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Abstract. The strongest known magnetic fields are found in neutron stars. I briefly discuss
how they are inferred from observations, as well as the evidence for their time-evolution. I go
on to show how these extremely strong fields are actually weak in terms of their effects on
the stellar structure. This is also the case for magnetic stars on the upper main sequence
and magnetic white dwarfs, which have similar total magnetic fluxes, perhaps pointing to
an evolutionary connection. I suggest that a stable hydromagnetic equilibrium (containing a
poloidal and a toroidal field component) could be established soon after the birth of the neu-
tron star, aided by the strong compositional stratification of neutron star matter, and this state
is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and am-
bipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust.
Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were
barotropic, because, depending on temperature and magnetic field strength, beta decays will
keep adjusting the composition to the chemical equilibrium state, or ambipolar diffusion will
decouple the charged component from the neutrons. Therefore, the still open question regard-
ing stable hydromagnetic equilibria in barotropic fluids will become relevant for the evolu-
tion, at least for magnetar fields, which are likely too strong to be stabilized by the solid
crust.
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1. Neutron stars?
Why neutron stars? In the near-vacuum of our laboratories, a free neutron (n) decays

spontaneously through the process n → p + e + ν̄e (where p is a proton, e and electron,
and ν̄e an electron antineutrino), with a half life of only 15 minutes. However, we know
neutrons to exist inside atomic nuclei, and compact stars containing a large number of
neutrons have been predicted (Baade & Zwicky 1934) and modeled (Oppenheimer &
Volkoff 1939) since a long time ago.

The crucial physical ingredient is Pauli’s exclusion principle. As a large number of
fermions is packed into a small volume, they will fill up all the low-energy quantum
states up to the “Fermi energy”, which also plays the role of their chemical potential
(with a small correction for finite temperatures). Thus, even at zero temperature, the
fermions will be moving, providing a “degeneracy pressure” that allows objects such as
white dwarfs and neutron stars to resist their very strong gravity. Moreover, if a neutron
in the core of a cool, very compact star decays as n → p+e+ ν̄e , the nearly massless and
weakly interacting antineutrino escapes easily, but the proton is held back by gravity,
and the electron by the electrostatic potential of the protons, so there will be “Fermi
seas” of neutrons, protons, and electrons, with chemical potentials (≈ Fermi energies)
μn , μp , and μe . If μn > μp +μe , some neutrons (with energies not much below μn ) will be
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energetic enough to find unoccupied protons and electron states (above their respective
Fermi energies) to decay into, in this process reducing μn and increasing μp and μe . In
the opposite case (μn < μp +μe), some protons and electrons will be energetic enough to
combine by p+ e → n+ νe , finding an unoccupied neutron state and ejecting an electron
neutrino νe , thus increasing μn and reducing μp and μe . Both processes will eventually
balance in a chemical equilibrium (or “beta equilibrium”) state in which μn = μp + μe ,
which implies that a large number of neutrons will coexist with a substantially smaller
fraction (few %) of protons and electrons. This fraction is an increasing function of
density, meaning that the fluid is stably stratified, resisting convective turnover, like water
with downward-increasing salinity (Pethick 1991; Reisenegger & Goldreich 1992).

The compulsory presence of protons and electrons, i. e., charged particles, in addition
to neutrons in the neutron star core is also crucial for the existence of a magnetic field in
these stars, because they allow currents to flow, which act as the source of the field. Since
most of their quantum states are occupied, it is difficult to scatter them into a different
state. For this reason, the resistivity is low, and currents can flow for a long time without
being dissipated, perhaps even more so if, as expected, the protons in much of the core
are superconducting (Baym, Pethick, and Pines 1969a,b).

At the very high densities of the “inner core” of a neutron star, neutrons, protons, and
electrons could also decay or combine into more exotic particles such as muons, mesons,
or hyperons, and it might even be possible for all baryons to dissolve into a degenerate
quark-gluon plasma.

On the other hand, in the lower-density outer layers of a neutron star, the state of
matter will be closer to those we are accustomed to, with protons and neutrons bound
into atomic nuclei that can organize into a solid structure, though also with somewhat
unusual properties. On the one hand, it is a strongly compressed solid, in which the Fermi
energy of the electrons is much larger than the electrostatic interaction energy between
neighboring particles, so its bulk modulus (incompressibility) is much larger than its
shear modulus. On the other hand, in the inner crust there are free neutrons coexisting
with and moving through the solid, and these neutrons are believed to become superfluid
and account for the pulsar glitch phenomenon.

Thus, if we imagine moving inside from the neutron star surface, we expect to encounter
quite different states of matter:
• The outer crust (densities ρ ∼ 106 − 4 × 1011g cm−3), a solid of heavy nuclei and

freely moving electrons.
• The inner crust (ρ ∼ 4×1011 −2×1014g cm−3), a solid of even heavier nuclei, freely

moving electrons, and freely moving, likely superfluid neutrons.
• The outer core (ρ ∼ 2 × 1014 − 1015g cm−3), a liquid composed mostly of neutrons

(n), with a relatively small, but increasing fraction (few %) of protons (p), electrons (e),
and muons.
• The inner core (ρ � 1015g cm−3), in a largely unknown state, likely a liquid con-

taining more exotic particles, such as mesons, hyperons, free quarks, or others.

2. Spin-down, magnetic field, and evidence for its evolution
The electromagnetic radiation received from most neutron stars appears pulsed at a

very regular frequency, which slowly decreases in time. This is almost certainly due to
the slowing rotation rate Ω of the neutron star, whose radiation is beamed or at least
anisotropic. The slow-down is usually modeled (not quite realistically) in terms of a mag-
netic dipole rotating in vacuum, which loses rotational energy through electromagnetic
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radiation according to the relation

IΩΩ̇ ∝ −μ2Ω4 , (2.1)

where dots indicate time derivatives, I is the moment of inertia, and μ is the magnetic
moment of the star. This allows to estimate the spin-down time, ts ≡ P/(2Ṗ ), as a rough
estimate of the stellar age (accurate if μ = constant and the initial rotation rate was
much faster than the present one), and the surface magnetic field B ∝ (PṖ )1/2 , where
P = 2π/Ω is the rotation period.

In nearly all cases, there are no other measurements of the magnetic field strength, and
only indirect inferences of its geometry from the pulse profiles. However, the magnetic
field clearly plays an important role in neutron star evolution and is present on all known
neutron stars. Its magnitude is inferred to be 1011−13G in most objects (the bulk of the
so-called “classical pulsars”), as low as 108−9G in the old, but rapidly spinning “millisec-
ond pulsars”, and as high as 1014−15G in the slowly spinning (P ∼ 2 − 12s), but very
energetic “soft gamma repeaters” (SGRs) and “anomalous X-ray pulsars” (AXPs), collec-
tively known as “magnetars”. In addition to these, one phenomenologically distinguishes
isolated thermal emitters (INSs; B ∼ 1013−14G), “central compact objects” in supernova
remnants (CCOs; B ∼ 1010−12G), RRATs (intermittent radio pulsars; B ∼ 1012−14G),
and accreting neutron stars (high-mass and low-mass X-ray binaries). A concise overview
of these classes of neutron stars, their position on the P − Ṗ diagram, and their possible
connections is given by Kaspi (2010).

There are several lines of evidence suggesting possible evolution of the magnetic field:
• Field decay inferred from the distribution of classical pulsars on the P − Ṗ diagram:

complicated by a number of selection effects, it has been addressed by many authors over
the last 35 years, with conflicting results. For a recent analysis, see Faucher-Giguère &
Kaspi (2006).
• Very weak (dipole) field of old, recycled pulsars (millisecond pulsars and low-mass

X-ray binaries): not yet established whether this is an effect of age (passive magnetic
field decay) or induced by accretion (increased resistivity due to heating, magnetic field
burial, or motion of superfluid neutron vortices).
• Anomalous braking indices: In very young pulsars, it is possible to measure Ω̈ and

thus construct the “braking index” n ≡ ΩΩ̈/Ω̇2 . Eq. (2.1) with μ = constant yields
n = 3, whereas measured values are generally lower, at face value implying an increasing
magnetic dipole moment.
• Magnetar energetics: SGRs and AXPs emit copious amounts of high-energy (X and

gamma) radiation; in fact, their time-averaged bolometric luminosity exceeds the rota-
tional energy loss given by eq. (2.1). This suggested that their energy source might be the
decay of a very strong magnetic field (Thompson & Duncan 1996), later corroborated by
the determination of their dipole field as the highest known for any objects (Kouveliotou
et al. 1998). Note, however, that an even stronger internal field appears to be required to
account for the energetics of some of these objects. An interesting, recent discovery has
been the detection of quasi-periodic oscillations following SGR flares (Israel et al. 2005),
which might be magneto-elastic oscillation modes of the neutron star and thus potential
probes of its internal magnetic field structure.

3. Strong and weak magnetic fields
As already mentioned, the observationally inferred dipole magnetic fields of neutron

stars, particularly magnetars (B ∼ 1014−15G), are the strongest known in the Universe,
far exceeding any produced so far on Earth (up to 107G produced in explosions, for very
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Table 1. Stars with long-lived magnetic fields

Star type Upper main sequence White dwarf Neutron star

Radius R [km] 106 .5 104 101

Maximum magnetic field Bm ax [G] 104 .5 109 1015

Maximum magnetic flux Φm ax ≡ 1018 1017 .5 1017 .5

πR2Bm ax [G km2 ]

short times) or on other stars (up to 109G on white dwarfs). An interesting comparison
table is given on R. Duncan’s web site on magnetars (http://solomon.as.utexas.edu/
magnetar.html).

On the other hand, neutron stars share with white dwarfs and upper main sequence
stars the properties of being mostly or completely non-convecting and having fields ap-
pearing to be constant over long time scales and thus likely “frozen in” rather than being
rearranged and regenerated by a dynamo process. Table 1 shows that the widely different
sizes and observed magnetic field strengths among these three types of stars largely com-
pensate to give quite similar maximum magnetic fluxes Φmax ∼ 1017.5−18G km2 in each
type, possibly indicating that the naive hypothesis of flux freezing along the evolution of
these stars goes a long way in explaining their magnetic fluxes, despite their very eventful
lifes, including core collapse, ejection of a substantial fraction of their mass, differential
rotation, and convection.

It is interesting to consider the ratio of gravitational to magnetic energy in these stars,

|Egrav |
Emag

∼ GM 2/R

B2R3/6
∼ 6π2G

(
M

Φ

)2

� 106 (3.1)

which remains constant as the star contracts or expands, as long as it conserves its mass
and magnetic flux. The lower bound, based on the numbers in Table 1, shows that all these
stars are very highly “supercritical” (in star-formation jargon), so the magnetic forces
are much too weak to significantly affect the stellar structure. In this sense, although
magnetar fields are the strongest observed in the Universe, they are still very weak in
terms of their effect on the stellar structure. Of course, this ignores an eventual additional
field component possibly hidden within the star, mentioned in the previous section, to
which I will come back below.

4. Axially symmetric, ideal MHD equilibria
For the reasons just exposed, it is almost certainly an excellent approximation to write

the physical variables characterizing the stellar fluid as the sum of a non-magnetized
“background” plus a much smaller “magnetic perturbation”, i. e., density ρ = ρ0 +ρ1 , or
pressure P = P0 + P1 , where |ρ1 |/ρ0 ∼ |P1 |/P0 ∼ B2/(8πP0) � 10−6 , according to the
estimate of eq. (3.1). In the absence of rotation, the background quantities are spherically
symmetric and satisfy the usual hydrostatic equilibrium relation,

dP0

dr
+ ρ0

dΨ
dr

= 0, (4.1)

where r is the radial coordinate, and Ψ(r) is the gravitational potential, whose magnetic
perturbation I ignore for simplicity (“Cowling approximation”). (In this section, I also
ignore the shear forces in the solid crust and possible superconducting components in the
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neutron star core.) On the other hand, since the magnetic field �B(�r) cannot be spheri-
cally symmetric, the hydromagnetic equilibrium equation for the perturbed quantities is
generally a three-component vector equation:

∇P1 + ρ1∇Ψ =
1
c
�j × �B, (4.2)

where c is the speed of light and �j = (c/4π)∇× �B is the current density.
As explained in § 1, neutron star matter is chemically inhomogeneous, characterized

by at least one composition variable Y , such as the ratio of the proton to neutron density,
which beta decays adjust to an equilibrium value over very long time scales, but which
will be an independent, conserved quantity over dynamical times. If we assume, for now,
a single fluid whose composition is frozen in each fluid element, P1 and ρ1 above can
be considered as independent variables that separately adjust to satisfy the hydromag-
netic equilibrium equation (4.2). Of course, two variables are generally not enough to
satisfy three scalar equations, so not every magnetic field structure can be realized as a
hydromagnetic equilibrium.

The constraint on the magnetic field structure becomes clearest in axial symmetry, in
which the magnetic field must take the form

�B = ∇α(r, θ) ×∇φ + β(r, θ)∇φ, (4.3)

where α and β are (up to this point) arbitrary functions of the spherical coordinates r

and θ (but independent of the azimuthal angle φ, for which I also used ∇φ = φ̂/[r sin θ]),
and ∇· �B = 0 is automatically satisfied. In this case, P1 and ρ1 must clearly also depend
only on r and θ, so the φ-component of the left-hand side of eq. (4.2) must be identically
zero, imposing the same on the right-hand side:

0 =
1
c
(�j × �B)φ =

∇β ×∇α

4πr2 sin2 θ
, (4.4)

thus the gradients ∇α and ∇β must be parallel everywhere, and β must be (at least piece-
wise) a function of α, β(r, θ) = β[α(r, θ)] (Chandrasekhar & Prendergast 1956; Mestel
1956). Once this is imposed, only two non-trivial components of eq. (4.2) remain, and
these can generally be satisfied by an appropriate choice of the two independent variables
P1 and ρ1 , as shown for a particular case in Mastrano et al. (2011). Thus, no further
constraints need to be imposed on the magnetic field to obtain an MHD equilibrium.

Fig. 1 shows what might be an axially symmetric approximation to a realistic magnetic
field configuration in a fluid star. The lines shown are the poloidal (meridional) magnetic
field lines, i.e., lines of constant α. Outside the star, no substantial currents can be
present, and this forces the field to be purely poloidal (β = 0). Since β is a function of
α, we will have β = 0 everywhere, except on the field lines that close within the star,
corresponding to the shaded region on the plot. In this shaded region, both α and β
can be non-zero, so the magnetic field lines winds around in a twisted torus, whereas
elsewhere β = 0 but α �= 0, so the field lines are purely poloidal, lying in meridional
planes.

Long ago, Tayler (1973) showed that, in a stably stratified star, purely toroidal mag-
netic fields (α = 0, β �= 0) are subject to a kink-type instability, in which flux loops
slide with respect to each other, almost exactly on surfaces of constant r. Much more
recently, Akgün et al. (2013) showed that this is true for all toroidal fields, including
those confined in a torus, as in Fig. 1, which had not been covered by the conditions
imposed by Tayler (1973) or in other previous studies. Similarly, it has long been argued
that purely poloidal fields (α �= 0, β = 0) are also always unstable (Markey & Tayler
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Figure 1. Meridional cut of a star with an axially symmetric magnetic field. The bold curve is
the surface of the star, while the thinner curves are poloidal field lines (corresponding to α =
constant). The toroidal component of the magnetic field (β �= 0) lies only in regions where the
poloidal field lines close inside the star (gray region). (Figure prepared by C. Armaza.)

1973; Wright 1973; Flowers & Ruderman 1977; Marchant et al. 2011). On the other hand,
it was suspected that combined poloidal and toroidal fields might stabilize each other
by tying each other together in a magnetic knot as in Fig. 1. This appears to be con-
firmed by the MHD simulations of Braithwaite and collaborators (Braithwaite & Spruit
2004, 2006; Braithwaite & Nordlund 2006), in which initially complex magnetic fields
generically evolve into nearly axially symmetric, twisted-torus configurations like that in
Fig. 1, with poloidal and toroidal components of roughly comparable strengths.

The conditions required for the poloidal and toroidal components to stabilize each
other were studied numerically by Braithwaite (2009), whereas our group has done a
couple of partial, analytical studies (Marchant et al. 2011; Akgün et al. 2013). Since the
energy in the poloidal field component, Epol , can be known or at least estimated from
observations (roughly corresponding to Emag in eq. 3.1), it is interesting to write the
stability conditions as a (very rough and still not rigorously proven) allowed range for
the energy in the hidden, toroidal component, Etor :

0.25 � Etor

Epol
� 0.5

[(
Γ
γ
− 1

)
|Egrav |
Epol

]1/2

. (4.5)

The indices γ and Γ characterize, respectively, the equilibrium profile of the star, γ ≡
d ln P0/d ln ρ0 , and an adiabatic perturbation, which conserves entropy and chemical
composition, Γ ≡ (∂ ln P/∂ ln ρ)ad . The Ledoux criterion for stable stratification (stability
against convection) requires Γ > γ. In the often assumed barotropic case, Γ = γ, whereas
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realistic values are Γ/γ − 1 ∼ 10−2 for neutron stars (stabilized by a small fraction of
chemical impurities, as discussed in § 1) and Γ/γ − 1 ∼ 1/4 in the radiative envelopes of
upper main sequence stars, which are stabilized by entropy (see Reisenegger 2009 for a
more detailed discussion).

Taken at face value, eq. (4.5) implies that, for barotropic stars (Γ = γ), there are no
(axially symmetric) stable magnetic fields. However, it is important to note that the stars
in Braithwaite’s simulations were strongly stratified by entropy, whereas the analysis
of Akgün et al. (2013) assumed strong stable stratification and made approximations
based on this assumption. Thus, strictly speaking, neither of them is applicable to the
barotropic case. On the other hand, simulations by Lander & Jones (2012) also suggest
that magnetic fields in barotropic stars are generally unstable, and therefore eq. (4.5)
might be applicable even in that limit. This issue is being further investigated within our
group (Mitchell et al., these Proceedings; Armaza et al., these Proceedings).

It is interesting to rewrite the upper limit on Etor from eq. (4.5) and evaluate it for
neutron stars, in the form

Etor

|Egrav |
� 0.5

[(
Γ
γ
− 1

)
Epol

|Egrav |

]1/2

� 0.5 × 10−4 , (4.6)

where eq. (3.1) was used in the second inequality, identifying Emag there with Epol

here. This shows that, for realistic poloidal fields, the toroidal component might be
substantially stronger, but the total magnetic energy will still be much smaller than
|Egrav |, so even the toroidal field is weak in a dynamical or structural sense.

5. Dissipative processes and field evolution
In the previous section, I have assumed ideal MHD, in the sense that there is a single,

conducting fluid interacting with the magnetic field. This is likely a good approxima-
tion in the very early stages of the life of a neutron star, in which the relevant time
scales are short and the temperature is high. Initially, the gravitational collapse prob-
ably leaves a highly convective, differentially rotating proto-neutron star, which even-
tually settles into a stable MHD equilibrium like those just described, in just a few
Alvén times, tA ∼ R(4πρ)1/2/B ∼ (1014G/B)s. Soon afterwards, the temperature de-
creases enough for the crust to freeze to a solid state, the neutrons of the core and
inner crust to become superfluid, and the protons in at least parts of the core to become
superconducting.

The crust will thus no longer behave as a fluid. However, the electron currents support-
ing the magnetic field in the crust will carry along the magnetic flux lines in a process
called Hall drift, which is non-dissipative but non-linear and has been argued to lead to
a Kolmogoroff-like turbulent cascade of energy to small scales (Goldreich & Reisenegger
1992) or at least to the formation of current sheets (Urpin & Shalybkov 1991; Vainshtein
et al. 2000; Reisenegger et al. 2007), which dissipate more quickly than a smooth, large-
scale current. On the other hand, “Hall equilibria” have been found, in which the Hall
drift does not modify the configuration of the magnetic field (Cumming, Arras, & Zweibel
2004; Gourgouliatos et al. 2013 and these Proceedings). If some of these equilibria are
stable, which appears to be the case (Marchant et al., in preparation), the magnetic field
could evolve into one of them, so the further evolution would be dominated by the much
slower Ohmic diffusion, as appears to be observed in many recent simulations (Viganò
et al. 2013 and references therein; Rea, these Proceedings). The evolution of the magnetic
field is likely to generate a Lorentz force that can no longer be balanced by pressure and
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gravity as in eq. (4.2) and will thus produce shear stresses and strains in the solid, which
can break the crust if strong enough (as likely in magnetars), causing the matter and the
magnetic field to rearrange. How this occurs and whether this can explain some of the
violent events in magnetars is still largely an open question (see Levin & Lyutikov 2012
for a recent discussion).

The core, on the hand, is thought to remain in a fluid state, but here things change as
well.

At high temperatures (corresponding to the “strong-coupling” regime in the one-
dimensional simulations of Hoyos et al. 2008, 2010), the main change is that, over long
enough times, neutrons and charged particles can convert into each other through beta
decays, eventually establishing a chemical equilibrium controlled by only one variable,
e.g., the local pressure or density. This means that, in its secular evolution, the fluid will
behave as if it were barotropic, with P1 and ρ1 in eq. (4.2) proportional to each other,
so there is now only one fluid degree of freedom. In this barotropic state, the possible
magnetic field structures are much more constrained, and perhaps no purely fluid, stable
equilibria exist. If the field is not too strong, the crust might help in supporting a new
equilibrium structure in the core, otherwise the field might break the crust and be largely
lost from the star.

At lower temperatures (the “weak-coupling” regime of Hoyos et al. 2008, 2010), the
fluid becomes more and more degenerate, reducing the phase space for interactions and
thus the conversion rates between neutrons and charged particles, but also the drag forces
between them, so a two-fluid model becomes more applicable. The magnetic field will
be coupled only to the charged particles, and it will force them to move relative to the
neutrons in a process called ambipolar diffusion (Pethick 1991; Goldreich & Reisenegger
1992). If the charged particles are only protons and electrons, whose densities are tied
together by the condition of charge neutrality, they will behave as a barotropic fluid,
bringing us back to the same situation as in the previous paragraph.

Thus, the evolution of the neutron star magnetic field might unfold as follows (see
Fig. 5, as well as a more detailed discussion to be found in Reisenegger 2009). When
the neutron star is born, its internal temperature is high, T ∼ 1011K. Its thermal en-
ergy, ET ∼ 1052(T/1011K)2erg, though much smaller than the gravitational binding
energy, |Egrav | ∼ 1054erg, is substantially larger than the magnetic energy, Emag ∼
1049(B/1016G)2erg, in the early, relaxed, MHD equilibrium, even for the ultra-strong
magnetar fields, B ∼ 1014−16G. However, neutrino emission cools the star very quickly
(much faster than the magnetic field can evolve), until it drops well below the “equipar-
tition” line where ET = Emag , at which point the dissipation of even a small fraction
of the magnetic energy can substantially feed back on the thermal evolution, essentially
halting the cooling. For a strong magnetic field (B � 1016G), this will happen in the high-
temperature, strong-coupling regime (T � 109K), and the evolution of the magnetic field
will be controlled by beta decays, whereas at lower B the low-temperature, weak coupling
regime is appropriate, and the evolution occurs through ambipolar diffusion, limited by
neutron-charged particle collisions. Depending on field strength, the magnetic field in
the crust might reorganize by breaking the latter (violently or causing plastic flow) or
through Hall drift, or remain essentially unchanged, providing a fixed boundary condition
to the evolution in the core. In any case, the magnetic feedback should leave T essentially
constant until the magnetic field has reached a new equilibrium state, compatible with
the long-term, barotropic behavior of the liquid core matter. If (as I would conjecture)
there are no stable magnetic equilibria in a barotropic, fluid sphere, then these long-
lived magnetic equilibria in neutron stars will rely on being stabilized by the solid crust,
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Figure 2. Magnetic field – temperature plane for a non-superfluid neutron star core. The dot–
dashed horizontal lines show the initial temperature (just after core collapse), and the transition
from neutrino-dominated (modified Urca) to photon-dominated cooling. The dashed diagonal
line corresponds to the equality of magnetic and thermal energy. Above and to the left of the
solid line, the star cools passively, on the time scales indicated in parenthesis along the verti-
cal axis, without substantial magnetic field decay, so the evolution of the star is essentially a
downward vertical line. Once the solid line is reached, magnetic dissipation mechanisms become
important and generate heat that stops the cooling until the magnetic field has re-arranged to
a new equilibrium state. (Figure prepared by C. Petrovich and first published in Reisenegger
2009.)

and thus the typical field strength must be relatively weak, probably not reaching the
magnetar range.

Clearly, the evolution of the magnetic field can be complex and will require numer-
ical simulations to be sorted out in more detail, even in the absence of superfluidity
and superconductivity, which I have ignored in the previous discussion. Some aspects
of their effects have been considered by other authors, e.g., Glampedakis, Andersson, &
Samuelsson (2011).

6. Conclusions
The observed magnetic field strength on the surface of neutron stars appears to be

roughly as expected from the flux of their progenitors (massive main sequence stars)
and siblings (white dwarfs), although the neutron star birth is accompanied by violent
processes that could alter it substantially. Soon after birth, it is likely to reach a stable,
ideal-MHD equilibrium, with a poloidal and a toroidal component, which stabilize each
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other, aided by the compositional stratification of neutron star matter. The subsequent
evolution relies on non-ideal-MHD processes such as Hall drift in the solid crust, and beta
decays and ambipolar diffusion in the liquid core, all of which will lead to dissipation that
temporarily halts the cooling of the neutron star, while the magnetic field re-arranges
into a new equilibrium, which probably relies on shear forces in the crust that limit the
field strength in this new, long-lived state.
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