Bioactive substances in milk with properties decreasing risk of cardiovascular diseases

Maria Pfeuffer* and J. Schrezenmeir

Federal Dairy Research Centre, Department of Physiology and Biochemistry of Nutrition, 24103 Kiel, Germany

Milk is often seen as a potential promotor of atherosclerosis and coronary heart disease because it is a source of cholesterol and saturated fatty acids. But there are several studies indicating that milk and milk products may not affect adversely blood lipids as would be predicted from its fat content and fat composition. There are even factors in milk and milk products which may actively protect from this condition by improving several risk factors. Calcium, bioactive peptides and as yet unidentified components in whole milk may protect from hypertension, and folic acid, vitamin B₆ (pyridoxine) and B₁₂ (cyanocobalamin) or other unidentified components of skim milk may contribute to low homocysteine levels. Conjugated linoleic acid may have hypolipidaemic and antioxidative and thus antiatherosclerotic properties. Epidemiological studies suggest that milk and milk products fit well into a healthy eating pattern emphasizing cereals and vegetables.

Milk: Coronary heart disease: Risk reduction

Introduction

The risk of coronary heart disease (CHD) incidence and mortality increases with increasing cholesterol levels (Martin et al. 1986, Grundy et al. 1988). The widely publicized ‘lipid hypothesis’ concluded that a high intake of cholesterol and saturated fatty acids is largely to blame for high plasma cholesterol levels and for high CHD incidence in industrialized countries.

This is one reason why milk and milk products have long had a negative image concerning atherosclerosis and CHD. Milk fat provides cholesterol and is rich in saturated fatty acids. Both components have the potential to increase plasma cholesterol levels. However, a considerable part of the saturated fatty acids in milk fat is short-chain fatty acids and the long-chain stearic acid, which do not adversely affect cholesterol levels. Saturated fatty acids with a chain length of 12–14 C atoms are reported to be hypercholesterolaemic (Grundy & Denke, 1990). Another reason for the negative image of milk is that casein (and other animal proteins) may have hypercholesterolaemic and atherogenic effects (Pfeuffer & Barth, 1990), especially reported in sensitive animal species. However, there is no hypercholesterolaemic effect of milk proteins in humans.

In more recent years additional risk factors for CHD, including plasma fibrinogen and homocysteine levels have become apparent, and the question as to what extent a high cholesterol level contributes to the overall risk as compared to other known and unidentified risk factors is more open than ever. There is some evidence against the ‘lipid hypothesis’. Although there is a correlation between CHD mortality and milk and butterfat intake, Finland and France provide important paradoxes to the lipid hypothesis (Artaud-Wild et al. 1993). Indeed, the discrepancy of low CHD risk despite a diet high in saturated fatty acids and cholesterol has become widely known as the ‘French paradox’. There is no positive correlation between CHD risk and animal fat intake within a population (Fehily et al. 1993). High milk intake is reported to be associated with a decreased ischaemic heart disease risk (Shaper et al. 1991). These reports suggest that milk and milk products may contain antiatherogenic bioactive substances to negate the effects of saturated fatty acids and cholesterol.

This article provides a list of cardiovascular disease (CVD) risk factors and outlines how milk or milk components and milk products may modify these risk factors in a beneficial way. Such an approach was chosen because several components may be involved in amelioration of CHD or CVD.

Milk and lipid levels

Both high plasma cholesterol and triglyceride levels are considered risk factors for CHD (Grundy et al. 1998). Earlier reports showed that skim milk or yogurt consumption may decrease plasma cholesterol levels. Although whole milk intake did not lower plasma cholesterol, however, there was no increase of plasma cholesterol either (Rossouw et al. 1981; Massey, 1984). When adolescents consumed 2 litres of skim milk per day for three weeks, plasma cholesterol levels decreased as compared to full cream milk or yogurt (1.8 %

* Corresponding author: Maria Pfeuffer, fax + 431-609-2472, email pfeuffer@bafm.de
fat) (Rossouw et al. 1981). In a more recent study in free-
living adults conducted over 8 weeks, a supplement of 1 quart
(0.95 litre) of skim milk decreased plasma cholesterol and
triglyceride levels in hypercholesterolaemic, but not in
normocholesterolaemic subjects (Buonopane et al. 1992).
An expert panel concluded that whole milk may not affect
blood lipids as would be predicted from its fat content and
fat composition (Berners, 1993).

The hypocholesterolaemic effect may be even more
pronounced if modified milk or processed milk products
are consumed. Sharpe et al. (1994) found that long-term
supplementation with 90 g skim milk powder per day,
equivalent to about 1 litre fluid milk, from hyperimmu-
nized cows as compared with normal skim milk powder,
decreased total (−5.2 %) and LDL cholesterol (−7.9 %)
levels in hypercholesterolaemic subjects. It was assumed
that this intake of immunized milk changed intestinal
flora, which in turn could have contributed to an increased
intestinal loss of cholesterol and bile acids. The possibility
that yogurt bacteria and certain strains of probiotic
bacteria and thus yogurt consumption could reduce
cholesterol levels has attracted much attention since
Mann & Spoerry (1974) reported on the hypocholesterol-
aemic effect of fermented milk in Maasai. Several studies
in rodents and pigs demonstrated such a hypocholesterol-
aemic effect in rabbits (Lee et al. 1997), but not in mice (Munday
et al. 1999), which showed that CLA acts as an antioxidant.

Conjugated linoleic acid (CLA) is a collective term designating
a mixture of positional and geometric isomers of linoleic
acid, all having one set of conjugated double bonds. The
two double bonds in CLA are usually either at position 9
and 11 or 10 and 12. Each double bond can be in cis- or
trans-configuration. Fat originating from ruminant animals
contains much higher levels of CLA than fat from non-
ruminants, as ruminal bacteria produce CLA from feed-
derived polyunsaturated fatty acids. Therefore, milk and
milk products are a rich source of CLA. CLA concentra-
tions in dairy products typically range between 3 and
9 mg/g fat, of which the 9-cis,11-trans isomer makes up
73–93 % (Shantha et al. 1995; Banni et al. 1996). CLA
content of milk fat varies with season and is highest during
pasture time. Feeding regimen, processing and storage of
products may increase CLA concentrations. The 9-cis,11-
trans isomer is believed to be the most biologically active
compound, as it is preferentially incorporated into tissues
(Ha et al. 1990; Ip et al. 1991; Lee et al. 1994; Nicolosi et al.
1997).

CLA has a strong anticarcinogenic effect (Ip et al. 1991). It
may also act as an antiatherogenic compound. Both in
rabbit (Lee et al. 1994) and hamster experiments (Nicolosi
et al. 1997) animals developed less aortic lesions when
given up to 0.5 % (by wt.) CLA together with an
atherogenic diet. However, in rabbits a significant effect
of CLA was only exerted on the connective tissue in the
thoracic but not the abdominal aorta, and there was no
decrease in lipid deposition. The effect in hamsters was
only significant if data from all treated animals (irrespec-
tive of the CLA dose given) were pooled. In mice the aortic
area covered by fatty streaks was even increased with CLA
feeding (Munday et al. 1999).

Hypolipidaemic and antioxidative effects might be
responsible for any antiatherogenic effect of CLA. As
outlined before, CLA feeding lowered plasma cholesterol
and triglyceride levels in rabbits (Lee et al. 1994) and
hamsters (Nicolosi et al. 1997) and triacylglycerol levels in
mice (Munday et al. 1999). Ip et al. (1991) found less
peroxides in rat mammary gland, but not in liver of CLA-
fed animals, and concluded that CLA acts as an antioxidant.
This is in line with in vitro findings (Ha et al. 1990) that,
upon long-term (15 days) incubation at 40°C, CLA was less
prone to peroxide formation than linoleic acid, and that,
upon addition to linoleic acid, CLA was more protective
than ascorbic acid, α-tocopherol or butylated hydroxy-
toluene (BHT). This study also found that the protective
effect disappeared with increasing doses of CLA, a
phenomenon which is also seen with some other anti-
oxidants. The alleged antioxidant properties of CLA were
questioned in a more recent in vitro study by Berg et al.
(1995), which showed that CLA was more prone to

Milk and atherosclerosis

Conjugated linoleic acid is a collective term designating a
mixture of positional and geometric isomers of linoleic
acid, all having one set of conjugated double bonds. The
two double bonds in CLA are usually either at position 9
and 11 or 10 and 12. Each double bond can be in cis- or
trans-configuration. Fat originating from ruminant animals
contains much higher levels of CLA than fat from non-
ruminants, as ruminal bacteria produce CLA from feed-
derived polyunsaturated fatty acids. Therefore, milk and
milk products are a rich source of CLA. CLA concentra-
tions in dairy products typically range between 3 and
9 mg/g fat, of which the 9-cis,11-trans isomer makes up
73–93 % (Shantha et al. 1995; Banni et al. 1996). CLA
content of milk fat varies with season and is highest during
pasture time. Feeding regimen, processing and storage of
products may increase CLA concentrations. The 9-cis,11-
trans isomer is believed to be the most biologically active
compound, as it is preferentially incorporated into tissues
(Ha et al. 1990; Ip et al. 1991; Lee et al. 1994; Nicolosi et al.
1997).

CLA has a strong anticarcinogenic effect (Ip et al. 1991). It
may also act as an antiatherogenic compound. Both in
rabbit (Lee et al. 1994) and hamster experiments (Nicolosi
et al. 1997) animals developed less aortic lesions when
given up to 0.5 % (by wt.) CLA together with an
atherogenic diet. However, in rabbits a significant effect
of CLA was only exerted on the connective tissue in the
thoracic but not the abdominal aorta, and there was no
decrease in lipid deposition. The effect in hamsters was
only significant if data from all treated animals (irrespec-
tive of the CLA dose given) were pooled. In mice the aortic
area covered by fatty streaks was even increased with CLA
feeding (Munday et al. 1999).

Hypolipidaemic and antioxidative effects might be
responsible for any antiatherogenic effect of CLA. As
outlined before, CLA feeding lowered plasma cholesterol
and triglyceride levels in rabbits (Lee et al. 1994) and
hamsters (Nicolosi et al. 1997) and triacylglycerol levels in
mice (Munday et al. 1999). Ip et al. (1991) found less
peroxides in rat mammary gland, but not in liver of CLA-
fed animals, and concluded that CLA acts as an antioxidant.
This is in line with in vitro findings (Ha et al. 1990) that,
upon long-term (15 days) incubation at 40°C, CLA was less
prone to peroxide formation than linoleic acid, and that,
upon addition to linoleic acid, CLA was more protective
than ascorbic acid, α-tocopherol or butylated hydroxy-
toluene (BHT). This study also found that the protective
effect disappeared with increasing doses of CLA, a
phenomenon which is also seen with some other anti-
oxidants. The alleged antioxidant properties of CLA were
questioned in a more recent in vitro study by Berg et al.
(1995), which showed that CLA was more prone to

Milk and atherosclerosis

Conjugated linoleic acid is a collective term designating a
mixture of positional and geometric isomers of linoleic
acid, all having one set of conjugated double bonds. The
two double bonds in CLA are usually either at position 9
and 11 or 10 and 12. Each double bond can be in cis- or
trans-configuration. Fat originating from ruminant animals
contains much higher levels of CLA than fat from non-
ruminants, as ruminal bacteria produce CLA from feed-
derived polyunsaturated fatty acids. Therefore, milk and
milk products are a rich source of CLA. CLA concentra-
tions in dairy products typically range between 3 and
9 mg/g fat, of which the 9-cis,11-trans isomer makes up
73–93 % (Shantha et al. 1995; Banni et al. 1996). CLA
content of milk fat varies with season and is highest during
pasture time. Feeding regimen, processing and storage of
products may increase CLA concentrations. The 9-cis,11-
trans isomer is believed to be the most biologically active
compound, as it is preferentially incorporated into tissues
(Ha et al. 1990; Ip et al. 1991; Lee et al. 1994; Nicolosi et al.
1997).

CLA has a strong anticarcinogenic effect (Ip et al. 1991). It
may also act as an antiatherogenic compound. Both in
rabbit (Lee et al. 1994) and hamster experiments (Nicolosi
et al. 1997) animals developed less aortic lesions when
given up to 0.5 % (by wt.) CLA together with an
atherogenic diet. However, in rabbits a significant effect
of CLA was only exerted on the connective tissue in the
thoracic but not the abdominal aorta, and there was no
decrease in lipid deposition. The effect in hamsters was
only significant if data from all treated animals (irrespec-
tive of the CLA dose given) were pooled. In mice the aortic
area covered by fatty streaks was even increased with CLA
feeding (Munday et al. 1999).

Hypolipidaemic and antioxidative effects might be
responsible for any antiatherogenic effect of CLA. As
outlined before, CLA feeding lowered plasma cholesterol
and triglyceride levels in rabbits (Lee et al. 1994) and
hamsters (Nicolosi et al. 1997) and triacylglycerol levels in
mice (Munday et al. 1999). Ip et al. (1991) found less
peroxides in rat mammary gland, but not in liver of CLA-
fed animals, and concluded that CLA acts as an antioxidant.
This is in line with in vitro findings (Ha et al. 1990) that,
upon long-term (15 days) incubation at 40°C, CLA was less
prone to peroxide formation than linoleic acid, and that,
upon addition to linoleic acid, CLA was more protective
than ascorbic acid, α-tocopherol or butylated hydroxy-
toluene (BHT). This study also found that the protective
effect disappeared with increasing doses of CLA, a
phenomenon which is also seen with some other anti-
oxidants. The alleged antioxidant properties of CLA were
questioned in a more recent in vitro study by Berg et al.
(1995), which showed that CLA was more prone to
Milk and cardiovascular disease risk

Milk and hypertension

A high blood pressure is defined as a systolic blood pressure above 140 mg Hg and/or a diastolic blood pressure above 90 mg Hg. Hypertension is a serious health condition. Individuals with high blood pressure are three times more likely to develop CHD and seven times more likely to develop a stroke.

The DASH (Dietary Approaches to Stop Hypertension) clinical intervention trial showed that a diet rich in fruits, vegetables and low-fat dairy foods reduces blood pressure both in normotensives and mildly hypertensive individuals significantly more than a fruits and vegetables diet alone (Appel et al. 1997). Milk non-drinkers within the Honolulu Heart Program experienced stroke twice the rate of men consuming 450 g or more milk per day (Abbott et al. 1996). In the study by Buonopane et al. (1992) a significant decrease of systolic and diastolic blood pressure by a 0.95 litre skim milk supplement was also observed in both normo- and hypercholesterolaemic participants, whereas a hypcholesterolaemic effect was only seen in hypercholesterolaemic subjects. Thus these epidemiological and intervention studies provide some indication that high intake of low fat dairy foods can reduce blood pressure, especially within the context of a diet rich in fruits and vegetables.

Calcium (Ca) in milk may contribute to reduction of blood pressure. Numerous animal and human epidemiological and intervention studies have demonstrated an inverse relationship between dietary calcium and blood pressure (Miller & Groziak, 1997; Reussner & McCarron, 1994). Not surprisingly, such a correlation was not always observed (Ascherio et al. 1991). As dairy foods are a rich source of calcium and the prime source of Ca in the US and other industrialized countries, one might confer this inverse correlation from Ca intake to intake of milk products. Milk contains 1200 mg Ca/litre, and bioavailability of Ca from milk is high. Possible stimulants for Ca absorption are lactose, citric acid and in particular phosphopeptides, which form complexes with Ca in the intestine (Matsui et al. 1997). However, it seems that blood pressure tends to decrease with increasing Ca intake only below a threshold level of 500–600 mg per day, whereas increasing Ca intake may have little impact in individuals who are already consuming adequate amounts (Miller & Groziak, 1997). Further, intake of magnesium and potassium possibly correlates inversely with blood pressure (Reussner & McCarron, 1994). Milk is a reasonable source of these minerals.

Angiotensin I-converting enzyme (ACE)-inhibitory peptides, particularly in fermented milk, may act as hypotensive components. Such peptides containing up to ten amino acids may be released from milk proteins through the proteolytic activity of lactic acid bacteria. Casokinins derived from β-casein and α-1-casein display the highest activity. ACE catalyses both the production of the vasoconstrictor angiotensin II and the inactivation of the vasodilator bradykinin. ACE inhibitors are believed to be competitive substrates for ACE. The structure–activity relationship of ACE inhibitory peptides has not yet been established, but it appears to be strongly influenced by the C-terminal tripeptide sequence of the substrate (Metsel, 1997; Yamamoto et al. 1994). Milk fermented with Lactobacillus helveticus CP 790 (Yamamoto et al. 1994), sour milk fermented with L. helveticus and Saccharomyces cerevisiae, as well as the two ACE -inhibitory tripeptides, Val-Pro-Pro and Ile-Pro-Pro, isolated from the latter sour milk (Nakamura et al. 1995), all showed an antihypertensive effect in spontaneous hypertensive rats. Such peptides were found in the aorta of experimental animals after oral application (Masuda et al. 1996), which is evidence that they were indeed absorbed. There are also studies in humans showing a hypotensive effect of fermented milk (Hata et al. 1996; Sharpe et al. 1994). When Hata et al. (1996) gave 95 ml of the above-mentioned sour milk or control milk to elderly hypertensive patients for 8 weeks, they found that this relatively small amount of sour milk significantly decreased blood pressure. Blood pressure remained decreased for 4 weeks after cessation of the daily ingestion of sour milk, a phenomenon that was also observed with other hypotensive treatments. In another study (Sharpe et al. 1994) skim milk powder equivalent to 1 litre of milk from immunized cows, as compared with skim milk from control cows, lowered systolic and diastolic blood pressure along with plasma cholesterol in both normotensive and hypertensive hypercholesterolaemic subjects. As this effect cannot be due to calcium, the authors hypothesized that a small-molecular-weight fraction absorbed from the intestinal tract might have been involved. However, the components were not identified. ACE-inhibitory peptides may be released from a number of food proteins, but the antihypertensive effect in humans has not been proven for most of the peptides created by food processing.

Milk and hyperhomocyst(e)inaemia

Homocysteine is a sulphhydryl-containing amino acid that exists in several forms. Free homocysteine constitutes only a minor fraction in plasma. Oxidation leads to homocysteine disulfides, called homocystine, and homocysteine–cysteine mixed disulfides. The collective term for all these forms, free or bound to proteins, is homocyst(e)ine, abbreviated H(e) or Hcy.

Homocysteine is an intermediate compound formed by demethylation of methionine. It is catalyzed to cysteine by the pyridoxal phosphate-dependent enzymes cystathione β-synthase (EC 4.2.1.22) and γ-cystathionase (EC 4.4.1.1). It is also remethylated to methionine through folate- and vitamin B12-dependent enzymes. Folic acid and betaine serve as methyl donors, whereas vitamin B6 (pyridoxine) and B12 (cyanocobalamin) serve as cofactors. Their availability, together with the homocysteine-metabolizing
enzymes, are important determinants of plasma H(e) concentrations.

Hyperhomocyst(e)inaemia is considered an independent risk factor for CVD. Numerous recent studies have come to the conclusion that elevated H(e) levels are associated with increased risk of both CHD (myocardial infarction), stroke, peripheral vascular disease, and thrombosis. Moderate hyperhomocyst(e)inaemia, generally defined as plasma H(e) concentrations above 15–16 μmol/litre, occurs in 20–40 % of patients with such vascular diseases. There is a graded and continuous correlation between plasma H(e) levels and disease risk (Duell & Malinow, 1997; Verhoef et al. 1998). Based on meta-analyses it has been estimated that approximately 10 % of CHD cases in the USA are attributable to this disorder (Ubbink et al. 1996). It has also been speculated that the French paradox, i.e. low CHD incidence despite a diet high in saturated fatty acids and cholesterol, may be explained by the high folic acid intake in this country (Parodi, 1997).

There are several plausible mechanisms by which hyperhomocyst(e)inaemia may promote atherosclerosis. These mechanisms include direct damage to the endothelium, promotion of LDL oxidation, abnormalities in platelet function and clotting factors (Duell & Malinow, 1997). Hyperhomocyst(e)inaemia may be caused by genetic defects in metabolizing enzymes. Other determinants of this condition are (male) gender, (increasing) age, smoking and impaired renal function (Verhoef et al. 1998). But most individuals with elevated plasma H(e) levels have sub-optimal plasma concentrations of folate, vitamin B₆ and B₁₂, the strongest association being between H(e) and folate levels (Verhoef et al. 1998). In Framingham Heart Study participants plasma folate levels were significantly higher, and H(e) levels lower, with high intake of folate-rich food (Tucker et al. 1996).

However, evidence that reduction of H(e) levels decreases CVD risk has yet to be provided. It cannot yet be excluded that hyperhomocyst(e)ine is a mere marker of another metabolic disorder. The question is how much folate should be recommended in the light of a limited knowledge. It is notable that moderate folic acid supplements of 200 μg/d were sufficient to decrease normal H(e) levels of healthy individuals by 10 % (Schorah et al. 1998). Folic acid is present in a wide variety of foods, especially liver, leafy vegetables, fruit, pulses, and yeast. Milk and milk products do not rank very high as a source of folic acid, but they contribute their share, particularly in countries with high milk intake. They also provide vitamin B₆ and B₁₂. The data from the International Dairy Federation (1997) on intake and average concentrations of these vitamins in milk products indicate that they provide around 175, 1-6 and 26 μg/d of the vitamins B₆ and B₁₂ and folic acid in Europe, and 150, 1-7 and 33 μg/d in the USA. For vegetarians, milk and milk products are an essential source of vitamin B₁₂. A cross-sectional study of Norwegian workers found that those with the highest intake of bread, vegetables and skim milk had the lowest H(e) levels (Oshaug et al. 1998). This supports again the idea that a high consumption of (low-fat) milk and milk products is part of a healthy eating pattern emphasizing cereals and vegetables.

Conclusions

This article discusses the possibility that there are several components in milk and milk products which may have no major, but nonetheless a supportive role concerning the prevention of atherosclerosis, like folic acid, vitamin B₆ and B₁₂. There are some with a probably more decisive role, like calcium and bioactive peptides. The importance of CLA is not conclusively known. Several effects concerning the hypolipaemic and the hypotensive properties of milk were demonstrated not with defined components, but rather with whole milk products. It may well be that the effect of a particular component is enhanced by other ingredients. In this context, it is important to note that nutrients are not consumed in isolation, and that there may be physiological interactions and combined effects (Reusser & McCarron, 1994). It is certainly not justified to reject milk and milk products simply because of cholesterol and saturated fatty acids contained in them.

References

from it that are inhibitors to angiotensin I-convert enzyme. *Journal of Dairy Science* 78, 1253–1257.

