A computer aided classification of certain groups of prime power order: Corrigendum

Judith A. Ascione, George Havas, and C.R. Leedham-Green

The first four paragraphs of [1, p. 258] are a mildly erroneous over simplification of the situation. A more accurate description follows.

The analysis of two-generator 3-groups of second maximal class goes along the following lines. We first define a class of group whose structure is particularly amenable to theoretical analysis.

Let \(P \) be a group of order \(p^n \) and class \(m - 1 \) (for any prime \(p \)) and \(s \leq r \) be positive integers such that

(i) \(P/Y_2(P) \cong C_{p^r} \times C_p \) and \([Y_i(P), Y_{i+1}(P)] = P \) for \(2 \leq i \leq m-1 \),

so that \(n = m + r - 1 \).

(ii) Put \(M_2 = C_{\Sigma}(Y_2(P)/Y_1(P)) \). We require \(M_2/Y_2(P) \cong C_{p^{r-1}} \times C_p \).

Let \(a_1 \) be a fixed element of \(M_2 \) not lying in the Frattini subgroup of \(P \) with \(a_1^{p^r} \in Y_2(P) \), and let \(Y_1(P) \) denote \(\langle Y_2(P), a_1 \rangle \).

(iii) For all \(i, j \geq 1 \), \([Y_i(P), Y_j(P)] \subseteq Y_{i+j+p^{s-1}}(P) \).

(iv) For all \(i \geq 1 \), \(Y_i(P)^{P} = Y_{i+p^{s-1}(p-1)}(P) \).

(v) \(m \geq p^{s-1}+3 \).

Then \(P \) will be said to be a Blackburn group of type \((r, s) \). It

Received 25 August 1977.

317
can be shown that conditions (iii) and (iv) are independent of the choice of \(a_1 \) (see [4]).

Here we are concerned with the cases \(r = 1 \) or \(2 \). If \(r = 1 \), so that \(s = 1 \), \(P \) is just a \(p \)-group of maximal class and positive degree of commutativity as defined in [2].

Examples are easily produced. Let \(O \) denote the ring of integers in the \(p^s \)th cyclotomic number field, so that \(O \) is of rank \(p^{s-1}(p-1) \) as an abelian group, and let \(\theta \) be a primitive \(p^s \)th root of unity. Let \(A \) be the ideal in \(O \) generated by \(\theta - 1 \), so that \(A^i \) is of index \(p^i \) in \(O \) for all \(i > 0 \). Then the split extension of \(O/A^{m-1} \) by the cyclic group of order \(p^r \) acting via multiplication by \(\theta \) is a Blackburn group of type \((r, s)\) with \(O/A^{m-1} \) as a possible choice for \(y(F) \) provided \(m > p^{s-1}+3 \).

The groups of second maximal class with \(G/Y_2(G) \cong C_9 \times C_3 \) and of order \(3^n \), where \(n \leq 8 \), are analysed in [1, §7]. Those in [1, Table 6] have \(Y_i(G) : Y_i(G)^3 \leq 9 \) for all \(i \geq 2 \); such a group we define to be of maximal type. See [1, §4] for a general explanation of the tables. All groups descended from group \(A \) contain a subgroup of maximal class and index 9. Those descended from groups \(G \) and \(H \) are Blackburn groups of type \((2, 1)\). The groups in [1, Table 7] are of non-maximal type; that is \(Y_i(G) : Y_i(G)^3 > 9 \) if \(i \geq 2 \) and \(|Y_i(G)| > 9 \). This table, when continued indefinitely, will contain all Blackburn 3-groups of type \((2, 2)\). It will also contain infinitely many groups with a subgroup of index at most 27 which is of this type, and will contain only a finite number of other groups.

The groups of second maximal class with \(G/Y_2(G) \cong C_9 \times C_3 \) of order \(p^n \), where \(n \leq 10 \), are analysed in [1, §6]. Those in [1, Table 2] have \(Y_i(G) : Y_i(G)^3 \leq 9 \) for all \(i \geq 4 \); such groups will also be said to be of maximal type. Those descended from groups \(B, O \), and \(Q \) contain a subgroup of maximal class and index 9. Those descended from groups \(S \)
and U contain a Blackburn group of type $(2, 1)$ and index 3.

The groups in [1, Tables 4, 5] are descended from groups H and I and are of non-maximal type; that is, $\left[\gamma_i^*(P) : \gamma_{i+1}^*(P) \right] > 9$ if $i \geq 4$ and $|\gamma_i^*(P)| > 9$. It can be shown (see [3]) that all descendants of H and I contain a subgroup Q of index 3 such that Q has second maximal class, $Q/\gamma_2(Q) \cong C_9 \times C_3$, and $\gamma_i(Q) = \gamma_{i+1}(P)$ for all $i \geq 3$. Thus Q is also of non-maximal type, as in [1, Table 7].

References

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT;