Glasgow Math. J. 43 (2001) 275-276. © Glasgow Mathematical Journal Trust 2001. Printed in the United Kingdom

ADDENDUM TO THE PAPER: SPHERE THEOREM BY MEANS OF THE RATIO OF MEAN CURVATURE FUNCTIONS*

SUNG-EUN KOH and SEUNG-WON LEE

Department of Mathematics, Konkuk University, Seoul, 143-701, Korea e-mail: sekoh@kkucc.konkuk.ac.kr

(Received 20 October, 1999)

Abstract. It is shown that an immersion of *n* dimensional compact oriented manifold without boundary into the n + 1 dimensional Euclidean space, hyperbolic space or open half sphere is a totally umbilic immersion if one of the mean curvature function H_l does not vanish and the ratio H_k/H_l is constant, $1 \le k, l \le n, k \ne l$.

1991 Mathematics Subject Classification. Primary 53C40, 53C42.

The following theorem was proved in [1].

THEOREM 1. Let N^{n+1} be one of the Euclidean space \mathbb{R}^{n+1} , the hyperbolic space \mathbb{H}^{n+1} or the open half sphere \mathbb{S}^{n+1}_+ and $\phi : M^n \to N^{n+1}$ be an isometric embedding of a compact oriented n-dimensional manifold without boundary M^n . If the ratio H_k/H_l is constant for some k, l = 0, 1, 2..., n, k > l and H_l does not vanish on M^n , then $\phi(M^n)$ is a geodesic hypersphere.

If we assume that ϕ is an immersion, the proof in [1] does not apply directly. For Theorem A in [1] is not true in this case as Wente's disproving the Hopf's conjecture [3] shows. In this note, however, we prove the theorem above for an *immersion* ϕ by slightly changing the argument of [1].

THEOREM 2. Let N^{n+1} be one of the Euclidean space \mathbb{R}^{n+1} , the hyperbolic space \mathbb{H}^{n+1} or the open half sphere \mathbb{S}^{n+1}_+ and $\phi : M^n \to N^{n+1}$ be an isometric immersion of a compact oriented n-dimensional manifold without boundary M^n . If the ratio H_k/H_l is constant for some k, l = 1, 2..., n, k > l and H_l does not vanish on M^n , then $\phi(M^n)$ is a geodesic hypersphere.

This theorem is also a generalization of [2], where the same theorem was proved when k = l + 1. Note that the case l = 0 is omitted. As H_0 is defined to be 1, $H_k/H_0 = H_k$. Thus, if H_k/H_0 is constant, the theorem above does not hold for the same reason that the proof of [1] does not apply directly. The first-named author would like to thank the referee of [1] for suggesting Theorem 2.

The proof is as follows. In the proof of [1], we showed that

$$H_k/H_l = H_{k-1}/H_{l-1}.$$

^{*}This research was supported by the KOSEF 1999-2-102-002-3.

Proceeding inductively, we have

$$H_{p+1}/H_1 = H_p/H_0 = H_p, \quad (p = k - l);$$

that is,

$$H_{p+1}/H_p = H_1. (1)$$

On the other hand, we also have from Lemma B (2) in [1],

$$H_{p+1}/H_p \le H_p/H_{p-1} \le \dots \le H_1.$$
 (2)

From (1) and (2), we have

$$H_{p+1}/H_p = H_p/H_{p-1} = \cdots = H_1.$$

From this equality we have

$$H_r = H_1^r, \quad r = 1, 2, \dots, p+1.$$

Since these equalities hold only at umbilical points, it follows that every point is an umbilical point; that is, $\phi(M^n)$ is a geodesic hypersphere.

REFERENCES

1. S.-E. Koh, Sphere theorem by means of the ratio of mean curvature functions, *Glasgow Math. J.* **42** (2000), 91–95.

2. S.-E. Koh, A characterization of round spheres, Proc. Amer. Math. Soc. 126 (1998), 3657–3660.

3. H. C. Wente, Counterexample to a conjecture of H. Hopf, *Pacific J. Math.* 121 (1986), 193–243.