
Cohomology of Compact Locally Symmetric Spaces

T. N.VENKATARAMANA
School ofMathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba,
Mumbai 400 005, India. e-mail: venky@math.tifr.res.in

(Received: 23 July 1999; accepted in ¢nal form: 28 December 1999)

Abstract. We obtain a necessary condition for a cohomology class on a compact locally sym-
metric space S�G� � GnX (a quotient of a symmetric space X of the non-compact type by a
cocompact arithmetic subgroupG of isometries ofX ) to restrict non-trivially to a compact locally
symmetric subspace SH �G� � DnY of GnX. The restriction is in a `virtual' sense, i.e. it is the
restriction of possibly a translate of the cohomology class under a Hecke correspondence. As
a consequence we deduce that when X and Y are the unit balls in Cn and Cm, then low degree
cohomology classes on the variety S�G� restrict non-trivially to the subvariety SH �G�; this proves
a conjecture of M. Harris and J-S. Li. We also deduce the non-vanishing of cup-products of
cohomology classes for the variety S�G�.
Mathematics Subject Classi¢cations (2000). 11F75, 22E40.

Key words. restriction maps, cohomology of arithmetic groups.

Introduction

(0.1) In this paper we are concerned with restriction of cohomology (with C
coef¢cients) of a compact Shimura variety Sh�G;X � to a smaller Shimura variety
Sh�H;Y �. In [C-V] we gave an explicit criterion (depending only on the imbedding
of H�R� in G�R�� for holomorphic cohomology classes to vanish on the smaller
Shimura variety. We exploited the fact that holomorphic forms on smooth projective
varieties are harmonic for a suitable (Kahlerian) metric.

Here we give such a criterion even when the cohomology class in question is not
holomorphic; the restriction of a (non-holomorphic) harmonic form o on
Sh�G;X � to Sh�H;Y � does not appear to be harmonic in general (here, the form
o is harmonic with respect to the natural metric on Sh�G;X � arising from the Killing
form on the group G�R�). However, as we will show (Theorem 2), it is still possible to
give a criterion, based purely on the linear algebra of G�R�, for the restriction ofo to
be non-zero. Here the restriction is in the sense of [Oda], [H-L], [C-V], [M-R]. We
assume throughout this paper that the degree of the cohomology class does not
exceed the complex dimension of Sh�H;Y �.

As an application, we will prove that if G � SU�n; 1� and H � SU�nÿ 1; 1�, then
the cohomology of Sh�G;X � in degrees W nÿ 1, restricts injectively to that of
Sh�H;Y �. (See Theorem 4, (1)). This con¢rms a conjecture of Harris and Li (see
[H-L]). We also show that if G � SO�n; 2� and H � SO�nÿ 1; 2�, then the
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cohomology of Sh�G;X � in degrees W nÿ 1 restricts injectively to that of Sh�H;Y �
(Theorem 4, (2)) (see [H-L] for similar statements).

The proof of our criterion is based on Theorem 1, which says that if we think of
ShK\H �H;Y � as a cohomology class on ShK �G;X �, then the span of the
G�Af �-translates of this cycle class contains a nonzero G�Af �-invariant vector. Here
K � G�Af � is a compact open subgroup.

In Theorem 6, we re¢ne the criterion of Theorem 2 mentioned above, in terms of
the `representation type' Aq of the cohomology class in question. Theorem 6 is
the analogue of a condition obtained for holomorphic classes in [C-V]. The criterion
of Theorem 6 can be used to obtain a condition for the vanishing of cup product
of classes in H��Sh�G;X �� (Theorem 7). As an application (Theorems 8 and 9),
we show that cup products of low degree classes on Sh�G;X � do not vanish (in
a virtual sense), if the group G is SU�n; 1� or SO�2; n�.

(0.2) We now describe the contents of the paper more precisely.
Let H and G be connected semisimple algebraic groups over Q all of whose Q

simple factors are isotropic over R. Let f : H ! G be a morphism of Q-algebraic
groups with ¢nite kernel. Let g0 and h0 denote, respectively, the real Lie algebras
of G�R� and H�R�. Let g, and h respectively denote the complexi¢cations of the
real lie algebras g0 and h0.

By assumption, the map f has ¢nite kernel and, hence, induces an injection
f : h0! g0. Choose (as one may, by a Theorem of Mostow ([M])) a Cartan
involution y of g0 whose restriction to h0 is a Cartan involution on h0. Let K1 (resp.
KH
1) denote the set of points of G�R� (resp. H�R�) ¢xed by y. Then, K1 (resp.

KH
1� is a maximal compact subgroup of G�R� (resp. of H�R�). Moreover, it is easy

to see that the group of real points of the kernel of the map f : H ! G is contained
in KH

1 and that the inverse image of K1 under f is precisely KH
1. Write

X � G�R�=K1 and Y � H�R�=KH
1. The map f induces a map of symmetric spaces

Y ! X which we again denote by f .
Let k0 and kH0 denote the real Lie algebras ofK1 andKH

1; respectively. With respect
to the involution y write the `Cartan decompositions' g0 � k0 � p0 and h0 � kH0 � pH0
of g0 and h0; respectively. Denote by k, kH , p and pH ; respectively, the com-
plexi¢cations of k0, kH0 , p0 and pH0 .

From now on, we will make the simplifying assumption that the groups G�R� and
H�R� are connected. This is not, strictly speaking, necessary (because we may replace
G�R� by its connected component of identity), but it considerably simpli¢es the state-
ments and notation.

Denote by Af the ring of ¢nite ade© les over Q. The natural inclusion of Q in Af

induces an imbedding of the group G�Q� in the group G�Af �. Denote by Gf the
closure of G�Q� in G�Af �. De¢ne Hf similarly.

Let K be a compact open subgroup of G�Af � such that the group G � G�Q� \ K is
a torsion free subgroup of G�Q�. The groups G are the (torsion free) `congruence
arithmetic subgroups' of G�Q�. Denote by S�G� the locally symmetric space
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GnX . Denote by G \H the inverse image of G � G�Q� under the map
f : H�Q� ! G�Q�. Write SH �G� for the locally symmetric space G \HnY (note that
G \H is not, in general, torsion free since it contains the ¢nite group
Ker�f � \H�Q�, where Ker�f � is the kernel of f ; however, this ¢nite group is con-
tained in the centre of H�R� and hence acts trivially on the symmetric space Y ;
thus, SH �G� is still smooth, and is covered by Y ). We get a smooth map

j � j�G� : SH �G� ! S�G�; �0�
for each torsion free congruence arithmetic subgroup G of G�Q�.

In the sequel, ifV is a topological space, we writeH��V � for the cohomology group
H��V ;C� of V with coef¢cients in C.

From now on we will assume that G and H are anisotropic over Q. Consequently
(by a Theorem of Borel and Harish-Chandra), the spaces S�G� are compact. By
the Matsushima formula (see (1.2)), the space of harmonic forms on S�G� may
be identi¢ed with

H��S�G�� � HomK1�^�p; C1�GnG�R���0��: �1�
(We have already used the fact that S�G� is compact in identifying the cohomology of
S�G� with the space of harmonic forms.) Here, C1�GnG�R���0� is the space of
C-valued smooth functions on the quotient GnG�R�, which are annihilated by
the Casimir of g.

NowY is imbedded inX . Let bY and bX be the compact duals ofY andX . There is a
natural metric on the dual symmetric space bX which is invariant under the action of a
maximal compact subgroup of the group G�C� of complex points of the group G (see
(1.3)) under which, the space of harmonic forms on bX may be identi¢ed with

H��bX � � HomK1�^�p;C�: �2�
From (1) and (2), we obtain a natural inclusion ofH��bX � � H��S�G��, by identifying
C with the space of constant functions on the quotient GnG�R�.

Suppose that G0 is a congruence arithmetic subgroup ofG�Q� contained in G. Then
there is a natural inclusion i�G;G0� of H��S�G�� in H��S�G0��, induced by the ¢nite
covering map S�G0� ! S�G�. Thus we get a direct system of cohomology groups
H��S�G�� indexed by congruence arithmetic subgroups of G�Q� and maps i�G;G0�
for every G0 � G. Consider the direct limit of the spacesH��S�G�� as G varies through
congruence arithmetic subgroups of G�Q�. We denote this direct limit by H��Sh0G�
(the notation seemingly implies that the direct limit is the cohomology of a suitable
topological space Sh0G; however, in the present paper, we will only use properties
of the direct limit, and hence for our purposes, H��Sh0G� is merely an abbreviation
for the direct limit of the cohomology groups H��S�G��.

The Matsushima formula (1) then takes the form (see Equation (6) of (1.2))

H��Sh0G� � HomK1�^�p; C1�G�Q�n�G�R� � Gf ���0��: �3�
(recall that Gf is the closure of G�Q� in G�Af �; in (3), G�Q� � G�R� � Gf where the
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diagonal map of G�Q� in the product imbedsG�Q� as a cocompact discrete subgroup
of G�R� � Gf . In (3), C1�G�Q�n�G�R� � Gf ���0� denotes the space of `smooth'
functions (i.e. smooth on G�R� and invariant under an open compact subgroup
of the totally disconnected group Gf ) on the quotient G�Q�n�G�R� � Gf � which
are annihilated by the Casimir of g. From (2) and (3) we get a natural imbedding
of H��bX � in H��Sh0G� identifying C with the space of constant functions on the
quotient G�Q�n�G�R� � Gf �.

Now (3) shows that there is a natural action of the group Gf on the direct limit
H��Sh0G�, since Gf acts by right shifts on the space

C1�G�Q�n�G�R� � Gf ��0�

Given g 2 Gf denote again by g the map onH��Sh0G� induced by right translation by
g on the space C1�G�Q�n�G�R� � Gf ��0�. The spaceH��bX �may be identi¢ed with the
space of Gf -invariants ofH��Sh0G�. If G denotes the closure of G in Gf � G�Af � then
H��S�G�� may be identi¢ed with the space of G-invariant vectors in H��Sh0G� (see
Sections (1.2) and (1.3) for the proofs of these assertions).

Letm; n denote, respectively, the dimensions of the real manifolds SH�G� and S�G�.
Write n � m� �nÿm�. Now, closed differential forms on bX of degree m can be
pulled back to the m-dimensional (oriented) submanifold bY and integrated onbY . We thus get a linear form on Hm�bX � which may be identi¢ed, by Poincarë duality
for the cohomology of S�G�, with an element (the `cycle class') �bY � of Hnÿm�bX � (see
(2.4)). Under the identi¢cation of H��bX � with the space of Gf -invariants in
H��Sh0G�, we thus obtain an element in Hnÿm�Sh0G� which we again denote by �bY �.

Similarly, closed differential forms of degree m on S�G� can be pulled back to the
m-dimensional manifold SH �G� under the map j�G� : SH �G� ! S�G� and integrated
over SH �G�. We thus get a linear form on Hm�S�G��, which may be identi¢ed, by
Poincarë duality for the cohomology of S�G�, with an element of Hnÿm�S�G��.
We denote this element (the `special cycle class') by xG � �SH �G�� 2 Hnÿm�S�G�� (see
(2.5)). Note that by the last sentence in the preceding paragraph, the latter
cohomology group may be identi¢ed with a subspace of the direct limit
Hnÿm�Sh0G�. Thus, we view �SH �G�� as an element of Hnÿm�Sh0G�.

We are now in a position to state our ¢rst main result.

THEOREM 1. Denote by VG the C-span of Gf -translates of the cycle class
xG � �SH�G�� in the direct limit cohomology group Hnÿm�Sh0G�. Then the space of
Gf -invariants in VG (is at most one dimensional and) is generated by �bY �.

Theorem 1 is proved (see Section 2) by using the complete reducibility of the direct
limit H��Sh0G� as a module over Gf . This is shown to imply that the space of
Gf -invariants inVG is spanned by the projection Z of the cycle class xG. By integrating
forms in Hnÿm�bX � over Z we obtain that these integrals are proportional to the
integrals over bY . This implies Theorem 1.
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(0.3) We will now de¢ne the `Restriction map' which we mentioned brie£y at the
beginning of the introduction (see (0.1)). Return now to the Equation (0). Take
the direct limit as G varies over all the congruence arithmetic subgroups G of
G�Q�, in the Equation (0). We then get a map

j� : H��Sh0G� ! H��Sh0H�:

Now an element g 2 Gf acts on H��Sh0G� as explained in the paragraphs preceding
Theorem 1. Denote by j�g � j� � g the composite map. De¢ne the `restriction map'
denoted Res, as the product

Res �
Y

j�g : H��Sh0G� !
Y

H��Sh0H�; �4�

where the product is over all the elements g 2 Gf .
Our main result is a necessary condition for the vanishing of the restriction map

de¢ned in the foregoing. It is an easy consequence of Theorem 1. In the following,
if b; d 2 H��Sh0G� then b ^ d denotes the cup product of these two classes.

THEOREM 2. If a 2 Hm�Sh0G�, then Res�a� � 0 only if a ^ �bY � � 0.

Theorem 2 is proved by observing that the vanishing of the restriction of a class a
implies the vanishing of the cup-product j�g �a� ^ xG for every g 2 G�Q�. This in turn
implies (see Section (3)) the vanishing of a ^ g�xG� for every g 2 Gf . By taking a
suitable linear combination of these g�xG� and by using Theorem 1, we obtain
Theorem 2.

(0.4) Suppose now that X is an irreducible Hermitian symmetric domain, that Y is
also Hermitian symmetric and that the map f : Y ! X is a holomorphic imbedding.
If G is the semisimple part of a reductive group G� satisfying the axioms in [D] and Z
is the centre of G�, then the space Sh0G �def G�Qn�X � Gf � is a connected
component of (the space of C-points of) the Shimura Variety Sh�G�;X � given
by Sh�G�;X ��C� �def G��Qn�X � G�Af � where X � G��R=Z�R�K1.

If Y has codimension one in X , then SH �G� is a divisor in S�G�. Moreover, it is
known that S�G� is a smooth projective variety ([B-B]). It can also be proved that
�bY � (upto �1� is a Lefschetz class on S�G� for each torsion free (cocompact) G
as in the foregoing. From Theorem 2 and Lefschetz's theorem on hyperplane sections
we obtain

THEOREM 3. If dim�X � � 1� dim�Y � and X is an irreducible Hermitian symmetric
domain, then

Res: Hk�Sh0G� !
Y

Hk�Sh0H�

is injective for kW dim�Y ��� d � Dÿ 1�.
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As an application, we obtain

THEOREM 4. (1) If G�R� � SU�n; 1� upto compact factors andH�R� �SU�nÿ 1; 1�
upto compact factors, then

Res: Hk�Sh0G� !
Y

Hk�Sh0H�

is injective for all kW nÿ 1.
(2) If G�R� � Spin�2; n� and H�R� � Spin�2; nÿ 1� up to compact factors then

Res: Hk�Sh0G� !
Y

Hk�Sh0H�
is injective for all kW nÿ 1.

(3) If G�R� � Sp2;H�R� � Sp1 � Sp1, then

Res: H2�Sh0G�� !
Y

H2�Sh0H��
is injective.

Remarks. In Theorem 4 the imbeddings of the non-compact factors of H�R� in
those of G�R� are the natural ones (e.g. as in Section 3 of [C-V]). For example,
in (1) of Theorem 4, SU�nÿ 1; 1� is that subgroup of SU�n; 1� which leaves invariant
the ¢rst basis vector e1. Here e1; � � � ; en; en�1 is the standard basis of Cn�1 and the
latter is the standard representation of SU�n; 1�. The other imbeddings (2) and
(3) of Theorem 4 are de¢ned similarly. We do not specify the Q-structures and
the Q-imbeddings involved, because the statement and the proof of Theorem 4
do not use the speci¢c nature of the Q-imbedding.

The parts (1) and (2) of Theorem 4 were conjectured by Harris and Li ([H-L]) and
proved by them for a number of degrees k (see [H-L] for precise statements). In fact
our approach was suggested by an attempt to answer their question: does the linear
span of the divisors fg�Sh�H��; g 2 G�Af �g contain a very ample divisor? As we have
remarked in the paragraph preceding the statement of Theorem 3, the answer is
yes, and the ample divisor may be taken to be a divisor (upto �1� on the compact
dual bX .

The analogue of (3) when G is isotropic over Q, i.e., G is the split Sp2, was proved
by Weissauer ([W]); he showed that H2�S�G�� injects into (a direct sum of) the
cohomology of a product of modular curves.

Theorem 2 also yields the following:

THEOREM 5. Suppose G�R� � SU�n; 1� and H�R� � SU�p; 1� upto compact factors
(with pW nÿ 1). Then

Res: Hk�Sh0G� !
Y

g2G�Q�
Hk�Sh0H�

is injective for all kW p .
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We stress that in Theorem 5 we do not assume that G (over Q� contains a
Q-subgroup, whose real points form a group isomorphic (upto compact factors)
to SU�k; 1� for every kW nÿ 1 but only that G (over Q� contains a Q-subgroup,
the group of whose real points ^ up to compact factors ^ is isomorphic to
SU�p; 1� for the integer p in question. Here again the imbedding of the real group
SU�p; 1� in the real group SU�n; 1� is the natural one: if e1; � � � ; en; en�1 is the standard
basis of the standard representation Cn�1 of SU�n; 1�, then SU�p; 1� is the subgroup
of SU�n; 1� which leaves the ¢rst nÿ p vectors of this standard basis invariant.
We do not need to specify the Q-imbedding of the group H in the group G, since
the statement (and the proof) of Theorem 5 does not depend on the Q-imbedding.

(0.5) So far, our criteria have been independent of the `in¢nity type' of the
cohomology class a but dependent only on the degree of the cohomology class.
We can split the cohomology of Sh0G in terms of the `representation type' at in¢nity
and obtain more precise information on the vanishing of the restriction map.

Rewrite the Matsushima formula (cf. Lemme (3.5) (ii) of [Cl 3])

H��Sh0G� � �m�p1 
 pf �H��g;K1; p1� 
 pf : �5�

Here,H��g;K1; p1� denotes the relative Lie algebra cohomology, p1 is (the space of
K1-¢nite vectors in) a unitary irreducible representation of G�R� and pf a unitary
irreducible admissible representation of Gf . The number m�p1 
 pf � is the
multiplicity with which the representation p1 
 pf of G�R� � Gf occurs in the space
of square integrable (with respect to the Haar measure) functions on the compact
quotient G�Q�n�G�R� � Gf �.

Assume now that X is Hermitian Symmetric.
The representations p1 with non-trivial �g;K1�-cohomology (such represen-

tations will be referred to as cohomological) are classi¢ed as the modules Aq (see,
e.g., [V-Z]) in terms of certain y-stable parabolic subalgebras q of the complex
Lie algebra g ((recall that y is the Cartan involution on g induced by the pair
(G�R�;K1)). Given a parabolic subalgebra q as in Section (6.1), let p1 � Aq be
the associated cohomological representation. Let u be its nilradical, denote by k
the dimension of the space u \ p, and V �q� the K1-span of the top exterior power
of u \ p in ^kp. Denote the top exterior power of u \ p by e�q�. This is a line in
^kp. Let uÿ be the `opposite' of u (see Section (6.1)). It can be shown that
dim��u \ p�� � �uÿ \ p��� is also k � dim�u \ p�. Write V��q� for the K1-span of
the top exterior power e��q� of �u \ p�� � �uÿ \ p��.

We will say that a cohomology class a 2 Hk�Sh0G� is of type Aq if under the
Matsushima isomorphism (5), a lies in the component corresponding to p1 � Aq

on the right hand side of (5). If, further, the degree k of the class a is the dimension
u \ p as in the last paragraph, then we will say that a is strongly primitive of type
Aq.
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From now on, we will assume that X and Y are Hermitian symmetric and that
f : Y ! X is holomorphic. For an integer k, denote by E�G;H; k� the K1-span
of the kth exterior power ^kp�H in the space ^kp�.

THEOREM 6. With the foregoing notation, suppose that a is a strongly primitive
class of type Aq of degree k. Suppose that Res�a� � 0. Then,

(1) V �q�� ^ �bY � � 0.
(2) The intersection V��q� \ E�G;H; k� � 0.

Remark.Note that �bY � is an element of H��bX � �^� p�. Here, p� is the dual of p. In
(1) of Theorem 6, V �q�� �^k p� similarly denotes the dual of V �q� and the Equation
(1) holds in the exterior algebra ^� p�. Similarly, Equation (2) of Theorem 6 holds
in the exterior algebra ^� p�.

Remark. If a is holomorphic, then (1) of Theorem 1 is equivalent to the condition

all the Gf -translates of a vanish on Sh0H: �0�

The equivalence of (0) and of (2) of Theorem 6 is exactly the criterion obtained in
[C-V] for holomorphic cohomology classes a.

0.6. CUP PRODUCTS

Note that if a and b are cohomology classes on S�G�, then the restriction to the
diagonal of the class a
 b on the product S�G� � S�G� is the cup product a ^ b.
Denote bybD the diagonal in the product bX � bX . Let �bD� be the associated cycle class
in H��bX � bX �.

By using the criterion of Theorem 6 to the situation of cup products we obtain the
following.

THEOREM 7. Let a and a0 be strongly primitive cohomology classes in H��Sh0G� of
degrees k and k0, and of type Aq and Aq0 , respectively. If g�a� ^ a0 � 0 for all
g 2 Gf and if k� k0WD then �a
 a0� ^ �bD� � 0. Further, we have

E�G� G;G; k� k0� \ �V��q� 
 V��q0�� � 0 �1�
and

V��q� ^ V��q0� � 0: �2�
(Here D is the complex dimension of the Hermitian symmetric domain X.)

Moreover, these two conditions (1) and (2) are equivalent.

Remark. Note that if a and a0 are holomorphic classes, then ([C-V], Section 1)
V��q� and V��q0� are irreducible and e�q� ^ k0e�q0� generates V��q� ^ V��q0� as a
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K1-module, (here k0 is the longest element of the Weyl group of �K1;T � and T is a
¢xed maximal torus in K1�). Then the condition V��q� ^ V��q0� � 0 of Theorem
7, is equivalent to the condition

e�q� ^ k0e�q0� � 0;

i.e. the intersection of u \ p� and k0�u0� \ p� in p� is non-zero. This is exactly the
criterion of [C1] for the vanishing of the cup product g�a ^ a0 for all g 2 Gf .
As applications, we have

THEOREM 8. Let G�R� � SU�n; 1� up to compact factors. Let a; a0 be non-zero
cohomology classes of degrees k; k0 in H��Sh0G� with k� k0W n. Then there exists
a g 2 Gf such that g�a� ^ a0 6� 0:

Remark. In the holomorphic case, this is proved in [S1] and [C2].

THEOREM 9. Let G�R� � Spin�n; 2� upto compact factors. Let a; a0 be non-zero
cohomology classes of degrees k; k0 with k; k0 < �n2� (where �n2� is the integral part).
Then there exists a g 2 Gf such that g�a� ^ a0 6� 0.

Remark. Related results are proved in [Ku].

1. The Structure of H��Sh0G� as a Gf Module

1.1. THE STRUCTURE OF H��Sh0G�AS AN ALGEBRA

As in the introduction, let G be a connected semisimple algebraic group de¢ned over
Q. Therefore, G is an almost direct product of Q-simple connected Q-subgroups Gi

of G: G � G1G2 � � �Ga. Assume that each Q simple factor Gi is isotropic over R (i.e.
that Gi�R� is non-compact for each i). We will assume that G�R� is connected.
Let K1 be a maximal compact subgroup of the group G�R� of real points of G.
Form the symmetric space X � G�R�=K1 as in the introduction.

LetAf be the ring of ¢nite adëles overQ. The natural imbedding ofQ in the ¢nite
adeles Af induces an imbedding of G�Q� in the group G�Af �. Denote by Gf the
closure of G�Q� in the group G�Af �. Since G�Af � is totally disconnected, so is
Gf and a fundamental system of neighbourhoods of identity in Gf is provided
by the intersections K � K0 \ Gf where K0 runs through compact open subgroups
of G�Af �. Note that the group K is a compact open subgroup of Gf and that
the intersection G � K \ G�Q� is a congruence arithmetic subgroup of G�Q�. Con-
versely, by de¢nition, a congruence arithmetic subgroup G of G�Q� is an intersection
K \ G�Q� for a compact open subgroup K of Gf . Then the density of G�Q� in Gf

immediately implies that the closure of G in Gf is precisely K . We now assume that
K is so chosen that the group G � K \ G�Q� is torsion-free. Then, G acts properly
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discontinuously, without ¢xed points on the symmetric space X and thus
S�G� � GnX is a manifold, covered by X .

If M is a manifold, denote by O��M� the space of smooth differential forms on M
(i.e. sections of the exterior powers of the complexi¢ed cotangent bundle of M).
This is an algebra under wedge product (which is not commutative in general).
It contains as a subalgebra, the subspace O�0�M� of closed differential forms.
The space of exact forms is a two sided ideal in the algebra of closed forms. Thus
we get, by de-Rham's Theorem, an algebra homomorphism from O�0�M� onto
the cohomology algebra H��M� of M (with coef¢cients in C), whose kernel is
the space of exact forms.

Let g; k; p be, respectively, the complexi¢ed lie algebra ofG, ofK1, and the orthog-
onal complement of k in g with respect to the Killing form. Then the space O��GnX �
may be naturally identi¢ed with

HomK1�^�p; C1�GnG�R���
(e.g., see [R], Chapter 7, Section 3, Equation (7.14)). The latter is nothing but the
invariants of K1 in the tensor product ^�p� 
 C1�GnG�R��. The latter space is a
tensor product of the exterior algebra of p� (the dual of p) and the algebra of smooth
functions on the quotient GnG�R�. Therefore the tensor product (and the space of
K1-invariants in it) gets a natural structure of an algebra and the foregoing
isomorphism

O��GnX � � HomK1�^�p; C1�GnG�R��� �1�
is an isomorphism of algebras.

Now the density of G�Q� in Gf shows that

S�G� � GnX � G�Q�n�X � Gf �=K �def S0
K ;

where K is an open compact subgroup of Gf and G � K \ G�Q�. Under the identi-
¢cation of S�G� with S0

K , the isomorphism (1) becomes

O��G�Q�n�X � Gf �=K�
� HomK1�^�p; C1�G�Q�n�G�R� � Gf �=K��

�2�

as an isomorphism of algebras. We often use both the descriptions S�G� and S0
K

interchangeably, according to our convenience. Since these two are isomorphic,
there is no cause for confusion.

By taking direct limits in Equation (2) as K varies through compact open sub-
groups of Gf we obtain

lim O��G�Q�nX � Gf =K�
� HomK1�^�p; C1�G�Q�n�G�R� � Gf ���;

�3�

as an isomorphism of algebras. Here lim denotes the direct limit as K varies through
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open compact subgroups of Gf . We will denote the direct limit on the left side of
Equation (3) by O��Sh0G�.

1.2. THE ACTION OF Gf ON H��Sh0G�.

Fix g 2 Gf . We get an isomorphism S0
K with S0

gÿ1Kg induced by right translation by
g 2 Gf on the quotient G�Q�n�G�R� � Gf �. Thus, translation by g yields an algebra
isomorphism of O��S0

K � with O��S0
gÿ1Kg�. By taking direct limits over K we get an

action of the the group Gf on O��Sh0G�; under the isomorphism (3) of Section (1.1),
this action is the same as right translations on the space C1 of smooth functions
on the right-hand side of (3). Note that Gf acts by algebra automorphisms on
O��Sh0G�, as is evident from the fact that g from O��S0

K � onto O��S0
gÿ1Kg� is an algebra

isomorphism. It is clear that the action of Gf commutes with the differentials of the
complex O��Sh0G�.

Now, as in the introduction,H��Sh0G� is de¢ned as the direct limit ofH��S0
K � as K

varies over compact open subgroups of Gf . Thus, H��Sh0G� is a quotient algebra of
O�0�Sh0G�, the algebra of closed differential forms in O��Sh0G�. The group Gf acts
on this algebra H��Sh0G�, by algebra automorphisms since it commutes with the
differentials of O��Sh0G�.

Let K � Gf be a compact open subgroup. By taking K invariants in (3) (in the
following, the space of K invariants in a C-vector space W on which K acts will
be denoted by WK ), we obtain that

�O��Sh0G��K � HomK1�^�p; C1�G�Q�n�G�R� � Gf �=K��: �4�
By Equation (2), the space on the right-hand side of (4) is precisely O��S0

K �. By
observing that the differentials in the complex O��Sh0G� commute with the action
of Gf and by averaging with respect to K , we obtain from Equation (4), that

H��S0
K � � �H��Sh0G��K : �5�

From now on, we assume that G is anisotropic over Q .
There is a G�R�-invariant metric on X � G�R�=K1 which, at the tangent space p0

at the identity coset eK1 coincides with the restriction of the Killing form. This
descends to a metric on S�G� � S0

K . By the Matsushima formula (see [B-W]), the
space of Harmonic forms on S�G� for this metric is given by

HomK1�^�p; C1�GnG�R���0��
where (as explained in the introduction) C1�GnG�R���0� denotes the space of smooth
functions on GnG�R� killed by the Casimir of g.

Note that this space of harmonic differential forms is not an algebra in general,
since a wedge product of harmonic forms need not be harmonic. However, by
our assumption that G is anisotropic over Q, we obtain ^ by Hodge Theory on
S�G� ^ that this space maps isomorphically onto the cohomology H��S�G�� �
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H��S0
K �. By taking direct limits as K varies through compact open subgroups of Gf

we obtain an isomorphism

H��Sh0G� � HomK1�^�p; C1�G�Q�n�G�R� � Gf ���0��: �6�
As we have said before, the right-hand side of (6) is not an algebra in general, but is a
space of closed forms in O��Sh0G�, which maps isomorphically onto the cohomology
algebra H��Sh0G�.

As before, the under the isomorphism (6), theGf action onH��Sh0G� is induced by
right translation by Gf on the space C1�G�Q�n�G�R� � Gf �.

In particular, the space of Gf -invariants in H��Sh0G� is isomorphic to
HomK1�^�p;C�. This is because the space of Gf invariant functions on the space
G�Q�n�G�R� � Gf � are just the constant functions (because of the density of
G�Q� in G�R�; this is weak approximation). Moreover, the constant functions
are certainly killed by the Casimir of g.

1.3. THE COMPACT DUAL OF X

Consider the real Lie subalgebra gu � k0 � ip0 where i is a square root of ÿ1. Let
G�C� be the group of complex points of G. The analytic subgroup of G�C� whose
Lie algebra is gu is denoted Gu. As is well known, Gu is a maximal compact subgroup
of G�C�. Clearly, K1 is a subgroup of Gu. Form the quotient bX � Gu=K1. This is a
compact symmetric space, which is the `compact dual' of X .

The Killing form on gu is negative de¢nite and its negative gives a K1-invariant
metric on the space ip0 (which may be identi¢ed with the tangent space at the identity
coset eK1 of bX � Gu=K1). By translation, we get a Gu invariant metric on bX . The
space of complex harmonic differential forms on bX with respect to this metric is
by a theorem of E. Cartan, given by HomK1�^�p;C�. Note however, that this latter
space is indeed an algebra under wedge product, and it maps isomorphically onto
the cohomology of the compact manifold bX :

H��bX � � HomK1�^�p;C�: �7�
Note that the isomorphism (7) is an isomorphism of algebras.

Now, the space HomK1�^�p;C� is a subalgebra of the algebra of closed (these
classes are even harmonic, by the Matsushima Formula) differential forms in
O��GnX � for every torsion free cocompact G as in the end of (1.2). The closed
differential forms map onto the cohomology algebra H��S�G�� (and the harmonic
ones map bijectively onto H��S�G�� � H��S0

K � where K is the closure of G in the
group Gf ).

Thus, the cohomology algebra H��bX � may be thought of as a subalgebra of the
algebra H��S0

K �. The latter, by Equation (5) of Section (1.2), is the subalgebra of
K-invariants in the direct limit cohomology algebra H��Sh0G�. The isomorphisms
(6) and (7) (of the Sections (1.2) and (1.3) respectively) show that under this
isomorphism, H��bX � is precisely the space of Gf -invariants of H��Sh0G�.
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1.4. A CANONICAL GENERATOR OF Hn�S0
K �.

Let (as in the introduction) n be the dimension of the real manifold X (or of the real
manifold S0

K ). Our assumption on the connectedness of G�R� implies that K1, being
a maximal compact subgroup of G�R�, is connected and acts trivially on the top
exterior power of p0, the tangent space at the identity coset ofX � G�R�=K1. Hence,
by translation of an orientation of p0 everywhere on X , we see that X is orientable
and that the orientation is preserved by G�R�. By the same reasoning, since
G�C� and its maximal compact Gu are connected, and K1 is connected, it follows
that bX � Gu=K1 is also orientable, with an orientation preserved by Gu. In par-
ticular, bX is a compact oreintable manifold, and hence its top degree cohomology
is one dimensional: Hn�bX � � CoG. Here, we have ¢xed a generator oG of Hn�bX �
once and for all.

The orientability of S�G� implies that its top degree cohomology is also one
dimensional: Hn�S�G�� � C. Now, by the ¢rst sentence of the last paragraph of Sec-
tion (1.3), there is a natural imbedding of Hn�bX � in Hn�S�G��: thus, the (image
of the) generator oG of Hn�bX � chosen in the foregoing paragraph, is a generator
of Hn�S�G��. We will always use in the sequel, this generator oG of Hn�S�G��. Note
that oG is not, in general, the unit volume form on S�G� because the volume of
S�G�with respect tooG goes to in¢nity as K (the closure of G in Gf ) becomes smaller.

Thus Hn�S�G�� � CoG � Hn�bX �. By taking direct limits we obtain Hn�Sh0G� �
CoG � Hn�bX �.

We will now collect together our conclusions on the structure of the direct limit
H��Sh0G� as a Gf module.

(1.5) PROPOSITION. Let G be a semisimple group de¢ned and anisotropic over Q
satisfying the assumptions of (1.1). Let X be the symmetric space associated to
G�R�. Then the following hold.

(1) As a module over the group Gf, The direct limit H��Sh0G� is a direct sum of
irreducible smooth Gf -modules pf , with each pf occurring with a ¢nite multiplicity
m�pf �:

H��Sh0G� �
M

m�pf �pf :

(2) H��Sh0G� is smooth and admissible as a Gf module. Further, Gf acts by algebra
automorphisms of the cohomology algebra H��Sh0G�.

(3) ThecohomologyalgebraH��bX �of the compact dualbX of X, under the imbedding (7)
de¢ned by the Matsushima formula, is isomorphic (as an algebra) to the subalgebra
of Gf -invariants in H��Sh0G�.

(1.6) Remark. From now on, we will (as we may, thanks to (3) of Proposition (1.5))
think of H��bX � as a subalgebra of H��Sh0G�. We will ( as we may, because of
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Equation (5) of (1.2)) also think of H��S�G�� as the subalgebra of K-invariants in
H��Sh0G� where K is the closure of G in Gf . This shows that H��bX � is a subalgebra
of H��S�G�� for every (torsion free, cocompact) congruence arithmetic subgroup
G of G�Q�.

Proof of Proposition (1.5). (1) is well known and follows from the Matsushima
Formula. For a reference see [C 3], Lemme (3.15), (ii) (in [C 3] (1) is stated for
the group G�Af � but the same proof goes through word for word, by replacing
the group G�Af � by Gf ).

To prove (2), let K � Gf be a compact open subgroup. We may assume (by replac-
ing K by a smaller open subgroup if necessary) that G � G�Q� \ K is torsion free.
Then, by Equation (5) of Section (1.2), the space of K invariants in H��Sh0G� is
precisely H��S0

K � � H��S�G�� and the latter is ¢nite-dimensional because S�G� is
a compact manifold. This proves the admissibility of H��Sh0G� (recall that a
Gf -module W is admissible if the space of K invariants in W is ¢nite-dimensional
for each open compact subgroup K of Gf ). As H��Sh0G� is the direct limit of
H��S0

K �, it follows that H��Sh0G� is a smooth Gf -module as well (a Gf -module
is smooth if every vector in the module is ¢xed by some open compact subgroup
of Gf ).

Note that (3) simply restates the conclusion of the last paragraph of Section (1.3).

2. The Cycle Class �SH �G�� and the Restriction Map

2.1. NOTATION

Let H be a connected semisimple algebraic group over Q (all of whose Q-simple
factors are isotropic over R). Assume that H�R� is connected. Let f : H ! G be
a morphism of algebraic Q-groups with ¢nite kernel. Thus f induces an injection
of the Lie algebra h0 of H�R� into g0. Assume that f and H have the following
properties: H�R� \ f ÿ1�K1� � KH

1 is a maximal compact subgroup of H�R�;
further, The Cartan decomposition g0 � k0 � p0 when restricted to the subalgebra
h0 gives the Cartan decomposition h0 � kH0 � pH0 where kH0 is the Lie algebra of
KH
1 and pH0 is the intersection p \ h0; now Y �def H�R�=KH

1 is a symmetric space
and f : Y ! X is an imbedding of symmetric spaces.

2.2. THE RESTRICTION MAP

Let G be a torsion free congruence arithmetic subgroup of G�Q�. Denote by G \H
the inverse image of G in H�Q� under the map f : H�Q� ! G�Q�. Write
SH�G� � G \HnY . As explained in the introduction, SH�G� is a manifold covered
by Y . The map f induces a smooth map j � j�G� : SH �G� ! S�G�. This induces a
homomorphism j� of the cohomology algebras:

j�G�� : H��S�G�� ! H��SH�G��: �1�
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By taking direct limit of both sides of Equation (1) as G varies through torsion free
congruence arithmetic subgroups of G�Q�, we obtain a homomorphism of algebras

j� : H��Sh0G� ! H��Sh0H�: �2�
Fix g 2 Gf . Then g acts onH��Sh0G� as in (1.2), by a linear transformation which we
again denote by g. Then the composite j�g � j� � g is a homomorphism fromH��Sh0G�
into H��Sh0H�. The product over all g 2 Gf of these maps j�g , is referred to as the
restriction map and is denoted Res:

Res �
Y

j�g : H��Sh0G� !
Y

H��Sh0H�: �3�

Maps similar to Res have been considered in [Oda], [H-L], [K-R], [C-V].

2.3. NOTATION

Let h be the complexi¢cation of h0 (de¢ne similarly, the complex vector spaces kH and
pH ). Let hu � kH0 � ipH0 . Then the map f : H ! G induces an injective Lie algebra
homomorphism hu! gu. Let H�C� be the group of complex points of H (with
Lie algebra h). Then, the analytic subgroup Hu of H�C� with Lie algebra hu is a
maximal compact subgroup ofH�C� which clearly contains KH

1. Form the `compact
dual' bY � Hu=KH

1. The map f induces a natural imbedding of the compact dual
symmetric spacesbj : bY ! bX .

2.4. THE CYCLE CLASS �bY �
Consider the imbeddingbj : bY ! bX . Let m be the real dimension of Y . Now by the
de¢nition of oH , it generates the cohomology group Hm�bY �. Therefore, given
a 2 Hm�bX �, its pullbackbj��a� is of the form l�a�oH for some scalar l�a�. Thus, l
de¢nes a linear form on Hm�bX �.

Given b 2 Hnÿm�bX � we get a linear form lb on the space Hm�bX � given by
lb�a�oG � a ^ b for all a 2 Hm�bX �. By Poincarë duality for the cohomology ofbX , it follows that every linear form on Hm�bX � is of the form lb for some
b 2 Hnÿm�bX �. Therefore the linear form l of the previous paragraph is of the form
l�bY � for some element �bY � 2 Hnÿm�bX �. We will refer to this element �bY � as the cycle
class associated to the cycle bY in bX .

2.5. DEFINITION OF THE CYCLE CLASS �SH �G��

We will now ¢x the congruence arithmetic subgroup G of G�Q�. As in (1.4), our
assumption that H�R� is connected ensures that the SH �G� are all orientable.
Let m be the (real) dimension of the manifold Y (or of SH �G�). Then, by replacing
G by H throughout in (1.4), we obtain a canonical generator-denoted oH ^ of
the (one-dimensional) top degree cohomology Hm�SH �G�� � C of SH �G�. This
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oH is, in fact, a generator of the cohomology of the compact dual bY , and there is a
natural isomorphism

CoH � Hm�bY � � Hm�SH �G�� �4�

(only in the top degree m) as explained in the last paragraph of (1.3).
Recall that the dimensions of X and Y are n and m respectively. Consider the

cup-product pairing

Hm�S�G�� �Hnÿm�S�G�� ! Hn�S�G��:
The pairing is non-degenerate by Poincarë duality. From (1.4) we get that Hn�S�G��
is generated by oG. Given b 2 Hnÿm�S�G��, we get a linear form lb de¢ned by

a ^ b � lboG �5�
for all a 2 Hm�S�G��. By Poincarë duality for the cohomology of S�G�, every linear
form on Hm�S�G�� is of the form lZ for some Z 2 Hnÿm�S�G��.

We will now de¢ne a linear form l onHm�S�G��. From Equation (1) of (2.2) we get
a map j�G�� : Hm�S�G�� ! Hm�SH �G��. From Equation (4), the latter space is
isomorphic to CoH . De¢ne l�a� by the formula

l�a�oH � j�G���a�: �5�
Thus, l is a linear form on Hm�S�G��. By the conclusion of the preceding paragraph,
there is an element (denoted �SH �G��) inHnÿm�S�G�� such that l � l�SH �G��. This is the
cycle class associated to the special cycle SH �G� of the manifold S�G�.

Remark. If the level G were ¢xed once and for all, then the cycle class could have
been de¢ned in the usual way (by ¢xing an arbitrary generator of S�G�). But, since
the levels are varying, one needs to be careful in choosing generators of the top
degree cohomology of SH �G� and S�G�. One can do this here because of the canonical
generators oH and oG arising from the cohomology of the compact duals bY and bX .

(2.6) Remark. LetM and N be compact orientable manifolds of dimensions m and n
respectively. Fix (non-zero) generators oM and oN of Hm�M� and Hn�N�
respectively. Let j : M ! N be a smooth map. We then get a linear form
a 7!l�a� on Hm�N� de¢ned by j��a� � l�a�oN . By Poincarë duality, there exists
an element �M� 2 Hnÿm�N� such that the wedge product a ^ �M� � l�a�oN .

If kW n is any integer and b 2 Hk�N� is such that j��b� � 0, then b ^ �M� � 0. To
prove this, we may assume that kWm ( for otherwise, b ^ �M� is of degree
k� �nÿm� > n and is zero anyway). Let a 2 Hmÿk�N�. Then, j��a ^ b� � loM

for some scalar l. Then, by the de¢nition of the cycle class �M�, we get
a ^ b ^ �M� � loN . However, j��a ^ b� � 0 since j��b� � 0. Therefore, l � 0 and
we get, a ^ b ^ �M� � 0, for every a. by Poincarë duality for H��M�, we then
get b ^ �M� � 0.
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(2.7) Remark. Let H��bX � � H��Sh0G� and H��bY � � H��Sh0H� be the natural
imbeddings as in (1.3). Let bj� : H��bX � ! H��bY � and j� : H��Sh0G� ! H��Sh0H�
be the restriction maps. Then, for all a 2 H��bX � we have

bj��a� � j��a�: �7�

3. Proof of Theorem 1

Let V � VG be theC-span of Gf -translates of the cycle class x � xG � �SH �G��. Now,
x 2 Hnÿm�S�G�� (recall that m and n are the dimensions of the spaces Y and X ,
respectively). Thus, V is a submodule of the Gf -moduleHnÿm�Sh0G�. By Proposition
(1.5),Hnÿm�Sh0G� is completely reducible as aGf -module. Hence so is the submodule
V .

Now, V is a cyclic module containing x as a cyclic vector. Hence the space of
Gf -invariant linear forms on V is at most one dimensional (since such a linear form
is determined completely by its value on the vector x). Now complete reducibility
of V implies that the space V0 of Gf -invariant vectors in V is also at most one
dimensional. Write V � V 0 � V1 where V1 is a Gf -invariant subspace of V
supplementary to V 0. Since V 1 has no invariant vectors, complete reducibility of
V 1 shows that it has no Gf -invariant linear forms on it either. Write x � Z� x1 where
Z 2 V0 and x1 2 V 1. We will show that

Z � �bY �: �1�
This will prove Theorem 1 because Z is a generator of the spaceV 0 ofGf -invariants in
V and is a linear combination of Gf -translates of the cycle class x (because every
element of V is).

To prove the Equation (1), we proceed as follows. Let

a 2 Hm�bX � � Hm�Sh0G�
be an arbitrary, but ¢xed, vector. Consider the wedge product v ^ a for v 2 V . Now
Hn�bX � maps isomorphically onto Hn�Sh0G� � CoG (see the end of (1.4); oG is
the canonical generator chosen in (1.4)). Note that v ^ a 2 Hn�Sh0G� for all
v 2 V . Thus we may write v ^ a � la�v�oG. We ¢rst show that la is a Gf -invariant
linear form on V . Fix g 2 Gf and v 2 V . Then,

g�v ^ a� � g�v� ^ g�a�; �2�
because g acts by algebra automorphisms ((1.2)). Since v ^ a is a class of degree n and
Hn�Sh0G� is Hn�bX �, it follows that g�v ^ a� � v ^ a. Moreover, a 2 Hm�bX � is
Gf -invariant. Thus we get v ^ a � g�v� ^ a from Equation (2). By the de¢nition
of la, this means that la�v� � la�g�v��. Thus, la is a Gf -invariant linear form on
V . Therefore, it vanishes on V1 (recall that V1 has no invariant forms). Con-
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sequently, la�x� � la�Z� and by the de¢nition of la, we obtain

Z ^ a � x ^ a: �3�
We will now show that

a ^ x � a ^ �bY �: �4�
By the de¢nition of �bY �, a ^ �bY � � moG where m 2 C is such thatbj��a� � moH .
Let b be an arbitrary element of Hm�S�G�� and write j��b� � loH 2 Hm�SH �G��

where l is a scalar (which depends on the class b, of course). Then by the de¢nition
of the cycle class x, we get b ^ x � loG. By substituting a for the arbitrary element
b we get j��a� � loH with a ^ x � loG.

But by Equation (7) of (2.7), we get that j��g� �bj��g� for all elements g 2 Hm�bX �. In
particular, the foregoing paragraphs imply that l � m. This is equivalent to (4).

Since the degrees of a and x are m and nÿm, respectively, we obtain that

a ^ x � �ÿ1�m�nÿm�x ^ a; a ^ Z � �ÿ1�m�nÿm�Z ^ a: �5�
Now the Equations (3), (4) and (5) imply

a ^ �bY � � a ^ Z

for all a 2 Hm�bX �. By Poincarë duality for the cohomology of bX , we then obtain (1).
This completes the proof of Theorem 1.

4. Proof of Theorem 2

4.1. NOTATION

Let xG 2 Hnÿm�S�G�� be the cycle class �SH�G�� as before. Suppose that G0 is a congru-
ence arithmetic subgroup of G�Q� which is a normal subgroup of G. Let
xG0 � �SH �G0�� 2 Hnÿm�S�G0�� be the cycle class for the level G0. We will view all these
cohomology groups as subgroups of Hnÿm�Sh0G�.

Let K and K 0 be the closures inGf of G and G0, respectively. Then the imbedding of
G in K induces a map of ¢nite groups G=G0 ! K=K 0 which is an isomorphism since G
is dense in K .

Recall that Gf operates on Hnÿm�Sh0G� as in (1.2).

LEMMA (4.2). With the notation of (4.1), we haveX
y�xG0 � � mxG

where m is the order of the group K=K 0 � G=G0.

Here, the sum is over all the elements of the ¢nite group K=K 0. The action of K 0 on
xG0 2 Hnÿm�S0

K 0 � is trivial by the identi¢cation of the latter cohomology group as
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the space K 0 invariants of Hnÿm�Sh0G�. The equation of the Lemma (makes sense
and) holds in the cohomology group Hnÿm�Sh0G�.

Proof of Lemma (4.2). Let a 2 Hm�S�G��. Form the wedge product �P y�xG0 �� ^ a.
Now, the action by y preserves cup products in H��S�G0��. Note that
y�xG0 � ^ a 2 Hn�S�G0��. Further, Hn�S�G0�� � Hn�bX � � CoG and y acts trivially on
Hn�bX �. Therefore, y�xG0 � ^ a � xG0 ^ yÿ1�a�. But, since a 2 Hm�S�G��, the class a
is invariant under the action of K=K 0. Therefore, y�xG0 � ^ a � xG0 ^ a for all y
and we get

X
y�xG0 �

� �
^ a � mxG0 ^ a:

To prove the Lemma, we must then show that xG0 ^ a � xG ^ a. By the de¢nition of
the cycle class xG (see (2.4)), xG ^ a is a multiple loG of the canonical class oG

where l is de¢ned by j�G���a� � loH . We are thus reduced to showing that
j�G0���a� � j�G���a� for all a 2 Hm�S�G��. This is immediate from the de¢nition
of the imbedding of Hm�S�G�� in Hm�S�G0�� as the space of K invariants in
Hm�S�G0��.

(4.3) Proof of Theorem 2. Suppose that a 2 Hk�Sh0G� with Res�a� � 0. Let g 2 Gf

be arbitrary but ¢xed. Now, a 2 Hk�S�G�� � Hk�S0
K � for some congruence arithmetic

subgroup G of G�Q�. Here, K is the closure of G in Gf . Thus, g�a� 2
Hk�S�G0� � Hk�S0

K 0 � for some congruence arithmetic subgroup G0 of G�Q�. We
may assume, by replacing G0 by a smaller subgroup if necessary, that G0 is a normal
subgroup of ¢nite index in G. Let xG0 � �SH �G0�� be the cycle class corresponding
to G0. De¢ne xG similarly.

We have the map j�G0� : SH �G0� ! S�G0� and j�g � j�G0�� � g. Since Res is a product
of j�g and Res�a� � 0 it follows that j�G0�� � g�a� � 0. By Remark (2.6), we obtain
that g�a� ^ �SH �G0�� � 0, i.e,

g�a� ^ xG0 � 0: �1�

Now Equation (1) still holds if we replace g by yÿ1gwhere y is any element of K since
the action of y on Hk�Sh0G� leaves the subspace Hk�S�G0�� � �Hk�Sh0G��K 0 stable
(recall that K normalises K 0). Thus

yÿ1g�a� ^ xG0 � 0 � g�a� ^ y�xG0 �: �2�

By summing over all y 2 K=K 0 in Equation (2) and using Lemma (4.1), we obtain
that g�a� ^ xG � 0. This is equivalent to saying that a ^ g�xG� � 0 for all g 2 Gf .
By choosing a suitable linear combination and by using Theorem 1 we obtain that
a ^ �bY � � 0. This is Theorem 2.
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5. Hermitian Symmetric Domains

5.1. NOTATION

In this section, we will assume that X and Y are Hermitian symmetric domains and
that the imbedding f : Y ! X is holomorphic. The complex tangent space p at
the identity coset eK1 of X � G�R�=K1 then decomposes into a direct sum
p � p� � pÿ where p�(resp. pÿ) denotes the holomorphic (resp. anti-holomorphic)
tangent space at the identity coset. We have similarly a decomposition
pH � p�H � pÿH , with p�H � p� (and similarly pÿH � pÿ.

Denote byD and d the complex dimensions of the complex manifolds X and Y . In
our earlier notation (of Section 1), n � 2D and m � 2d.

Let k 2 sym2�p0�� denote the restriction to p0 of the Killing form on
g0 � Lie�G�R�. Then, k de¢nes a positive de¢nite symmetric bilinear form on p0
which is K1 invariant. It can be extended to a C-linear symmetric bilinear form
kC on p � p0 
C.

The connected component C of identity of the centre of K1 acts nontrivially on p.
Indeed, there exists an element J 2 C such that under the adjoint action, J acts by the
scalar �i on p� (see [He], Chapter (VII), Theorem (4.5); there our element J is
denoted s0). We may thus write p� as the set of elements xÿ ��i�J�x� with x 2 p0.

Denote by v 7!v the complex conjugation on g � g0 
C which leaves g0 pointwise
¢xed and acts by complex conjugation on the coef¢cients C. Then it is clear from the
last paragraph that the complex conjugation maps p� to pÿ. If v � xÿ iJ�x� 2 p�

with x 2 p0 then

kC�v; v� � k�x; x� � k�J�x�; J�x��:
This shows that the Hermitian form h : �z;w� 7!kC�z;w� (with z;w 2 p�) is positive
de¢nite on p�.

5.2. THE CLASS L

By de¢nition, the element J of the centre of K1 (de¢ned in Section (5.1)) acts by ÿ1
on the tensor space p� 
 p� (and similarly on pÿ 
 pÿ). In particular, there are
no K1-invariant vectors in the space p� 
 p� and in pÿ 
 pÿ. Thus,
kC 2 �p��� 
 �pÿ�� � sym2�p��. However, the tensor representation �p��� 
 �pÿ��
also occurs in

^2 p� �^2 �p���� ^2 �pÿ�� � �p��� 
 �pÿ��: :

Thus kC gives an element of

HomK1�^2p;C� � H2�bX �:
We denote the element ofH2�bX � thus obtained by LG. When the group G is ¢xed, we
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will denote LG by L. Note that for every torsion free cocompact G as in (1.2), this
element L lies in H2�S�G��.

Let �e� be any orthonormal basis of �p��� under the dual of the Hermitian form h
de¢ned on p� in (5.1). Then,

L �
X

e ^ e 2 ^2p�: �1�

5.3. THE LEFSCHETZ THEOREM FOR L

We note that ([B-B]) the spaces S�G� are smooth projective varieties. It is also known
([B-B]) that the class L is (upto a scalar multiple) the class of an ample divisor on
S�G�. It is then a consequence of the Lefschetz hyperplane section Theorem for
S�G� that if kWD, then the map a 7!a ^ Lj on the space Hj�S�G�� is injective
for all jWDÿ k. The injectivity can also be proved directly, as in Section 9, pages
60-61 of [A]).

5.4. NOTATION

We now take for Z the variety S0
KG for some open compact subgroup K � Gf such

that K \ G�Q� is neat. Then one has a ¢nite map j : S0
H\K ! S0

K . As in (1.3), let
x � �S0

K\H � denote the cycle class of the cycle S0
K\H in H2Dÿ2d�S0

K �.
If we assume that X � G�R�=K1 is an irreducible Hermitian symmetric domain,

then K1 acts irreducibly on p�. Now

H2�bX ;C� � HomK1�^
2 �p� � pÿ�;C� � HomK1�p� 
 pÿ;C� � C;

since pÿ is the dual of p� as a K1-representation. We know that H2�bX ;C� contains
L0 � ÿL. Hence the space of Gf -invariants in H2�Sh0�G;X �� is CL.

(5.5) Proof of Theorems 3 and 4. Now by assumption S0
H\K is a divisor in S0

K .
Therefore bY is a divisor in bX and so, by the last paragraph, �bY � is a non-zero multiple
of L. By Theorem 1 and 2, we get that if a 2 Hk�Sh0G� is such that Res �a� � 0 then
a ^ �bY � � 0: That is, a ^ L � 0: Since d � 1 � D and the degree of a is kW d, the
Lefschetz hyperplane section Theorem tells us that a � 0. This proves Theorem 3.

Theorem 4 follows immediately since the pairs �G;H� of Theorem 4 satisfy the
hypotheses of Theorem 3.

(5.6) Proof of Theorem 5. If H�R� � SU�p; 1�, upto compact factors, then its
compact dual is bY � Pp � Pn � bX . Hence �bY � � Lnÿp. If Res �a� � 0 for some
a 2 Hm�Sh0G� with mW p, then by Theorem 2, a ^ �bY � � 0. But �bY � � Lnÿp and
therefore a ^ Lnÿp � 0 (and the degree of a is mW p). By the Lefschetz hyperplane
section Theorem, we then have a � 0. Therefore, we have proved Theorem 5.
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6. Schubert Cells and the Cohomology of bX
6.1. NOTATION

Let T � K1 be a maximal torus. Then, as is well known (and is easy to prove), T is a
maximal torus in G�R� as well. Let t0 � Lie�T �, t � t0
RC, F�k;T � � roots of TC in
k;F�g;T � � roots of TC in g;F��k;T � � a system of positive roots on k ¢xed once and
for all, F��g;T � � F��k;T � [ F�p�;T �, where F�p�;T � � the roots of T �C� in p�.

Given X 2 i Lie �T � such that g�X �X 0 for all `positive compact roots'
g 2 F��k;T �, we set

q � q�X � � gX�g�X �>0gg; ` � gX ; u � �g�X �>0gg

where gX � centralizer of X in g. Then q�X � is stable under the Cartan involution y
for the pair �g0; k0�. We have u \ p � u \ p� � u \ pÿ. Let p � dim�u \ p�� and
q � dim�u \ pÿ�, and let k � p� q.

The complex conjugation on g � g0 
C leaving g0 ¢xed pointwise, acts by �ÿ1� on
it0, and hence converts positive roots into negative roots and takes pÿ into �p��;
denote the complex conjugation by v 7!v on g and again by w 7!w on the exterior
algebra (or the tensor algebra) of g. Then we set

e��q� �^p �u \ p��^ ^q �u \ p�� �^k p� �1�
and V��q� � the smallest K1ÿstable subspace of ^

k
p� containing e��q� (note that if

u \ pÿ � 0 i.e. q � 0, then q is `holomorphic' and V��q� � V �q� � K1ÿspan of e�q�,
is irreducible as a K1ÿmodule). However, V��q� need not be irreducible in general.

Note also that u \ u � 0 (this is because the element X acts by strictly positive
eigenvalues on u and strictly negative eigenvalues on uÿ) Therefore, e��q� 6� 0. Write
V �q� for the K1ÿspan of e�q�. Then V �q� �^p p�
 ^q pÿ and V �q� is a
K1ÿirreducible subspace of ^k p�k � p� q� (the irreducibility can be proved by
observing that the line e�q� is stabilised by the Borel subalgebra bK of the k which
is the sum of t and all the root spaces corresponding to the positive compact roots
occurring in k).

If �vi�i2I is a basis of u \ p, then complete it to a basis �vj�j 2 J of p. Let �v�j �j 2 J be
the dual basis in p�. De¢ne e�q� as the top exterior of the span of v�i (i 2 I). Let V �q��
be theK1 span of �e�q��. ThenV �q�� is indeed the dual ofV �q�. Moreover, it is known
that the multiplicity of V �q� in ^kp is exactly one ([V-Z], Section 6). Thus, V �q�� is
independent of the basis chosen.

By a Theorem of Kostant ([Kos]), the K1-representation ^p� is multiplicity free.
In particular,

V��q� � E1 � E2 � � � � � E` �2�
with each Ei irreducible as a K1-module, and Ei 6� Ej if i 6� j.

The exterior algebra ^� p is stable under complex conjugation and V �q� ^ p.
Moreover, kWD � dim�p�� < 2D � dim�p�. We may form the wedge of V �q�
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and V �q� in ^p:
V �q� ^ V �q� � ^p:

Now V �q� 
 V �q� contains e�q� 
 e�q� as a cyclic vector. For, ¢rst consider the
translates of e�q� 
 e�q� under BK � K�C�, where BK is the Borel subgroup of
K�C� with Lie algebra bK � t�g2F��k;T �gg. Since BK leaves e�q� stable and e�q� is
BK invariant, we obtain all the vectors of the form e�q� 
 BKBKe�q� in the K�C�-span
of e�q� 
 e�q�. Now BKBK is a Zariski open set in K�C� since BK is opposite to BK .
Hence e�q� 
 V �q� lies in the KC-span. Now translating elements of e�q� 
 V �q�
by elements of KC, we get: e�q� 
 e�q� generates V �q� 
 V �q�. Therefore
e�q� ^ e�q� generates V �q� ^ V �q�.

From (1) we obtain e�q� � eh�q� ^ eah�q�, where eh�q� (resp. eah�q�� is the
holomorphic part ^p �u \ p�� of e�q� (resp. the antiholomorphic part ^q �u \ pÿ��.
Therefore e�q� ^ e�q� is the same as

�eh�q� ^ eah�q�� ^ �eh�q� ^ eah�q��:
The ¢rst vector eh�q� ^ eah�q� is precisely e��q� � V��q� �^k p�. By taking the
K1-spans we obtain:

V �q� ^ V �q� � V��q� 
 V��q�: �3�

6.2. PRELIMINARY RESULTS

We wish to compute the integralZ
K1

k�e��q� 
 e��q��dm�k�

(m is a Haar measure on K1� which has values in ^k p�
 ^k pÿ. Write

e��q� � x1 � � � � � x`

according to the decomposition (2). By orthogonality �Ei 
 Ej�K � 0 if i 6� j. There-
fore we getZ

K1
k�e��q� 
 e��q��dm�k� �

X̀
i�1

Z
K1

k�xi 
 xi�dm�k�: �4�

Since e��q� is a cyclic vector for V��q�, it follows from (2) that xi 6� 0 for each i.
Suppose r : K1 ! U�n� is a unitary irreducible representation of K1 on an

nÿdimensional vector space Cn � V , let v 2 V ÿ f0g. Write v � c1e1 � � � � � cnen
for the standard unitary basis e1; . . . ; en of V . Let e�1; . . . ; e�n be a dual basis of
V�, the dual of V . Consider the tensor representation V 
 V� of K1. Write
k�v
 w� for the action of k 2 K1 on an element v
 w 2 V 
 V�. If v is as above,

COHOMOLOGY OF COMPACT LOCALLY SYMMETRIC SPACES 243

https://doi.org/10.1023/A:1002600432171 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002600432171


write v� � c1e�1 � � � � � cne�n: Then,Z
K1

k�v
 v��dm�k� �
X
v;j

cicj

Z
K1

k�ei 
 e�j �dm�k�:

It follows from Schur's Lemma that

Z
K1

r�k��ei 
 e�j �dm�k� �
dij
n

Xn
r�1

er 
 e�r

 !
�5�

and Z
K1

r�k��v
 v��dm�k� �
X
j ci j2

� � In
n
� j v j

2

n
l�Cn�� ; �50�

where l�Cn�� �
Pn

i�1ei 
 e�i :
Now let lE�i 2 Ei 
 Ei �^

k
p�
 ^k pÿ be the tensor corresponding to the space Ei.

From (4) and (5) we obtain

Z
K1

k�e��q� 
 e��q��dm�k� �
X̀
i�1

j xi j2
dimEi

� �
lE�i : �6�

We note that j xi j2 =dimEi � bi > 0 for each i. Now

e�q� ^ e�q� 2 ^� p � ^p� 
 ^pÿ and e�q� ^ e�q� � e��q� 
 e��q�:

Therefore, we get

Z
K1

k�e�q� ^ e�q��dm�k� �
X̀
i�1

bilE�i ; �7�

where each bi is strictly positive. We emphasize that (7) is not entirely formal, and
depends on the multiplicity one result of Kostant in (2).

Consider the `wedging map' V �q� 
 V �q� ! V �q� ^ V �q� � ^p. By Schur's
Lemma, �V �q� 
 V �q��K1 � C and (7) shows that �V �q� ^ V �q��K1 6� 0. Therefore
the wedging map is an isomorphism onK1-¢xed vectors. From (5') and (7) it follows
that for any x 2 V �q� ÿ �0�Z

K1
k�x ^ x�dm�k� � j x j

2

j e�q� j2
X

bilE�i �8�

for some K1-¢xed inner product on V �q� (which is unique upto multiples anyway);
here again, bi > 0 for each i.
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We may replace in (8) x 2 V �q� by x 2 V �q�� where V �q�� is the dual of V �q�. We
then get analogously, for x 2 V �q��,Z

K1
k�x ^ x�dm�k� � j x j2

j e�q�� j2
X

bilEi : �8��

with bi > 0 for each i.

CHARACTERISATION AND PROPERTIES OF SCHUBERT CELLS

(6.3) It will be convenient to think of elements of H��bX � as elements of ^� p�. The
Killing form k is negative de¢nite on ip0 and hence identi¢es p with its dual. Under
this, �p�� and �p�ÿ are dual to each other as K1 representations. Note that under
the map v 7!v de¢ned in (6.1), ^�p� maps onto ^�pÿ. If E � ^kp� is a K1 stable
subspace and E is its image under the foregoing map, then E � ^kpÿ is the dual
of E.

Now by a Theorem of Cartan (see Equation (7) of Section (1.3))

H��bX � � HomK1�^
� �p� � pÿ�;C�:

By the Theorem of Kostant quoted in (2) the representation ^� �p�� is multiplicity
free and we may write

^k p� � �E2XkE �9�
where each E is irreducible. The Ei which occur in the decomposition (2) are again
elements of Xk. De¢ne l0Ei

s as the generator of the one dimensional vector space
�E�i 
 �Ei���K1 � �^

k �p���
 ^k �pÿ���K1 which is given by

lE �def
X

e ^ e �10�
where the sum runs over an orthonormal basis e of E� (under the natural Hermitian
inner product on E� induced by the Killing form k; see (5.1)).

A theorem of Kostant ([Kos], Theorem (6.15)) says that these lE are proportional
to the cycle classes corresponding to the Schubert Cells in bX � G�C�=Pÿ�C�. Here,
Pÿ�C� is the connected subgroup of G�C� whose Lie algebra is k� pÿ. We will abuse
notation slightly and refer to lE as `Schubert Cells'.

We will now gather together some properties of these `Schubert Cells' lE . If
E� � ^r�p��� and F � ^s�p���, denote by E� ^ F � the span of vectors of the form
e ^ f with e 2 E� and f 2 F �.

(6.4) LEMMA. Let E and F be irreducible K1 stable subspaces of ^rp� and p�

respectively. Then

lE ^ lF � �ÿ1�rs
X

cmlFm
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where the sum is over all the irreducible subspaces Fm of E ^ F and each cm is strictly
positive.

Proof. Equation (10) applied to lE and lF implies that lE ^ lF �
P

e ^ e ^ f ^ f
where the sum is over orthonormal bases �e� and �f � of E� and F �, respectively.
Rewrite this as

lE ^ lF � �ÿ1�rs
X
�e ^ f � ^ �e ^ f �: �11�

Since lE ^ lF is K1-invariant, we may replace both sides of the Equation (11) by
their integrals over K1. Write E� ^ F � � �F �m where each Fm � ^kp� is irreducible.
Then, for every vector of the form e ^ f , we get (as in �8�� of (6.2))Z

K1
k��e ^ f � ^ �e ^ f ��dm�k� �

X
bmlFm ;

where bm X 0 for each m and is the norm of the projection of e ^ f to the component
F �m of E� ^ F �. Therefore,Z

K1
k��e ^ f � ^ �e ^ f ��dm�k� �

X
cmlFm ;

where cm is the sum over all the bm as e and f vary.
Since �e� and �f � form bases of E� and F �, it follows that if Fm be ¢xed, then for

some e and f , the projection to F �m of e ^ f is non-zero; therefore the corresponding
bm is strictly positive. Hence, all the cm are strictly positive. The Lemma now follows
from integrating both sides of Equation (11) over K1.

(6.5) LEMMA. Let L be the element of HomK1�p� ^ pÿ;C� de¢ned in Section 5.
Then, for every integer kWD (with D � dim�X �), we get

Lk � �ÿ1�k�kÿ1�=2
X

cilFi ;

where Fi runs over all the K1 irreducible subspaces of ^kp� and each ci is strictly
positive.

Proof. The proof is by induction. Assume k � 1. Then, by the de¢nition of the
Hermitian inner product on p, we see that L �P e ^ e where e runs over any
orthonormal basis of �p���. Write p� as a sum of irreducible representations Ej

for the action of K1 and pick an orthonormal basis �ej� for each j. Choose for
�e� the union of the bases �ej� over all j. Then, we get (by (1) of Section (5.2))

L �
X

e ^ e �
X

lEj

and the Lemma holds for k � 1.
Assume now that the Lemma holds for k and write

Lk � �ÿ1�k�kÿ1�=2
X

cilEi
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as in the Lemma. Then,

Lk�1 � �ÿ1�k�kÿ1�=2
X

cilEj ^ lEi ;

where the sum is over all the irreducible Ej � p� and all the irreducible Ei � ^kp�.
Now, by Lemma (6.4), we get

lEj ^ lEi � �ÿ1�k
X

cmlFm ;

where the sum is over all the irreducible representations Fm � Ei ^ Ej and cm > 0.
Therefore,

Lk�1 � �ÿ1�k�k�1�=2
X

ci
X

cmlFm ; �12�
where the sum is over all i, all j and all irreducible Fm � Ej ^ Ei � ^k�1p� and cm > 0.
In Equation (12), ¢rst ¢x Fm and sum over all the i and j such that Fm � Ej ^ Ei. We
then obtain Lemma (6.5) for Lk�1.

(6.6)Remark. Suppose we are given any K1-invariant metric on the real vector space
g0. This yields a K1 invariant C-linear form p� 
 pÿ � ^2p which we denote by L0.
The lemma (6.5) applies to L0 as well (the proof is exactly the same). We will
use this remark later, where we take H for G and the restriction of LG to bY for L0.

(6.7) LEMMA. Let b 2 H2k�bX � be a non-negative linear combination of Schubert
Cells lE and let L0 be as in (6.6). If b ^ �L0�Dÿk � 0 then b � 0.

Proof. Suppose to the contrary, that b is a positive linear combination of some
Schubert Cells lE . Let e � �ÿ1�k�Dÿk����Dÿk��Dÿkÿ1�=2�. Then, Lemmas (6.4), (6.5)
and Remark (6.6) imply that eb ^ �L0�Dÿk is a non-negative linear combination
of Schubert Cells lFm . Thus, to prove Lemma (6.7), we may assume that b is a
Schubert Cell lE . Then Lemma (6.5) shows that eb ^ �L0�Dÿk is a strictly positive
linear combination of lFm where Fm is an irreducible subspace of E ^ ^Dÿkp�. Thus,
b ^ �L0�Dÿk vanishes if and only if E ^ ^Dÿkp� � 0. This is impossible since the
wedge product pairing between ^kp� and ^Dÿkp� (with values in the one
dimensional space ^dp�) is non-degenerate. Thus, b � 0.

(6.8) LEMMA. Let lE 2 Hk�bX � be a `Schubert Cell of bX as before. Letbj : bY ! bX be
the embedding of (1.5). Then, the restriction of lE to bY is a non-negative sum of
`Schubert Cells' of bY:bj��lE� �P ajlFj where Fj runs through the set of irreducible
representations of KH

1 occurring in ^k�p�H � and aj X 0 for each j. Moreover, the
restrictionbj��lE� � 0 if and only if E \ E�G;H; k� � 0.

Proof. We will view the restriction bj��lE� as KH
1 invariant linear form on

^kp�H 
 ^kpÿH . If v 2 ^kp�H and w 2 ^kpÿH , then bj��lE��v
 w� � lE�pE�v� 
 pE�w��
where pE denotes the K1 equivariant projection of ^kp� to E (similarly de¢ne
pE). Let Fj � ^kp�H be K1H irreducible. Then, it has (up to multiples) a unique
KH
1 invariant linear form on it which may be chosen to be lFj . Thus, there is a scalar
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cj such that for all v 2 Fj and w 2 F j, we havebj��lE��v
 w� � cjlFj �v
 w�. Let v be
arbitrary and choose w � v. Then, bj��lE��v
 w� � lE�v
 w�X 0. Similarly,
lFj �v
 w�X 0 which shows that cj X 0 for each j. If the restriction of lE vanishes,
then the same equation shows that the K1-equivariant projection to E vanishes
on the space ^kp�H and hence vanishes on its K1-span E�G;H; k�. By the multiplicity
one theorem of Kostant, this is equivalent to saying that E \ E�G;H; k� � 0. This
completes the proof.

(6.9) LEMMA. Let b �P cilEi be a cohomology class in H2k�bX �where Ei are certain
irreducible subspaces of ^kp� and for each Ei, the coef¢cient ci is strictly positive. If
the restrictionbj��b ^ Ldÿk� � 0 then ��Ei� \ E�G;H; k� � 0.

Proof. We need only prove the Lemma when kW d � dim�Y � since otherwise the
restriction of b is trivially zero and E�G;H; k� also vanishes because ^kp�H � 0.
Assume kW d. Suppose b0 �def

bj��b�. Let L0 �bj��L� be the restriction of
L 2 H2�bX � to bY . Let g � b0 ^ �L0�dÿk.

By (6.6) (applied to the space bY ), �ÿ1��dÿk��dÿkÿ1�=2L0dÿk is a strictly positive linear
combination of lF where F runs through all KH

1 irreducible subspaces of ^dÿkp�H . By
Lemma (6.8), b0 is a non-negative sum of Schubert cells on bY .

Hence Lemma (6.7) applied to bY shows that b0 ^ �L0�dÿk � 0 if and only if b0 � 0.
By the second part of Lemma (6.8), This happens if and only if
Ei \ E�G;H; k� � 0 for each Ei occurring in the expression of b as a non-negative
linear combination of Schubert cells lEi . The multiplicity one Theorem of Kostant
then implies the conclusion of Lemma (6.9).

7. Proof of Theorem 6

(7.1) We prove Theorem 6. Suppose that a 2 Hk�Sh0G� is strongly primitive of type
Aq. Suppose Res�a� � 0. Then, the criterion of Theorem 2 says that a ^ �bY � � 0.

Recall (from Equation (6) of Section (1.2)) a version of the Matsushima formula:

H��Sh0G�;C� � HomK �^
�
p; C1�G�Q�n�G�R� � Gf ���0�:

We temporarily denote by C1�0� the space of smooth functions on the quotient

G�Q�n�G�R� � Gf �
which are killed by the Casimir. Let fxI ; Ig be an orthonormal basis of V �q�� �^k p�

(for the natural Hermitian metric h as in Section (5.1), extending the Killing form
on p0 to p � p0 
C). Let

a �
X
I

jIxI 2 Hm�Sh0G� �^m p� 
 C1�0� �1�

(the inclusion arising from the Matsushima formula).

248 T. N.VENKATARAMANA

https://doi.org/10.1023/A:1002600432171 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002600432171


Our class a is of type q, and

a 2 �V �q�� 
 C1�0�� � HomK1�V �q�; C1�0��;

write a �PjIxI . Now, V �q� is irreducible. Hence the map a : V �q� ! C1�0� (being
K1-equivariant) is injective. In particular, the jI are linearly independent.

Now a ^ �bY � � 0. Then (1) shows that

a ^ �bY � �X�xI ^ �bY ��jI : �2�

Since the functions jI are linearly independent, (2) shows that xI ^ �bY � � 0 for
each I i.e. V �q�� ^ �bY � � 0. This proves the ¢rst part of Theorem 6.

Since e�q�� generatesV �q�� as aK1 module, the conditionV �q�� ^ �bY � � 0 is equiv-
alent to e�q�� ^ �bY � � 0. This implies in particular, that

e�q�� ^ e�q�� ^ �bY � � 0: �3�

Translate both sides of (3) by elements k 2 K1 and integrate over K1. We obtain
from Equation (7) of (6.2) and the K1 invariance of �bY � that �P bilEi �^ �bY � � 0.
Note that here the sum is over all the Ei which are irreducible subspaces of
V��q� and that bi > 0. Therefore, by the de¢nition of the cycle class �bY �, the
restriction of

P
bilEi ^ Ldÿk to the cycle bY is zero. Then, Lemma (6.9) implies that

��Ei� \ E�G;H; k� � 0. But �Ei � V��q�. Therefore, V��q� \ E�G;H; k� � 0. This
completes the proof of Theorem 6.

8. Cup Products

(8.1) Now let G imbed diagonally in G� G. By the Kunneth isomorphism
H��Sh0�G� G�� � H��Sh0G� 
H��Sh0G�. Moreover, Res �a
 b� � a ^ b, if Res
is the restriction from Sh0�G� G� to Sh0G.

Let a; a0 be strongly primitive classes of degrees k and k0 with
k� k0W dim�X � � D, of type q; q0. By Theorem 2, if g�a� ^ a0 � 0 for all g 2 Gf , then
�a
 a0� ^ �bD� � 0. This is the ¢rst part of Theorem 7.

We will now prove that the criterion (1) of Theorem 7 holds. By the general cri-
terion of Theorem 6, the product g�a� ^ a0 � 0 for all g 2 Gf only if the intersection
E�G� G;G; k� k0� \ V��q� q0� � 0 (it is easily checked that a
 a0 is strongly
primitive of type p � Aq�q0 where p corresponds to the parabolic subalgebra
q� q0 of g� g). It is also immediate from the de¢nition of V� that
V��q� q0� � V��q� 
 V��q0�. Therefore it is immediate from Theorem 6 that if
g�a� ^ a0 � 0 for all g 2 Gf then

E�G� G;G; k� k0� \ �V��q� 
 V��q0�� � 0:
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We now prove that the conditions (1) and (2) of Theorem 7 are equivalent. Con-
sider the natural wedging map

j :^k p�
 ^k
0
p� ! ^k�k

0
p�:

Now p� � p� is a �K1 � K1�-module and the above wedging map is equivariant for
K1, with K1 acting diagonally on the left.

Let U�D� be the unitary group of the Hermitian metric preserved by K1 on its
action on p�. Then ^k�k

0
p� is an irreducible representation of U�D� and occurs with

multiplicity one in the �k� k0�ÿfold tensor product �p�� 
 � � � 
 �p��|�������������{z�������������}
�k�k0�ÿtimes

(this is well

known by the Theory of Young Diagrams: see [F-H], Theorem (6.3), (2), applied
to l � �1; 1; � � � ; 1� and d � k� k0). Hence ^k�k

0
p� occurs with multiplicity one in

the representation ^k p�
 ^k
0
p�.

But the inclusion of ^k�k
0
4�p�� (where 4�p�� � the diagonal in p� � p�� in

^k�k
0
�p� � p�� induces an inclusion ^k�k

0
p�,! ^k p�
 ^k

0
p�. On the other hand there

is a natural (wedging) projection ^k p�
 ^k
0
p� !j ^k�k

0
p�; both these maps are

U�D�ÿ equivariant, and U�D� � 4�K1� where K1 acts diagonally as
^k p�
 ^k

0
p�. Since ^k�k

0
p� occurs with multiplicity one, Kerj � Orthogonal comp-

lement of ^k�k
0
4�p�� in ^k p�
 ^k p� under a metric h; i on the latter space invariant

under U�D� �U�D� action.
Suppose now V��q� ^ V �q0� � 0. Then

V��q� 
 V �q0� � Kerj � ^k�k
0
4p�

� �?
:

Let x 2 ^k�k
0
4�p��, and v 2 V �q� 
 V �q0�, and k 2 K1 � K1. Since V��q� 
 V��q0� is

K1 � K1-invariant, we get

0 � hk�v�; xi � hv; k�x�i

for all k 2 K1 � K1, and all x 2 ^k�k
0
4�p��. By taking the �K1 � K1�-span of x, we

obtain

hv;E�G� G;G; k� k0�i � 0 �8v 2 V��q� 
 V��q0��:

Therefore: V��q� 
 V��q0� is in the orthogonal complement of E �
E�G� G;G; k� k0�, i.e.,

�V��q� 
 V �q0�� \ E � 0:

Conversely, suppose �V��q� 
 V��q0�� \ E � 0. Then V��q� 
 V��q0� � E?. In par-
ticular, V��q� 
 V��q0� � � ^k�k

0
4�p���? � Kerj. Therefore j�V��q� 
 V��q0�� � 0
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i.e.

V��q� ^ V��q0� � 0:

We have shown that (1) , (2). This completes the proof of Theorem 7.

(8.2) Proof of Theorem 8. Let a; a0 be non-zero classes of type q; q0 on Sh0G,
G � U�n; 1� of degrees k and k0 with k� k0W n. Note that D � n in this section .
The compact dual of X is Pn�C�, whose cohomology is generated by a non-zero
element L of H2�Pn�C��. Let bD be the diagonal in the product of Pn�C� with itself,
and �bD� the associated cycle class in the cohomology of the product. Then the
Kunneth isomorphism implies that

�bD� �X ei�Li 
 Lnÿi� �1�

where the sum is over i from 0 to n and ei � �1.
Suppose to the contrary, that g�a� ^ a0 � 0 for all g 2 Gf . Now, Theorem 7 says

that if g�a� ^ a0 � 0 for all g 2 Gf , then

�a
 a0� ^ �bD� � 0: �2�
Compare the Kunneth components of both sides of (2). In particular, we get from (1)
that

�a ^ Lnÿk� 
 �a0 ^ Lk� � 0: �3�
Note that by assumption, kW nÿ k0. The Lefschetz hyperplane section Theorem
then implies that a ^ Lnÿk 6� 0 and that a0 ^ Lk 6� 0. This contradicts (3). Hence
Theorem 8 follows.

(8.3) Proof of Theorem 9. The proof is similar to that of Theorem 8. If bX is the
compact dual, then H2�bX � � CL. If k; k0 < �n=2�, then ^k p� �^k Cn and
^nÿk
0
p� � � ^nÿk

0
Cn� are irreducible representations of �SO�2� � SO�n�� � K1 (see

[F-H], Theorem (19.2) and Theorem (19.14)). Therefore by Schur's Lemma and
(7) of (1.3),

H2k�bX � � CLk; Hnÿk0 �bX � � CLnÿk0 :

If a and a0 are as in Theorem 9, and if g�a� ^ a0 � 0 for all g 2 Gf , then we get, as in
the proof of Theorem 8, that

�a ^ Lnÿk� 
 �a0 ^ Lk� � 0: �4�
By assumption k < �n=2� < nÿ k0, and the degrees of a and a0 are k and k0. Then (cf.
proof of Theorem 8) Lefschetz's Theorem on hyperplane sections contradicts (4).

Therefore Theorem 9 follows.
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