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Abstract Let G be the abelian Lie group Rn × Rk/Zk, acting on the complex space X = Rn+k × iG.
Let F be a strictly convex function on Rn+k. Let H be the Bergman space of holomorphic functions
on X which are square-integrable with respect to the weight e−F . The G-action on X leads to a unitary
G-representation on the Hilbert space H. We study the irreducible representations which occur in H by
means of their direct integral. This problem is motivated by geometric quantization, which associates
unitary representations with invariant Kähler forms. As an application, we construct a model in the
sense that every irreducible G-representation occurs exactly once in H.
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1. Introduction

Let G be a connected abelian Lie group and X be a complex space given by

G = R
n × R

k/Z
k, X = R

n+k + iG.

The complex structure of X is given by C
n × C

k/Z
k (quotient on the imaginary part

of C
k). In this paper, we consider the G-action on X, and study the resulting unitary

G-representation on some weighted Bergman spaces of holomorphic functions on X. We
also explain the significance of this result from the viewpoint of Kähler geometry and
geometric quantization.

We will adopt the following convention on the coordinates. Write

z = (z1, z2), z1 = (z1, . . . , zn), z2 = (zn+1, . . . , zn+k),

z = x + iy, zj = xj + iyj , zj = xj + iyj ,

}
(1.1)

on X = C
n × C

k/Z
k. Here z1 and z2 are respectively the coordinates on C

n and C
k/Z

k.
Also, x = (x1, x2) and y = (y1, y2) are respectively the coordinates on R

n × R
k and

R
n × R

k/Z
k. For instance a 1-form on X is given by

∑
j fj dxj + hj dyj , where j sums

over 1, . . . , n + k. A complex invariant 1-form c1 dyn+1 + · · · + ck dyn+k on R
k/Z

k can
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simply be written as c dy2 with c ∈ C
k. We also normalize 2π ∼ 1 to simplify notation,

so that, for all r = (r1, . . . , rn+k) ∈ R
n × Z

k and z = (z1, . . . , zn+k) ∈ X, we can write

erz = exp(r1z1 + · · · + rn+kzn+k). (1.2)

Observe that for a = n + 1, . . . , n + k, each ya is a variable on R/Z, so it is only defined
modulo Z. But since ra ∈ Z, and the exponential of the imaginary number is Z periodic,
it follows that (1.2) is a well-defined complex number.

Write the group operation of R
k/Z

k additively. The action of G = R
n × R

k/Z
k on

X = R
n+k + iG is defined by

g(x + iy) = x + i(g + y), where x ∈ R
n+k and g, y ∈ G. (1.3)

Let F : R
n+k → R be a strictly convex function, namely a smooth function whose

Hessian matrix is positive definite everywhere. It is extended to X by setting F̃ (x+iy) =
F (x). Consider the Bergman space H with weight e−F :

H =
{

h : X → C holomorphic;
∫

X

|h(z)|2e−F (x) dxdy < ∞
}

. (1.4)

The G-action on X leads to a unitary G-representation on the Hilbert space H by

G → Aut(H), (g · h)(z) = h(g(z))

for all g ∈ G, h ∈ H and z ∈ X. In this paper, we study the irreducible G-representations
that occur in H.

Let Ĝ be the set of all equivalence classes of irreducible unitary G-representations.
Since G is abelian, each representation space in Ĝ is one dimensional. In fact

Ĝ = R
n × Z

k,

where each t ∈ R
n × Z

k defines a unitary representation of G on C in the following
manner. Write t = (t1, . . . , tn+k) ∈ R

n × Z
k and g = (g1, . . . , gn+k) ∈ R

n × R
k/Z

k in the
spirit of (1.1). Let eitg = exp i(t1g1 + · · · + tn+kgn+k). As explained in (1.2), this is well
defined. Now t ∈ Ĝ defines a G-representation on C by

G → Aut(C), g(z) = eitgz. (1.5)

Since eitg has norm 1, we clearly have g(z)g(z) = zz̄, so (1.5) is unitary with respect to
the usual Hermitian inner product on C.

We intend to define the occurrence of t ∈ Ĝ in the weighted Bergman space H. If a
holomorphic function f : X → C spans a one-dimensional G-representation which is
equivalent to (1.5), then f(x + i(g + y)) = eitgf(x + iy) for all g ∈ G and x + iy ∈ X,
which implies that f is a constant multiple of the function z �→ etz. Therefore, given
h ∈ H, one may attempt to write h as a ‘span’ of the functions erz over r ∈ Ĝ, namely

h =
∑
r∈Ĝ

φ(r)erz. (1.6)
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This works well in the case where n = 0 and Ĝ = Z
k is discrete, as carried out in [2].

But with n > 0, the first component of the parameter r = (r1, r2) in (1.6) is no longer
discrete under the natural measure of R

n. Each t1 ∈ R
n has no point mass, so the value of

a coefficient φ(t1, t2) in (1.6) is not as important as the values of φ(r, t2) for all r near t1.
The Z

k component has discrete measure, so we can ignore the neighbourhood of t2.
The natural measure of Ĝ = R

n × Z
k is called the Plancherel measure. Write dr for the

Plancherel measure of the R
n component. With these facts in mind, we replace (1.6) by

the following direct integral [5] expression. Let C∞
0 (Rn) denote the compactly supported

smooth functions on R
n.

Definition 1.1. We say that t = (t1, t2) ∈ Ĝ occurs in H if and only if there exists
some h ∈ H of the form

h(z) =
∫

Rn

φ(r)erz1 dr et2z2 , (1.7)

where φ ∈ C∞
0 (Rn) and φ(r) �= 0 for all r sufficiently near t1.

Here φ ∈ C∞
0 (Rn) is just a convenient condition for the construction of h. As we will

see in (2.5) and (2.8), h may still be in H even if φ belongs to some wider class of weighted
L2-functions on R

n. But since the definition concerns the occurrence of t in H, only the
non-vanishing property of φ near t1 matters.

Let F ′ : R
n+k → R

n+k denote the gradient mapping, and Im(F ′) its image. The fol-
lowing is the main result of this paper.

Theorem 1.2. The unitary irreducible representation t ∈ Ĝ occurs in H if and only
if t ∈ Im( 1

2F ′).

The special case G = R
k/Z

k has been proved in [2]. The main argument here is
therefore to deal with the R

n-action via the direct integral expression.
In § 2, we prove Theorem 1.2. In § 3, we explain the geometric motivation for this

problem. Namely, let ω = i∂∂̄F be a Kähler form on X, where F is G-invariant. Then
F is a strictly convex function on R

n+k. The standard machinery of geometric quan-
tization [4] leads to a holomorphic Hermitian line bundle L on X. The space H(L)
of square-integrable holomorphic sections of L is a unitary G-representation. We will
show that H(L) is G-equivariant to the H of (1.4). Also, the condition t ∈ Im( 1

2F ′) in
Theorem 1.2 is equivalent to t being in the image of the moment map of ω.

Finally, we will construct a model [3] in the sense that every irreducible G-
representation occurs exactly once in H.

2. Weighted Bergman space

In this section, we study the weighted Bergman space H (see (1.4)) and prove Theo-
rem 1.2. We first gather some basic facts about the strictly convex function. It has at
most one critical point and, if the critical point exists, then it is the global minimum.
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Proposition 2.1. Let F : R
n → R be a strictly convex function. Then the image

Im(F ′) of the gradient mapping is convex. Also,∫
Rn

e−F (x)+rx dx < ∞

if and only if r ∈ Im(F ′).

Proof. For any r ∈ R
n, define the strictly convex function Fr by

Fr(x) = F (x) − rx. (2.1)

Observe that r ∈ Im(F ′) if and only if Fr has a global minimum.
Let r, s ∈ Im(F ′), and let q = ar + (1 − a)s for some 0 < a < 1. We want to show

that q ∈ Im(F ′). Define the strictly convex functions Fq, Fr and Fs as in (2.1). Since
r, s ∈ Im(F ′), the functions Fr and Fs have global minimum, and so do the strictly
convex functions aFr and (1 − a)Fs. Therefore, for x ∈ R

n,

|x| → ∞ =⇒ aFr(x), (1 − a)Fs(x) → ∞. (2.2)

It is easy to check that
Fq = aFr + (1 − a)Fs. (2.3)

Then (2.2) and (2.3) imply that Fq(x) → ∞ as |x| → ∞. So Fq has a global minimum,
which implies that q ∈ Im(F ′). This proves the first part of the proposition.

Next we have

r ∈ Im(F ′) ⇐⇒ 0 ∈ Im(F ′
r)

⇐⇒ F ′
r has a global minimum

⇐⇒
∫

Rn

e−Fr(x) dx < ∞ by [2, Proposition 3.3]

⇐⇒
∫

Rn

e−F (x)+rx dx < ∞.

This completes the proof. �

We now prove Theorem 1.2. The toric part R
k/Z

k of G has been handled in [2], so
our main focus is on the Euclidean part R

n. For clarity of explanation, we start with
the special case G = R

n. The general case G = R
n × R

k/Z
k then follows from an easy

modification.

Proof of Theorem 1.2 (special case G = R
n). Let G = Ĝ = R

n and X = C
n. Use

the usual coordinates z = x + iy on C
n, where G = R

n acts along the y-variables as
in (1.3). Let φ ∈ C∞

0 (Rn), and consider

h(z) =
∫

Rn

φ(r)erz dr. (2.4)
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For each fixed x, the function y �→ h(x + iy) is the Fourier transform of φ(r)erx. So by
the Plancherel theorem (see, for example, [7]),∫

Rn

|h(x + iy)|2 dy =
∫

Rn

|φ(r)|2e2rx dr.

Applying
∫

Rn(· · · )e−F (x) dx to both sides, we get∫
Cn

|h(x + iy)|2e−F (x) dy dx =
∫

Rn

∫
Rn

|φ(r)|2e2rx−F (x) dr dx

=
∫

Rn

|φ(r)|2
(∫

Rn

e2rx−F (x) dx

)
dr. (2.5)

We want to show that

t ∈ Im( 1
2F ′) ⇐⇒ t occurs in H. (2.6)

Suppose that t �∈ Im( 1
2F ′), and so we want to show that t does not occur in H. Assume

otherwise, namely there exist h ∈ H and φ ∈ C∞
0 (Rn) satisfying (2.4), such that φ does

not vanish near t. By Proposition 2.1, Im(1
2F ′) is convex. So there exists a region U ⊂ R

n

of positive measure such that φ does not vanish on U , and U does not intersect Im( 1
2F ′).

For all r ∈ U , φ(r) �= 0, and ∫
Rn

e2rx−F (x) dx

diverges by Proposition 2.1. Therefore, the last expression of (2.5) diverges. However, the
first expression of (2.5) is just the square of the Hilbert space norm of h ∈ H, and so it
converges. This is a contradiction, so t does not occur in H.

To complete the proof of (2.6), suppose that, conversely, t ∈ Im( 1
2F ′). We want to show

that t occurs in H. Let φ : R
n → [0,∞) be a smooth function with compact support K,

such that
t ∈ U ⊂ K ⊂ Im( 1

2F ′), (2.7)

where U = φ−1(0,∞), and K = Ū is the support of φ. Let

h(z) =
∫

Rn

φ(r)erz dr.

Let m1 = maxr∈K |φ(r)|2. Since K ⊂ Im( 1
2F ′), by Proposition 2.1,

r �→
∫

Rn

e2rx−F (x) dx

is a smooth function on K. Let m2 be its maximum value over K. Then the last expression
of (2.5) is bounded above by

∫
K

m1m2 dr < ∞. So the first expression of (2.5) converges,
which implies that h ∈ H. Since t ∈ U , it follows that φ does not vanish near t in (2.4),
so t occurs in H. This completes the proof of (2.6), and Theorem 1.2 follows. �

The following argument for the general case is achieved by repeating the above proof,
with only minor modifications. We therefore omit the details where appropriate.
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Proof of Theorem 1.2 (general case G = R
n × R

k/Z
k). We use the coordinates

z = (z1, z2) introduced in (1.1). Write h(z) = f(z1)et2z2 as in (1.7), where

f(z1) =
∫

Rn

φ(r)erz1 dr

for some φ ∈ C∞
0 (Rn). Analogously to the method in (2.5), it leads to∫

Rk

∫
Cn

|f(z1)|2e2t2x2−F (x) dy1 dx1 dx2 =
∫

Rk

∫
Rn

∫
Rn

|φ(r)|2e2rx1+2t2x2−F (x) dr dx1 dx2

=
∫

Rn

|φ(r)|2
(∫

Rn+k

e2rx1+2t2x2−F (x) dx

)
dr.

(2.8)

We want to prove (2.6). Suppose that t �∈ Im( 1
2F ′), and we want to show that t does

not occur in H. Assume otherwise, namely there exist some h ∈ H and φ ∈ C∞
0 (Rn)

in (1.7), such that φ does not vanish near t1. We repeat the earlier proof for G = R
n,

with h replaced by f , and U replaced by U × t2. Then again, the divergence of the last
expression of (2.8) implies that h(z) = f(z1)et2z2 cannot be an element of H.

Conversely, suppose that t ∈ Im( 1
2F ′). We again repeat the earlier proof, with (2.7)

replaced by t ∈ U × t2 ⊂ K × t2 ⊂ Im( 1
2F ′). Using the same m1 and m2, the last ex-

pression of (2.8) is bounded by
∫

K
m1m2 dr. Therefore (2.8) converges and h ∈ H. This

completes the proof of (2.6), and Theorem 1.2 follows. �

3. Kähler structure

In this section, we describe the significance of the weighted Bergman space H (see (1.4))
as well as Theorem 1.2. We adopt the coordinate system introduced in (1.1).

Suppose that ω is a Kähler form on X with a G-invariant potential function F . Namely,
ω = i∂∂̄F and F (z) = F (x). Then

ω = i∂∂̄F

= 1
4 i

∑
j,l

(
∂

∂xj
− i

∂

∂yj

)(
∂

∂xl
+ i

∂

∂yl

)
F (dxj + i dyj) ∧ (dxl − i dyl)

= 1
2

∑
j,l

∂2F

∂xj∂xl
dxj ∧ dyl. (3.1)

Since ω is Kähler, the matrix (
∂2F

∂xj∂xl

)
is positive definite. This implies that F : R

n+k → R is strictly convex.
Note that a general real (1, 1)-form is∑

j,l

ajl(dxj ∧ dxl + dyj ∧ dyl) + bjl dxj ∧ dyl.

It therefore has no potential function unless all ajl = 0.
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From now on, fix a Kähler form ω = i∂∂̄F on X. By (3.1), write

ω = d
∑

l

(
1
2

∂F

∂xl
dyl

)
.

The 1-form
1
2

∑
l

∂F

∂xl
dyl

is G-invariant, so the moment map µ of ω is simply the gradient mapping [1, Theo-
rem 4.2.10],

µ : X → R
n+k, µ(x + iy) = 1

2F ′(x). (3.2)

Note that, given any q ∈ R
n+k in the image of µ, the corresponding symplectic quo-

tient [6] is always a point. Since F is strictly convex, it implies that F ′ is injective, so there
exists a unique p ∈ R

n+k such that 1
2F ′(p) = q. Hence, µ−1{q} = {p + iy ∈ X; y ∈ G},

and the symplectic quotient (µ−1{q})/G is a point.
The usual machinery of geometric quantization [4] says that ω leads to a holomorphic

line bundle L on X with Chern class [ω] = 0, and it has a connection, ∇, whose curvature
is ω. Furthermore, L has an invariant Hermitian structure 〈· , ·〉. A section s on L is said
to be holomorphic if ∇vs = 0 for all anti-holomorphic vector fields v. Define the square-
integrable holomorphic sections by

H(L) =
{

s holomorphic section on L;
∫

X

〈s, s〉 dxdy < ∞
}

. (3.3)

The G-action on X leads to a unitary G-representation in H(L). We will show that it is
G-equivariant to the weighted Bergman space H (see (1.4)).

Lemma 3.1. Let α be a complex closed 1-form on X, invariant under the R
k/Z

k-
action. There then exist some c ∈ C

k and function f on X such that α = c dy2 + df .

Proof. Let π : X → R
k/Z

k be the projection (z1, z2) �→ y2. The fibre of π is con-
tractible, so α is cohomologous to a closed 1-form in the image of π∗. Namely,
α = π∗β + df for some function f . Averaging over the compact group R

k/Z
k if nec-

essary, we may assume that β is R
k/Z

k-invariant. Hence, there exists some c ∈ C
k such

that β = c dy2. This proves the lemma. �

Proposition 3.2. There is a non-vanishing G-invariant holomorphic section s0 on L

such that 〈s0, s0〉 = e−F .

Proof. The arguments are similar to those presented in [2, § 3], so we merely sketch
the idea here. Pick a non-vanishing smooth section s of L. Then γ = i∇s/s is a complex
1-form on X, and satisfies dγ = ω. Let µ = −i∂F . Then µ − γ is a closed 1-form on X.
Averaging over the compact group R

k/Z
k if necessary, we may assume that µ − γ is

R
k/Z

k-invariant. By Lemma 3.1, µ − γ = c dy2 + df for some c ∈ C
k and function f .
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Using the section ecx2−ifs of L and the arguments leading to [2, Equation (3.11)], it
follows that c ∈ Z

k. Therefore, as explained in (1.2), the expression e−i(cy2+f) is well
defined.

Let s0 = e−i(cy2+f)s. Since s is non-vanishing, s0 is also non-vanishing. Similar argu-
ments to those after [2, Equation (3.11)] show that we have ξ · s0 = 0 for all ξ ∈ R

n+k.
Thus, s0 is G-invariant. Direct computation shows that ∇s0 = −∂F ⊗ s0. Since ∂F is a
(1, 0)-form, it follows that ∇vs0 = 0 for all anti-holomorphic vector fields v and, hence,
that s0 is a holomorphic section. Analogously to the arguments leading to [2, (3.13)], we
have 〈s0, s0〉 = e−F . This proves the proposition. �

By Proposition 3.2, it follows that H of (1.4) and H(L) of (3.3) are G-equivariant via
the trivialization h �→ hs0. We can rephrase Theorem 1.2, together with (3.2), by saying
that t ∈ Ĝ occurs in H(L) if and only if t lies in the image of the moment map of ω.

An application of Theorem 1.2 is the construction of the model of G. The concept of a
model is first introduced in [3] for classical groups. It refers to a unitary G-representation
in which every member of Ĝ occurs exactly once. In our case, we see that the occurrence
of t ∈ Ĝ is controlled by the image set Im( 1

2F ′).

Corollary 3.3. The unitary G-representation H is a model if and only if F ′ is sur-
jective. Equivalently, H(L) is a model if and only if the moment map of ω is surjective.

Proof. By Theorem 1.2, H is a model if and only if Ĝ = R
n × Z

k is contained in
Im( 1

2F ′). By Proposition 2.1, Im(1
2F ′) is convex, so this is equivalent to Im( 1

2F ′) = R
n+k.

The argument for the second statement of the corollary is similar. The proof follows. �

For instance, define the quadratic function

F (x) = F (x1, . . . , xn+k) = (x1)2 + · · · + (xn+k)2.

Then F ′(x) = 2x is surjective, so H is a model of G.
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