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1. Introduction. We continue our studies (2, 3, 4, 5) of the algebraic, geometric, and
analytical similarities and contrasts between Boolean algebras and the real field. In this note
we contrast the convergence of series in set algebras with that in the real field.

One considers the Boolean algebra 8 of all subsets of a given set S. By addition, one
means symmetric difference A + B = (A C\(S -B)) U ((S-A) C\B). As usual, one writes

n
Z At for A1+Ai + ... +An.

t=i

One introduces a topology into 8 (the Kantorovitch (6) or sequential order topology (1)) by
00 00 00 00

defining lim At= D U Ajy lim At = U (~\ At and then lim At=A if and only if
t—*•» »=1 j=i i—nx> i=l j=i t—>oo

lim A{= \imAi=A.
i—coo i—>oo

oo n

The sum of an infinite series Z A( is then defined to be lim Z A(, provided this limit exists.
i= l «—>to i= l

The series is called convergent if it has a sum and in this case the sum and the series itself are
00

denoted by the same symbol Z At. The interesting contrast shown in the present note is as

follows : In the real field, a necessary but far from sufficient condition that a series converge
is that the sequence of its terms have limit zero. In 23, however, this condition is necessary and
sufficient.

2. The main result.
n

LEMMA 1. Z A ,• consists of those points (elements of S) which are in exactly an odd number of

the sets A(; i = l, 2, ... , n.

Proof. This result is well-known (7) and is easily proved by mathematical induction.

LEMMA 2. lim A( and lim A{ consist, respectively, of those points which are in infinitely
i—(-oo i—»-oo

many and those points which are in almost all (all but a finite number), respectively, of the sets
Ai\ i = l , 2

Proof. These results are well-known (1) and are quite clear from the definitions of the
superior and inferior limits.

00

LEMMA 3. If S A{ is convergent, then no point is in infinitely many of the sets

Ar,i = l,2
n

Proof. Suppose;pe^4,-forinnnitelymanyi. Thenpe Z A{ for infinitely many n (one merely
i=l

takes for n every alternate value of i for which peAt and applies Lemma 1). However, p is
n m n

not in almost all Z A{ since pe Z At implies pi Z Ait where n is the first index exceeding m
<=i <=i t=i

G CM.A.
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n n

for which peAn. Thus, pelim. E A( but pi Urn E At so that the series cannot converge.

This proves the contrapositive of Lemma 3.
00

LEMMA 4. A necessary condition that E A( converge is that lim Af=0 (0 denotes here the
t = l t-<-CO

null set).
Proof. If the series is convergent, lim A{ = 0, by Lemmas 2 and 3. However,

t—*x>

Qc=hm Ait=hm Aj = 0
i-*oo t—>-oo

so that lim .4,=0.
t—•»

00

LEMMA 5. / / lim At = 0, then E At converges.
t->-oo t = l

Proof. S u p p o s e l i m A t = 0 . T h e n n o p o i n t i s i n i n f i n i t e l y m a n y o f t h e A { ; i = 1 , 2 , ... .
i->oo

n
Thus, if p e lim 2 Ait there is a last A{, say ^4S, with p eAf. Thus £> e At for exactly an odd

n—'oo i = l
n

number of i<fc and p ̂ , - for i>k. Then p e Z1 At for all w>fc. Thus,

lim E A{=Um ^ 4 , = lim ^ At
n—>-oo i = l n->oo i = l n—>-oo i=l

and the series converges.
00

THEOREM 1. The series E A{ converges if and only if lim Af=0 and in this case the sum
t=l <-xo

of the series is that subset of S each of whose points lies in exactly an odd number of the
A,;i = l, 2, . . . .

Proof. Immediate from Lemmas 1, 4, and 5.

3. Representing series. We employ the Boolean ring notation (1) and write AB for A C\ B
00

here desired. A sequence Av A2,... in 23 is called a representing series if E X{A{ converges for
t=i

every choice of the coefficients Xt and, furthermore, every subset of S (that is, every member of
33) is the sum of this series for some choice of the coefficients X{. The sequence Alt A2, ••• is

00 00

called a partition sequence of S if U A( = S and fl ^,-.=0 for every infinite subsequence

{A{\ of {yl,-}. Countable partitions of S are, obviously, special cases of partition sequences.

Theorem 2. A sequence A^A^, ...is a representing series in 23 if and only if it is a partition
sequence of S.

00

Proof. Suppose {.4,-} is a representing series. Taking X,- = S, for all i, E A{ converges and,
i l

by Theorem 1, lim .4^ =0. Hence, PI Af. =0 for every subsequence {AA, by Lemma 2. Also,
t-M0 j = l '

E XiAi = S for some, choice of the X(. Then Jx,-4,<=U I ( 4 ( e U 4 , . Thus, {A{} is a
t - l »=1 i=l i=l

partition sequence of <S. Suppose, on the other hand, that {̂ 4,} is a partition sequence. Then
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00

PI .4^=0 for any subsequence {A{} so that lim At = 0, by Lemma 2, and, hence, lim XiAi=0
j—1 J i-*oo f-»-oo

oo 00 QO

for any choice of the X(. By Theorem 1, E X(A( converges. Since U A( = S, U B(=S,
i = l i=l t = l

i—1 oo oo

where Bt i s ^ D (S- U Aj). The 5,- are, however, disjoint so that E Bt = U B(. Thus,
3=1 • i = l »=1

EBt = S. LetT<=8. Then T= E (T(S- U J , ) ) ^ and {At) is a representing series.
l i l 13

There are, of course, no representing series in the real field and, although
oo n

U at = lim E sk n(at)

is definable in analogy to the Boolean case (where skn(a{) is the fcth elementary symmetric
00

function of alt o2,. . . , an), there is no analogue to the condition U at = S and, hence, no
i=l

partition sequence of reals.
4. (Series of Boolean functions. One recalls (1) that any Boolean function of one variable

X (that is, a function finitely defined in terms of the Boolean operations on X and constant
elements of 23) may be written in the conjunctive normal form :

() = (AnX)U(Bf](S-X))
or, in ring notation,

(A+B)X+B,
oo

where A and B are constants. One says, as usual, that a series of functions E F( (X)

converges if the series of functional values converges for all values of X. In the real field,
a series of polynomials (the analogue in the reals of Boolean functions) may converge to
a function which is not a polynomial. We observe, however

00

THEOREM 3. A series E Ft(X) of Boolean functions in 23 converges if and only if

lim At = lim Bi = 0, where F t(X) — (At + Bt)X + Biy and, in this case, the sum function is the

Boolean function
/ 00 00 \ 00

F(X) = ( E At+ E BAX+ E Bt.
M=l t=l /

Proof. If E Ft(X) converges for all X, E i^,(0)= E B( converges and lim JB,=O, by
t=l i - l i=l t->-oo

00 00
Theorem 1. Also, E Ft{S)= E A( converges and lim A{ = 0, again by Theorem 1. Using

t«=l i = l i—>-oo

the sequential continuity (1) of Boolean operations in the Kantorovitch topology, we have

(f) lim(7 E At + E Bt)X+ E Bt\ = (lim E At + lim E Bt\X + lim E Bit
n—Kc\\x=l i=l / t=l / \n—wo i=l n-»oo t=l / n—<-oo t = l

provided the limits on the right hand side exist. If, on the other hand, lim ^4<=lim ^,=0,
{—•oo i—MXJ

00

then the limits on the right hand side of (f) exist, according to Theorem 1, and E F((X)
t-i

converges to the prescribed sum function.
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5. Additional comments.
(1) Using the representation theorems (1) of Loomis and others, one may attack infinite

series in general cr-complete Boolean algebras from the results given in this note.
(2) One may generalize the results of this note in set algebras by considering the full

order topology (1) and considering Moore-Smith series (nets of partial sums) rather than
sequential series.

(3) One may generalize our notion of partition sequence as follows : A pseudo-partition
of a set S is a collection of subsets of S whose join (set-theoretic sum) is S and having the
property that each point of S lies in only finitely many of the members of the pseudo-partition.
A theory of the relations arising from pseudo-partitions might be an interesting generalization
of the theory of equivalence relations arising from ordinary partitions (1).

(4) One might also find interesting a study of infinite joins of numbers
°o n

V a,- = lim U sk n(a()
i-=l n-wo jfc=l '

defined in analogy with the join operation in Boolean rings
(in a Boolean ring, A VB=A +B+AB, A VBVC=A +B + C + AB +AC +BC +ABC, etc.).
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