A NOTE ON THE STOCHASTIC RANK OF A BIPARTITE GRAPH

A.L. Dulmage and N.S. Mendelsohn

(received March 26, 1959)

1. Introduction, Definitions and Notation. A bipartite graph is a system consisting of two sets of vertices S and T and a set of edges K, each edge joining a vertex of S to a vertex of T. A set U of edges of K is said to be independent if no two edges of U have a vertex in common. The largest possible number of independent edges has been variously called the exterior dimension [3], term rank [4, 5, 7], etc. This number is the same as the smallest number of vertices in a set W such that each edge of K has at least one of its vertices in W. The edges of a finite bipartite graph can be represented as a set of cells in a matrix as follows. If $S=a_{1}, a_{2}, \ldots, a_{n}$ $T=b_{1}, b_{2}, . . b_{m}$, the edges of K are represented by some of the cells of an n by matrix as follows: if K contains the edge joining a_{i} to b_{j} then the (i, j)th cell of the matrix represents this edge. It is convenient sometimes to represent the set K by a matrix A with real entries $a_{i j}$ where $a_{i j}=0$ if a_{i} is not joined to b_{j} in K and $\mathrm{a}_{\mathrm{ij}}>0$ if a_{i} is joined to b_{j} in K . Any non-null graph K will have infinitely many matrix representations.

A non-null matrix A with non-negative entries is said to be doubly stochastic if every row sum and every column sum of A has the same value p. Such a matrix [2] is a linear combination of permutation matrices with positive coefficients; $A=\sum c_{i} P_{i}$ where $c_{i}>0, \sum c_{i}=p$ and the matrices P_{i} are permutation matrices.

Let G_{1} and G_{2} be graphs with vertex and edge sets S_{1}, T_{1}, K_{1} and $\mathrm{S}_{2}, \mathrm{~T}_{2}, \mathrm{~K}_{2}$ respectively. G_{1} is said to be embedded in G_{2} if $\mathrm{S}_{1} \leqslant \mathrm{~S}_{2}, \mathrm{~T}_{1} \leqslant \mathrm{~T}_{2}, \mathrm{~K}_{1}<\mathrm{K}_{2}$ and if when e is an edge of K_{2} but

Can. Math. Bull., vol. 2, no.3, Sept. 1959
not an edge of K_{1} then at least one of the ends of e is not a vertex of S_{1} or of T_{1}. A matrix representation of G_{2} is always obtainable from a matrix representation A_{1} of G_{1} by bordering A_{1} with extra rows or columns.

In [4], the authors have defined the stochastic rank σ of an n by n matrix A with non-negative entries as follows: if A can be embedded in a doubly stochastic matrix by bordering it with $n-\sigma$ rows and columns but cannot be embedded in a doubly stochastic matrix by bordering it with fewer than $n-\sigma$ rows and columns, A is said to have stochastic rank σ. If K is a graph of term rank ρ and a matrix representation of K has stochastic rank σ, it has been shown in [1] that $\sigma \leqslant \rho$. The stochastic rank σ_{K} of a graph K whose vertex sets contain the same number of elements, is defined to be the maximum of the stochastic ranks of all matrix representations of K. Theorem 6 of [4] states that $\sigma_{K}=\rho$ or $\sigma_{K}=\rho-1$. In this paper, we - ain a graphical proof of this result together with a natural aditon which distinguishes the two cases $\sigma_{K}=\rho$ and $\sigma_{K}=p-1$. For this purpose the following concepts defined in [3] are needed. An edge e of K is inadmissible if e does not appear in any maximal set of independent edges of K, otherwise e is admissible. The set of all admissible edges of K is said to be the core of K. K is called a core-graph if every edge of K is admissible.
2. THEOREM. Let G be a bipartite graph whose vertex sets each contain n elements and whose term and stochastic ranks are ρ and σ respectively. Then $\sigma=\rho$ if G is a coregraph and $\sigma+1=\rho$ if G is not a core graph.

Proof. The edges of G in all cases will be represented as cells in an n by n matrix. Two cases are distinguished.

Case 1. $P=n$. Suppose G is a core-graph. If e_{i} is any edge of G, there is at least one set of n independent edges of which e_{i} is a member. Such a set of edges is represented by n cells of a matrix exactly one of which is in each row and column. Associate with each edge e_{i} such a set of cells S_{i} and let P_{i} be the permutation matrix whose entries are 1 in the cells of S_{i} and 0 elsewhere. Hence with each e_{i} of G we have associated the matrix P_{i}. (Different e_{i} could possibly be associated with the same P_{i}.) The matrix $A=\sum P_{i}$ is doubly stochastic and is a matrix representation of G. Hence $\sigma=n$.

If G is not a core-graph it contains an inadmissible edge e. Any permutation matrix P which contains a l in the cell representing e also contains a 1 in at least one cell not representing an edge of G. Hence G cannot be represented by a doubly stochastic n by n matrix. Hence $\sigma<n=\rho$. Also since G has term rank $\rho=n$ we may assume that the vertex sets may be so ordered that the cells along the main diagonal of an n by n matrix all represent edges of G. G is now embedded in a larger graph G_{1} whose new edges are represented by cells in an ($n+1$)th row and ($n+1$) th column as follows. The cell ($n+1, n+1$) represents a new edge. If (i, j) represents an inadmissible edge of G, let $\left(n+1\right.$, i) and ($j, n+1$) represent edges of G_{1}. The graph G_{1} is of term rank $n+1$ and is a core-graph. For if e is an admissible edge of G the cells which represent n independent edges of G which include e, together with ($n+1, n+1$) represent $n+1$ independent edges of G_{1}. On the other hand for the inadmissible edge of G represented by (i, j) the set of cells $(i, j),(n+1, i),(j, n+1)$ together wilh all cells ($r, r), r \neq i$, $\mathbf{r} \neq j, \mathbf{r} \neq n+1$ form a set of ($n+1$) cells representing independent edges of G_{1}. Hence by the first part of case $1, G_{1}$ can be represented by a doubly stochastic $(\mathrm{n}+\mathrm{l})$ by ($\mathrm{n}+1$) matrix. Hence $\sigma=\rho-1$.

Case 2. $p<n$. Again we assume that the vertex sets are so ordered that the first ρ diagonal elements of an $n \times n$ matrix represent edges of G as in figure 1 . If the matrix is partitioned into four parts A, B, C, D, in which A consists of the first P rows and columns and $\mathrm{B}, \mathrm{C}, \mathrm{D}$ as in the diagram then the region D represents no edges of G. Augment the matrix by the addition of $n-\rho$ rows and columns. Embed G in a graph G_{1} whose additional edges are represented only by the main diagonal cells of the square regions E and F abutting D as in the diagram. Then G_{1} is a graph whose vertex sets each contain $2 n-\rho$ elements and whose term rank is $2 n-\rho$. Furthermore, each admissible edge of G and each added edge is an admissible edge of G_{1} and each inadmissible edge of G (if such exists) is inadmissible in G_{1}. Hence, G_{1} is a core-graph if and only if the same is true of G. Case 2 has now been reduced to case 1 .

REFERENCES

1. D. Konig, Theorie der endlichen und unendlichen Graphen, (New York, 1950).
2. A.L. Dulmage and I. Halperin, On a theorem of Frobenius-Konig and J. von Neumann's game of hide and seek, Trans. Roy. Soc. Can. Ser. III, 49 (1955), 23-29.
3. A.L. Dulmage and N.S. Mendelsohn, Coverings of bipartite graphs, Can. J. Math. 10 (1958), 517-534.
4., The term and stochastic ranks of a matrix, Can. J. Math. 11 (1959), 269-279.
5. O. Ore, Graphs and matching theorems, Duke Math. J. 22 (1955), 625-639.
6. H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Can. J. Math. 9 (1957), 371-377.
7., The term rank of a matrix, Can. J. Math. 10 (1957), 57-65.

University of Manitoba

