’ = 0 for all g € Gy. Now, Theorem 7 says
that if g(«) Ao’ =0 for all g € G, then

~

(x® o) A[A] = 0. 2

Compare the Kunneth components of both sides of (2). In particular, we get from (1)
that

(A L%y @ (o A LK) =0. 3)

Note that by assumption, k < n — k’. The Lefschetz hyperplane section Theorem
then implies that a A L"% £ 0 and that o/ A L* # 0. This contradicts (3). Hence
Theorem 8 follows.

(8.3) Proof of Theorem 9. l}le proof is similar to that of Theorlgm 8. ka X is the
Sggnpact S_l}(:dl, then H*(X)=CL. If k, k' <[n/2], then Apt=AC" and
A pt=(CA C" are irreducible representations of (SO(2) x SO(n)) = K., (see
[F-H], Theorem (19.2) and Theorem (19.14)). Therefore by Schur’s Lemma and

(7) of (1.3),
H*(X)=CLF, H"%X)=CL"*.

If x and o are as in Theorem 9, and if g(«) A o’ = 0 for all g € Gy, then we get, as in
the proof of Theorem 8§, that

(AL e @ ALF)=0. 4

By assumption k < [n/2] < n — k', and the degrees of « and o are k and X’. Then (cf.
proof of Theorem 8) Lefschetz’s Theorem on hyperplane sections contradicts (4).
Therefore Theorem 9 follows.
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