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ON THE PERMANENT OF A CERTAIN CLASS
OF (0, 1)-MATRICES

BY
D. J. HARTFIEL AND J. W. CROSBY

Introduction. In [3, p. 77] Ryser notes the importance of the minimum of the
permanent function on the class of (0, 1)-matrices having exactly k£ ones in each
row and column. In [4] a lower bound was found for the minimum of the permanent
on the class A, of nx n (0, 1)-matrices with exactly three 1’s in each row and column.
The purpose of our work is to improve this result, in particular we show that
minge,, (per 4)=3(m—1).

The following definitions and notation will be used in the paper.

An nxn (0, 1)-matrix 4 is said to be partly decomposable if there exist permuta-

tion matrices P and Q such that

_ {4, 0O
Pa2 = (3" )
where A; and A, are square. If 4 is not partly decomposable then A is said to be
fully indecomposable. If @,y =a2,)= * - * =@nomy=1 Where ¢ is a permutation of

1,2,...,nthen 4 is said to have a positive diagonal. If o(i)=1i,ie{l,..., n} then

A is said to have a positive main diagonal.
AD denotes the class of nx n (0, 1)-matrices for which one row and one column

have exactly two 1’s and n—1 rows and n—1 columns have exactly three I’s.
A is the class of nx n (0, 1)-matrices for which two rows and two columns have
exactly two 1’s and n—2 rows and n—2 columns have exactly three 1’s. A¥ is the

class of fully indecomposable matrices in A2,
Let f denote any function from {1, 2,...} into {1, 2,...} with the following

properties:
(1) f(n)<mingey * (per 4) for n=2;

) fM<f(n—k)f(k—1) when min (n—k, k—1)>2;
S <f(n—2)f(2) when n>4;

(3) fis monotone nondecreasing.
The following lemmas will be used in the paper.

LeMMA 1. If A is an nxn (0, 1)-matrix with exactly three 1’s in each row and
column then each 1 is on a positive diagonal and per A >n [4, p. 201].
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LeEMMA 2. If A is an nx n (0, 1)-matrix which is fully indecomposable then each 1
is on a positive diagonal [4, p. 199].

LEMMA 3. If A € A? then A has a positive diagonal.

Proof. Consider the (n+1) x (n+1) matrix B obtained by bordering 4 with 0’s

and 1’s so that B has exactly three 1’s in each row and column. The result now fol-
lows from Lemma 1.

LeMMA 4. If Ae AP and is partly decomposable then there are permutation
matrices P and Q such that

o= (34

where A, and A, are square and

(a) A, is fully indecomposable.
(b) PAQ has a positive main diagonal.

Proof. Follows from Lemma 3.

Results and consequences.
LemMA 5. If A € AP, then per A >f(n).

Proof. By the previous remarks concerning f(n) it suffices to show the inequality
for partly decomposable matrices in A, We proceed by induction on n, the dimen-
sion of the matrices in the class A,

The class A® is undefined. A contains only the matrix (i }) All members of

the class A$ are fully indecomposable and so the claim holds for n € {2, 3}.
Suppose the lemma holds for all matrices in A, re{2,3,...,n—1}. We show
the lemma holds for matrices in AQ.

If 4 € AP (n=4) is partly decomposable there are permutation matrices P and
0 such that

PAQ = (’;1 32) (where 4, is kxk (k < n)

and fully indecomposable, and PA Q has a positive main diagonal. For convenience,
the matrix PAQ will be referred to as A.

By summing the number of 1’s in 4, 4, and B and comparing this result to the
number of 1’s in 4 we see that:
(1) B can have at most two 1’s.

(2) B contains exactly one 1 if and only if 4, has one deficient row and A4, has

two deficient columns or A, has one deficient column and A4; has two deficient
rows.
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(3) B contains exactly two 1’s if and only if 4, has two deficient rows and A4,
has two deficient columns.
We now argue by cases.

Case I. B has no positive entries. This case is easily shown and hence will be
neglected.

Case II. B has exactly one positive entry. We divide this case into two subcases.

(a) The 1 in B is on a deficient row. Suppose this 1 =g, ;,. There is a 1 in 4, in
column j,, say a;,;, such that row i, is not a deficient row. Let a; ;, denote some 1
in the i; row, j; #j,. Now a;,;, =0.

Joo 1o do

i/l 11 ... 0
A4=1:{: : H).

ip\1 0 ... 1
Let A be the matrix formed from A4 by replacing a; ;, by 0, a,;, by 1, ay;, by 1,
and a;;, by 0.

jO jl oo iO
i

(l 10 ... l)
b\l ... 1 ... 0

Now let d; denote the number of positive diagonals in 4, through a, ;, ; d; denote
the number of positive diagonals in 4; not through a, 5, ; d; denote the number of
positive diagonals in A, through a,,; d; denote the number of positive diagonals
in A4, not through a;;,; and Q denote the number of positive diagonals in 4,
through a; ;.

Now

A=

per A= (dl + Jl)(dz + Jz) = dldz + dlgz + Jldz + Jlgz N
per A;‘ = dldg + Qd2 +3132 .

Since there are three 1’s in row #; we see by Lemma 2 that Qd, <d,d,. Therefore
per A <per A. Hence the minimum of the permanent function is not achieved on

these matrices.
(b) The 1 in B is not on a deficient row. Suppose this 1=a,;,. Pick a;;,=1 in
A2 so that iO#jl- Now a5, = 1, a,1,°=0, ajoj°=1.

jO LR jl

Jo/1 ... 0
A=_]1 0 1
ip \1 1
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Let 4 be the matrix formed from 4 by replacing a,;, by 1, a;, by 0, a;,;, by
1, a;,;, by 0.

Jo «-o 1
Jo/0 ... 1
A=:11 ... o)
io \1

Let d, denote the number of positive diagonals of 4, through a;,;,; d, denote the
number of positive diagonals of 4; not through a;;,; d, denote the number of
positive diagonals of A, through a,;,; d; denote the number of positive diagonals
of A, not through a;,;,.

Now

pel'A = d1d2+d132+31d2+(71¢72;
per A < didy+d,d,+dyd,

and since d,d,#0, per A <per A. Hence the minimum of the permanent function
is not achieved on these matrices.

Case III. B has two positive entries. First suppose the 1’s in B are in different
rows and columns. Then 4; € A2 and 4, € A@ . Therefore

per A = (per A,)(per 42) = f(k)f(n—k) = f(n).

Since A is fully indecomposable, it is clear that the two 1’s in B cannot lie in the
same column. If the two 1’s in B lie in the same row, then A4, has a row with exactly
one 1 in it, say a;;=1. (It should be noted that in this situation 4, must be larger
than 2 x 2 otherwise 4, would have a column with exactly one 1 in it.) Expanding
per A, along this row it is clear that per 4,=per 4, where A, is the matrix formed
by deleting the (i —k)th row and the (j—k)th column of A,. Now it is possible that
A, is in either AR, _; or A®,_,, but since per 4;>min ¢c,@,_, (per C) in either
case, it follows that

per A = (per A,)(per Az) = per A; min ¢, _, (per C)
2 f(k)f(n—k—1) = f(n)
by the inductive hypothesis.
By expanding per 4 along a row we see that the following theorem now holds.

THEOREM. min,e,, (per 4)=3 o f(n—1).
We include the following example.

EXAMPLE. n<minge, * (per 4). See [2, p. 120].
Let

n;é5.
n=3>5

Sy =y
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It can be shown that f(n) satisfies the conditions of the theorem. Hence

3(n-1) ifn+#6
12

min (e 4 > "

The exception n=6 is unnecessary, since it is fairly easy to check that
mingea, (per A) = 15. For this we see that modulo permutations, the only matrix
Be A with per B<5 is

11000
11000
B=|11100
00111
00111

If A € Ag and per 4 <15, then A has to contain B as a submatrix, so

110001
110001
111000

A4=1o001110
001110
000T1T1°1

But then per A=20>15.
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