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Peter W. Duck1,† and Sharon O. Stephen2

1Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
2School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia

(Received 12 November 2020; revised 23 March 2021; accepted 4 April 2021)

We consider the downstream development of small amplitude unsteady disturbances on a
(Blasius) boundary layer. Two-dimensional disturbances have received much attention in
the past, but herein lies an interesting conundrum, namely that two completely disparate
families exist. The first, originally found by Lam & Rott and Ackerberg & Phillips, is
located deep inside the boundary layer, and decays exponentially downstream with an
increasingly short wavelength. The other family, originally found by Brown & Stewartson,
is centred at the outer edge of the boundary layer, and exhibits slower decay than the
former family. In this paper, we consider three-dimensional disturbances. Initially we
mount a downstream ‘marching’ approach based on the ‘boundary-region’ equations,
wherein spanwise scales are (notionally) comparable to the boundary-layer thickness.
These calculations strongly suggest that disturbance growth is possible downstream, in
contrast to two-dimensional disturbances that (on the streamwise length scales considered)
all decay. We then mount a (heuristic) numerical investigation, performing a locally
parallel eigenmode search at increasing downstream locations. This indicates that, for
two-dimensional disturbances, with increasingly downstream locations, progressively
more eigenmodes evolve, that are clearly linked to the Lam & Rott and Ackerberg &
Phillips family, being spawned from what appears to be the Brown & Stewartson variety.
These results also clearly indicate three-dimensionality can have a profound effect on the
two-dimensional modes, including the potential for downstream growth. This provides
an explanation for the downstream growth witnessed in the downstream-developing
calculations, and is then conclusively confirmed by (mathematically rigorous) asymptotic
analyses, valid far downstream.
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1. Introduction

The origins of the analysis of small amplitude unsteady disturbances (in the free-stream
velocity) on a flat-plate boundary layer can be traced back to Lighthill (1954), in which
the far-downstream, two-dimensional flow was analysed, showing that a double structure
forms, with an inner classical Stokes layer, determined locally. In addition to these, what
are effectively, inhomogeneous solutions, far-downstream eigensolutions also exist, and
these form the nub of the present paper (but with particular emphasis on three-dimensional
disturbances). Lam & Rott (1960) described such a family of unsteady eigensolutions,
located close to the surface of a flat plate, which all decay exponentially fast downstream,
and with shortening wavelength, with the eigenvalues being determined by the zeros of the
derivative of the Airy function, Ai′(z). The development of matched asymptotic methods
subsequently enabled Ackerberg & Phillips (1972) and Lam & Rott (1993) to describe the
nature of the associated eigenfunctions in a rather more formal manner. The importance
of this family of eigensolutions was highlighted by Goldstein (1983), who showed that
the first (and in fact fastest decaying) member of this family eventually becomes an
Orr–Sommerfeld mode, which in turn leads to a growing disturbance downstream –
an interesting example of boundary-layer receptivity (see also Goldstein, Sockol &
Sanz 1983; Hammerton & Kerschen 1996). In parallel to this aforementioned family of
eigenmodes, Brown & Stewartson (1973) described an alternative, and seemingly disparate
family of unsteady eigenmodes, focused on the outer edge of a boundary layer, with
a wavespeed close to that of the free-stream velocity. The asymptotic structure for the
disturbances comprises three regions. The resulting eigenvalues were determined from
matching the solutions in the two outer regions, with the inner-most region playing a
relatively passive role. The eigenvalues were given in terms of the zeros of the Airy
function, Ai(z), with all disturbances decaying exponentially fast downstream. This latter
work is technically quite challenging, and is a fine example of early matched asymptotic
analysis. In spite of the clear physical significance of the Lam & Rott (1960) family, there
is (in the words of Hammerton 1999) an unappealing feature of these eigenmodes, insofar
as they are inversely ordered downstream, with the leading-order modes decaying faster
than the higher-order modes. On the other hand, the Brown & Stewartson (1973) family
are well ordered, as the higher-order modes decay faster downstream, although this family
has received somewhat less attention than the ‘competing’ family.

A number of attempts have been made to reconcile the two families from the numerical
solutions of the linearised unsteady boundary-layer equations. Hammerton (1999) made a
comparison of these two asymptotic eigensolutions. He was able to identify both these
modes in his accompanying numerical solutions by (a rather ingenious) consideration
of the analytic continuation into the complex streamwise (x)-plane of both sets of
eigensolutions. The decay rate of each mode was observed and the different locations
of the dominant disturbance eigenfunctions in the boundary layer were described.

Needless to say, the important engineering implications of boundary-layer transition
have attracted enormous interest over the years, including experimental, computational and
theoretical studies. Although there has been a good understanding of Tollmien–Schlichting
waves in general (in the early stages of boundary-layer instability/transition), and these
are well documented, an understanding of the later stages of these processes (especially
of a three-dimensional nature) is still attracting much attention. Pertinent studies include
Leib, Wundrow & Goldstein (1999), Ricco & Wu (2007), Ricco (2009) and Kátai & Wu
(2020) for example. These papers include a comprehensive list and review of previous
work, especially in the three-dimensional context. The trigger for a lot of interest can be
traced back to the experimental work of Klebanoff (1971), in which free-stream turbulence
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Eigensolutions of the unsteady boundary-layer equations

was seen to trigger responses in a boundary layer of a much smaller frequency than that of
Tollmien–Schlichting waves. The associated spanwise scales of the resulting perturbations
are quite narrow.

In this paper, unlike some of the more recent work (which is mostly driven by problems
involving receptivity), our emphasis is mostly (but not exclusively) on homogeneous flow
structures, that persist far downstream of triggering mechanisms (indeed, this is in the
spirit of the aforementioned papers of Ackerberg & Phillips (1972), Lam & Rott (1960)
and Brown & Stewartson (1973).

In § 2 we present the over-arching methodology for the paper, namely the
boundary-region equations, in which the spanwise length scales are generally comparable
to the boundary-layer thickness. In § 3 we present numerical results for the downstream
development of small amplitude, specified spanwise wavelength disturbances imposed
on a Blasius boundary layer. These results indicate that downstream growth is a real
possibility (in contrast to what is observed for fully two-dimensional disturbances).
In the following § 4, a locally parallel investigation is mounted for eigensolutions, at
selected downstream locations, an approach that is clearly heuristic, but one that does
become valid further downstream. This approach confirms the possible existence of
downstream-growing, three-dimensional disturbances, in particular linked to the first
(leading-order) Lam & Rott (1960)/Ackerberg & Phillips (1972) mode. Section 5 considers
an asymptotically rigorous approach, valid far downstream, to the eigenproblem, and is
able to confirm conclusively, a number of the key points highlighted in § 4, including the
all important potential for downstream growth. Section 6 focuses on the three-dimensional
analogy to the Brown & Stewartson (1973) modes, and clearly illustrates the stabilising
nature of increasing spanwise wavenumber for this family (a feature clearly observed using
the approach of § 4). Some conclusions are presented in § 7.

2. Methodology (the boundary-region equations)

We consider the three-dimensionally disturbed and temporally harmonic flow over a
semi-infinite plate, where the spanwise scale is generally comparable to the boundary-layer
thickness. We define a Reynolds number Re = U∞L/ν, which is taken to be asymptotically
large, where U∞ is a free-stream (reference) flow speed, L is some reference length scale
and ν the kinematic viscosity, assumed to be constant (consistent with an incompressible
fluid). We write the velocity vector (to leading order in powers of Reynolds number) as
U∞(U, Re−1/2V, Re−1/2W), corresponding to the coordinates L(x, Re−1/2Y, Re−1/2Z),
where the plate lies along Y = 0, x > 0. Correspondingly, the pressure takes the
form ρU2∞( p0 + Re−1/2p1(x) + Re−1p2(x, Y, Z, t) + . . .), where ρ is the fluid density,
dimensional time is Lt/U∞, and we are implicitly assuming a uniform free-stream flow,
and so we can assume that p′

0 = 0. (It should be noted, however, that the underlying
methodology could be extended to more general classes of free stream, provided
streamwise variations p′

0 = O(1), with little adaptation.) Regarding p1(x), this is caused
by the displacement effect of the Blasius boundary layer, and is not necessarily zero (see
Van Dyke 1994), but does not play a role in our analysis. The resulting equations are well
established (see Rubin 1966; Goldstein et al. 2016; Hewitt & Duck 2018, 2019) and are
generally referred to as the boundary-region equations following the terminology of Kemp
(1951); these take the form

Ux + VY + WZ = 0, (2.1)

Ut + UUx + VUY + WUZ = UYY + UZZ, (2.2)
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Vt + UVx + VVY + WVZ + p2Y = VYY + VZZ, (2.3)

Wt + UWx + VWY + WWZ + p2Z = WYY + WZZ . (2.4)

This system is (asymptotically) rigorous to leading order in powers of Reynolds number.
We now decompose the solution into an undisturbed (Blasius) state and a small

amplitude, unsteady (harmonic) perturbation, periodic in the spanwise direction, namely
as follows:

U = UB(η) + ε eitu(x, η) cos μZ + . . . , (2.5)

V = x−1/2(VB(η) + ε eitv(x, η) cos μZ) + . . . , (2.6)

W = ε eitw(x, η) sin μZ + . . . , (2.7)

where the flow perturbation amplitude |ε| � 1 (leading to a linear system for the flow
perturbation), whilst η = Y/

√
x in line with the undisturbed Blasius form, viz.

−1
2ηU′

B + V ′
B = 0, (2.8)

−1
2ηU′

BUB + VBU′
B = U′′

B. (2.9)

In (2.5)–(2.7) without loss of generality, we have set the temporal frequency parameter to
unity, and complex conjugates are assumed.

For the purposes of § 6, it is useful to introduce what is effectively a similarity
streamfunction f (η), where UB = f ′(η) and VB = 1

2 (ηf ′ − f ), and f satisfies

f ′′′ + 1
2 ff ′′ = 0, (2.10)

subject to the boundary conditions f (0) = f ′(0) = 0 and f ′(η) → 1 as η → ∞.
At this point, we define a (perturbation) streamwise component of vorticity, Θ = WY −

VZ as follows:
Θ = εx−1/2 eitθ(x, η) sin μZ + . . . , (2.11)

which is useful if, as we do, we eliminate p2 between the transverse and spanwise
momentum equations. This is very convenient for the subsequent numerical analysis. The
net result for the perturbation quantities is as follows:

xux − 1
2ηuη + vη + xμw = 0, (2.12)

θ = wη + μv, (2.13)

ixu + UB(−1
2ηuη + xux) − 1

2ηuU′
B + vU′

B + VBuη − uηη + xμ2u = 0, (2.14)

−ixθ + UB(1
2θ + 1

2ηθη − xθx) − VBθη − V ′
Bθ + 1

2 xμu(VB + ηV ′
B)

+ U′
B(−1

2ηwη + xwx) + θηη − xμ2θ = 0. (2.15)

The above system of equations then forms the backbone to this paper.

3. Downstream development of unsteady perturbations

We first consider fully numerical solutions to the system (2.12)–(2.15). Clearly, for
two-dimensional perturbations μ = 0, and the system far downstream mirrors that of
Ackerberg & Phillips (1972), Lam & Rott (1960) and indeed Brown & Stewartson
(1973) with eigensolutions which are well known to decay. This system was solved using
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Figure 1. Downstream development of θ(x, η = 0).

a standard, second-order, parabolic marching scheme. Disturbances were triggered by
forcing the perturbation close to the leading edge, x = 0. Generally, this was performed by
the following forcing:

w(x, η = 0) = e−1/x2
e−x2

, (3.1)

thereby mimicking a short impulse at the start of the computation. This confirmed
the downstream decay when μ = 0, albeit with diminishing streamwise length scale
oscillations, in line with the results of Ackerberg & Phillips (1972) and Lam & Rott
(1960). However, as μ was increased, the decay was no longer uniformly apparent, even
for very modest values of spanwise wavenumber μ. Figure 1 shows results corresponding
to the spanwise vorticity on the plate surface θ(x, η = 0) for μ = 0.05, 0.04, 0.03,
0.02. These indicate a clear transition from what appears to be a generally uniformly
downstream decaying state, through to a regime in which disturbances grow (this can
be quite significant), followed by decay. This change in behaviour appears to be between
μ = 0.03 (which exhibits growth) and μ = 0.04 (which exhibits general decay). Further,
perhaps more startling, evidence for downstream growth (followed by eventual decay) is
presented in figure 2, for the behaviour of log |θ(x, η = 0)| for μ = 0.005, 0.01 and 0.02.
For the smallest of these values, very significant downstream growth occurs (which, in
reality, would be way outside of any linearly relevant regime). This behaviour is in stark
contrast to the two-dimensional results which as noted above all decay downstream –
just small amounts of three-dimensionality can provoke a significant change in flow
characteristics. To better understand this apparent dichotomy, in the following section we
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Figure 2. Downstream development of log |θ(x, η = 0)|.

mount a local stability analysis (which also sheds some light on the relationship between
the two ‘competing’ families of two-dimensional modes).

4. Local eigenmode/stability analysis

To better comprehend the mismatch between the well-known two-dimensional results
(corresponding to μ = 0) and the growth (in some cases very significant growth)
downstream for very small values of the spanwise wavenumber, the next step is to perform
a (heuristic) local stability analysis, at finite values of the downstream location x. For this,
we write

(u, v, w, θ) = (u∗(η), v∗(η), w∗(η), θ∗(η)) eνx, (4.1)

where ν is in effect an eigenvalue, indicating growth if Re{ν} > 0 and decay if Re{ν} < 0.
Substitution into (2.12)–(2.15) leads to the following homogeneous system:

xνu∗ − 1
2ηu∗′ + v∗′ + xμw∗ = 0, (4.2)

θ∗ = w∗′ + μv∗, (4.3)

ixu∗ + UB(−1
2ηu∗′ + xνu∗) − 1

2ηu∗U′
B + v∗U′

B + VBu∗′ − u∗′′ + xμ2u∗ = 0, (4.4)

−ixθ∗ + UB(1
2θ∗ + 1

2ηθ∗′ − xνθ∗) − VBθ∗′ − V ′
Bθ∗ + 1

2 xμu∗(VB + ηV ′
B)

+ U′
B(−1

2ηw∗′ + xνw∗) + θ∗′′ − xμ2θ∗ = 0. (4.5)

The eigenvalues ν to this system were evaluated using a straightforward finite-difference
scheme, combined with (in the first instance) a QZ routine and then (if necessary, to
confirm numerical accuracy) a local Newton search routine (using the aforementioned
QZ values as initial estimates). Let us first consider the case μ = 0. Figure 3 presents
results at three downstream locations, namely x = 25, 50 and 100. The first Ackerberg
& Phillips (1972)/Lam & Rott (1960) modes are identified as 2Di, 2Dii, 2Diii, and as
expected have arg{ν} ≈ −3π/4 (further details regarding these modes will be described
in the following section). However, additional (three-dimensional) modes also exist, where
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Figure 3. Distributions of eigenvalues ν at selected downstream locations (μ = 0).

w∗ /= 0, identified as 3Di, 3Dii, 3Diii, and these too exhibit the property arg{ν} ≈ −3π/4.
Details regarding these will (also) be described in the following section, and in fact are
similar to those reported by Ricco & Wu (2007), where the emphasis in this latter paper
was the modes connected to those of Ackerberg & Phillips (1972)/Lam & Rott (1960) (and
also on the compressible regime).

There are several key observations to be gleaned from the results in figure 3:

(i) At finite x downstream locations, only a finite number of modes with arg{ν} ≈
−3π/4 are clearly identifiable, but the number of these increases further
downstream.

(ii) There appear to be many eigenvalues, quite distinct from those above, with −Im{ν}
values of close to unity; the indications are therefore that these correspond to the
Brown & Stewartson (1973) modes, with a wavespeed close to that of the free stream.

(iii) The arg{ν} ≈ −3π/4 modes appear to be spawned from the Brown & Stewartson
(1973) modes, the higher modes appearing at progressively further downstream
locations.

(iv) The amplitude |ν| of a given arg{ν} ≈ −3π/4 mode increases downstream; this is
partly to be expected from Ackerberg & Phillips (1972) and Lam & Rott (1960) (and
see also the analysis in the following section), but note the following point.

(v) Inspection of the eigenmodes reveals that (even) for this choice of μ = 0, in addition
to the expected w∗ ≡ 0 family, another family with w∗ /= 0, u∗ = v∗ ≡ 0 also exists;
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Figure 4. Eigenvalue distributions for x = 50, increasing μ.

of necessity, continuity demands this degenerate form is possible only if μ = 0
(precisely).

Item (iii) above therefore gives some numerical evidence of a linkage between the two,
previously reported, families of eigenvalues.

Let us now consider the effect of μ /= 0; figure 4 shows results for modes 2Di and 3Di,
for increasing μ at x = 50. What is particularly noteworthy with figure 4 is that Re{ν}
exhibits a region of positive values (identifiable where Re{ν} > 0), suggesting downstream
growth of disturbances linked to mode 2Di – the first Ackerberg & Phillips (1972)/Lam &
Rott (1960) mode. This appears to be a quite significant observation, and this does provide
an explanation for the downstream growth behaviour found in the marching procedure
results described in the previous section. It should be noted that the behaviour of mode
3Di seems quite benign (in comparison), and no other (two- or three-dimensional) modes
appear to display regions of growth. In the following section we perform asymptotic
analyses that further demonstrate (and confirm) this behaviour. We also find that the
eigenvalues described in (ii) above persist in the same manner for μ /= 0. The asymptotic
analysis in § 6 describes this family of eigensolutions.

5. The asymptotics of the far-downstream limit (x → ∞)

Here, we focus on the effect of three-dimensionality on the Ackerberg & Phillips
(1972)/Lam & Rott (1960) modes, an investigation suggested by the preceding sections. In
other calculations, allied to those of figure 4, some of which will be presented later in this
section, it was found that with increasing x (downstream location), the region for which
Re{ν} > 0 occurs progressively close to μ = 0, but also max{Re{ν}} increases. We start
by following the (two-dimensional) procedure adopted by Ackerberg & Phillips (1972) and
Lam & Rott (1960), but with the added proviso (in line with our previous comment) that
the spanwise wavenumber μ must be small, specifically by assuming that μ̂ = xμ = O(1)

(an assertion that can be verified a posteriori). We also introduce λ = −2x−1/2ν/3.
This is consistent with previous literature, for which generally λ = O(1), and indeed the
(square-root) growth downstream of |ν| of these eigenmodes can be witnessed in figure 3.
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We therefore expect that for x 
 1 the Y = O(1) region is important. For the following
analysis, we set u∗′(η = 0) = 1 (this is arbitrary, but practically any normalisation is
permissible) then, for Y = O(1), the leading-order terms take on the following form (note
that algebraic terms of the form xτ multiply the exponential terms below, as described
by Goldstein (1983) and Hammerton & Kerschen (1996), but these are only necessary
at higher order, beyond that considered in this paper, and are omitted in the interests of
brevity)

U = U′
B(0)Y√

x
+ εx−1/2 eit e−λx3/2

û(Y) cos
μ̂Z
x

, (5.1)

V = U′
B(0)Y2

2x3/2 + ε eit e−λx3/2
v̂(Y) cos

μ̂Z
x

, (5.2)

p2 = εx2 eit e−λx3/2
p̂2(Y) cos

μ̂Z
x

, (5.3)

W = εx eit e−λx3/2
ŵ(Y) sin

μ̂Z
x

, (5.4)

which leads to the following system of equations as x → ∞:

−3
2λû + v̂′ + μ̂ŵ = 0, (5.5)

iû − 3
2 YU′

B(0)λû + U′
B(0)v̂ − û′′ = 0, (5.6)

p̂′
2 = 0, (5.7)

iŵ − 3
2λYU′

B(0)ŵ − μ̂p̂2 − ŵ′′ = 0. (5.8)

Using continuity to eliminate v̂′ in the streamwise momentum equation differentiated
with respect to Y leads to

iû′ − 3
2 YU′

B(0)λû′ − û′′′ − μ̂ŵU′
B(0) = 0. (5.9)

Note that as Y → ∞, we require

û, ŵ = O(1), whilst v̂ = O(Y). (5.10)

Setting μ̂ = 0 in the above, leads to the Ackerberg & Phillips (1972)/Lam & Rott (1960)
system, and the solution of which can be written in terms of Airy functions, leading to the
following estimates for the eigenvalues λ:

λn =
√

2(1 + i)

3(ρ′
n)

3/2U′
B(0)

, (5.11)

where U′
B(0) = 0.332 . . . and ρ′

n corresponds to the nth (negative) zero of the derivative
of the Airy function, viz.

Ai′(−ρ′
n) = 0. (5.12)

This leads to λ = (1.380 . . . , 0.242 . . . , 0.134 . . . , . . . )(1 + i). These modes are denoted
by 2Di, 2Dii, etc. in the earlier figures.

However, there also exists a three-dimensional family of eigenmodes, related to those
reported by Ricco & Wu (2007), which can also be written in terms of Airy functions, but
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for which v̂ ≡ p̂2 ≡ 0, and this family has the following eigenvalues λ:

λn =
√

2(1 + i)

3ρ
3/2
n U′

B(0)
, (5.13)

where ρn corresponds to the nth (negative) zero of the Airy function itself, viz.

Ai(−ρn) = 0, n = 1, 2, 3, . . . . (5.14)

This leads to λ = (0.397 . . . , 0.1715 . . . , 0.109 . . . , . . . )(1 + i). These modes are denoted
by 3Di, 3Dii, etc. in the earlier figures, all of which exhibit eigenmodes that decay
(exponentially) as Y → ∞, consistent with the analogous observations of Ricco & Wu
(2007) regarding their three-dimensional modes.

However, in order to compute eigenvalues for μ̂ /= 0 to (5.5), (5.8) and (5.9) a fully
numerical approach is necessary, but also requires a further (closure) condition, obtained
by consideration of other regions normal to the plate surface.

Let us consider now the regime η = Y/
√

x = O(1) (i.e. a more-extensive wall normal
scale). We then expect that (to leading order)

U = UB(η) + εx−1/2 eit e−λx3/2
ũ(η) cos

μ̂Z
x

, (5.15)

V = x−1/2VB(η) + εx1/2 eit e−λx3/2
ṽ(η) cos

μ̂Z
x

, (5.16)

p2 = εx2 eit e−λx3/2
p̃2(η) cos

μ̂Z
x

, (5.17)

W = εx1/2 eit e−λx3/2
w̃(η) sin

μ̂Z
x

. (5.18)

These lead to the following set of equations:

O(1) : −3
2λũ + ṽ′ = 0, (5.19)

O(1) : −3
2λUBũ + U′

Bṽ = 0, (5.20)

O(x3/2) : p̃′
2 = 0, (5.21)

O(x) : −3
2λUBw̃ = μ̂p̃2. (5.22)

The solution of this system is

ũ = AU′
B, (5.23)

ṽ = 3
2λAUB(η), (5.24)

w̃ = − 2μ̂p̃2

3λUB(η)
, (5.25)

which matches to (5.10), where A is a constant and where clearly p̃2 is a constant across
this region.

If we now consider the region where η 
 1 (alternatively this can be regarded as the
region wherein η = O(

√
x)) then it is straightforward to see that the V and W perturbations
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Figure 5. The Re{λ} < 0 (unstable) region, for x increasing, and compared to the asymptotic (x → ∞)
solution.

are linked through the Cauchy–Riemann equations to yield

U = 1 + o(ε
√

x e−λx3/2
) + . . . , (5.26)

V = x−1/2VB(∞) + εx1/2C eit e−λx3/2
e−ημ̂/

√
x cos

μ̂Z
x

+ . . . , (5.27)

W = εx1/2C eit e−λx3/2
e−ημ̂/

√
x sin

μ̂Z
x

+ . . . , (5.28)

p2 = −3εC
2μ̂
λx2 eit e−λx3/2

e−ημ̂/
√

x cos
μ̂Z
x

+ . . . . (5.29)

Here, C is a constant. The above implies that

C = 3
2λA, (5.30)

ŵ(Y → ∞) → 3λû(Y → ∞)

2(U′
B(0))2Y

, (5.31)

and this (now) works as a key boundary condition, which closes the problem for
(5.5), (5.8), (5.9). This is another eigenvalue problem, for which standard numerical
(finite-difference) methods were employed.

In figure 5 we present results comparing these asymptotic behaviours for Re{λ} in the
unstable regime, with (suitably scaled) results for increasing values of x; overall, the
agreement is satisfactory.

5.1. The limit of small wavelength, namely μ̂ → ∞
Even though the existence of an unstable (downstream-growing) regime is very clear,
we are able to undertake further asymptotic analysis that leads to fully analytic evidence
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of this. The numerics strongly suggest that as μ̂ → ∞
λ→ iμ̂−1λ̂0 + μ̂−2λ̂1 + . . . ; (5.32)

we can verify this analytically (in particular the imaginary nature of the leading-order
term) a posteriori. Consider first Y = O(1), and now assume, consistent with earlier, the
normalisation that û′(Y = 0) = 1. We focus our attention on û, ŵ and p̂2. We then expect
that

(û, ŵ, p̂2) = (u∗
0 + μ̂−1u∗

1, μ̂
−1w∗

0 + μ̂−2w∗
1, μ̂

−2p∗
20 + μ̂−3p∗

21) + . . . . (5.33)

Immediately, (5.8) yields (ensuring the no-slip condition is satisfied)

w∗
0 = −ip∗

20

(
1 − exp

(
−1 + i√

2
Y
))

. (5.34)

Equation (5.9) then gives to leading order

u∗
0 = −U′

B(0)p∗
20Y

(
1 + 1

2
exp

(
−1 + i√

2
Y
))

+ (1 − i)p∗
20U′

B(0)√
2

(
1 − exp

(
−1 + i√

2
Y
))

.

(5.35)

From this, the behaviour as Y → ∞ is required, namely

u∗
0 → −U′

B(0)p∗
20Y + 1 − i√

2
p∗

20U′
B(0). (5.36)

Although in the above the diffusion terms have been retained, the eigenvalue (λ̂0) term has
not, but this will play a role when Ŷ = Y/μ̂ = O(1). On this further scale, to leading order
we have

(û, ŵ) = (μ̂ū0 + ū1, μ̂
−1w̄0 + μ̂−2w̄1) + . . . . (5.37)

On this length scale, the diffusion terms are (generally) insignificant, yielding first

w̄0 = 2ip∗
20

3λ̂0U′
B(0)Ŷ − 2

, (5.38)

w̄1 = 2ip∗
21 + 3iλ̂1ŶU′

B(0)w̄0

3λ̂0U′
B(0)Ŷ − 2

, (5.39)

and then (after satisfying matching with (5.36))

ū0 = 2p∗
20

3λ̂0

(
1 − 2

2 − 3Ŷλ̂0U′
B(0)

)
, (5.40)

ū1 = 2p∗
21

3λ̂0

(
1 − 2

2 − 3Ŷλ̂0U′
B(0)

)
+ (1 − i)p∗

20U′
B(0)√

2

+ 4ip∗
20λ̂1

3λ̂2
0

⎛
⎜⎝− 2

2 − 3λ̂0U′
B(0)Ŷ

+ 2(
2 − 3λ̂0U′

B(0)Ŷ
)2 + 1

2

⎞
⎟⎠ . (5.41)
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Eigensolutions of the unsteady boundary-layer equations

Finally, if we impose the condition (5.31), then to leading order in μ̂

λ̂0 = 2
3 U′

B(0), (5.42)

thereby confirming our assertion that the leading-order term for λ is imaginary. The next
order yields an estimate for λ̂1

λ̂1 = −9λ̂3
0(1 + i)

4
√

2
. (5.43)

Figure 5 shows results for Re{λ} obtained using (5.43), which can be compared to the
previously described shown results in this figure, and in particular the comparison with
the x → ∞ results as μ̂ increases is excellent. It should be noted that, whereas the finite
x results appear to ‘stabilise’ for larger values of μ̂ (above a critical value), this is not the
case from the asymptotic results as x → ∞, based on (5.5), (5.8), (5.9) (together with those
from (5.43)) and our assertion is that as μ̂ increases, and therefore as |Re{λ}| decreases,
other, higher-order, terms in the x 
 1 expansion will begin to dominate (the smallness
of |Re{λ}| is quite clear from (5.32) and (5.43)). It should be emphasised that (5.43) also
provides very conclusive analytic evidence that downstream growth can occur.

There is one additional aspect that is worth addressing, namely the apparent singular
behaviour where Ŷ = Ŷ0 = 2/(3λ0U′

B(0)). This can be resolved by considering the scaling

Ỹ = (Y − Y0)μ̂
−1/3 = (Ŷ − μ̂Y0)μ̂

2/3 = O(1), (5.44)

wherein we must have
(û, ŵ) = (μ̂5/3ū∗

0, μ̂
−1/3w̄∗

0). (5.45)

Focusing on the spanwise momentum equation leads to

w̄∗′′
0 + iU′

B(0)2Ỹw̄∗
0 = −p∗

20. (5.46)

Setting

ξ = (−iU′
B(0)2)1/3Ỹ, (5.47)

W∗
0 = (−iU′

B(0)2)2/3w̄∗
0

πp∗
20

, (5.48)

leads to
d2W∗

0
dξ2 − ξW∗

0 = − 1
π

, (5.49)

subject to

W∗
0 ∼ 1

πξ
as |ξ | → ∞. (5.50)

The relevant solution of this equation, as discussed by Olver (1974, p. 432), can be given
in terms of the Scorer function Hi(), namely

W∗
0 = −e2πi/3Hi(ξ e2πi/3), (5.51)

which is bounded for −∞ < Ỹ = eiπ/6ξ(U′
B(0)2)−1/3 < ∞.

It is also straightforward to show that the Ỹ component of velocity is insignificant in this
region, then ū∗

0 = −2iw̄∗
0/(3λ̂0) and so this too is bounded in this region.
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6. Three-dimensional extensions to the Brown & Stewartson family

Of interest here is a family of three-dimensional modes located at the edge of the boundary
layer; these have been described by Brown & Stewartson (1973) for the two-dimensional
case. The analysis (in particular the length scales) for the corresponding three-dimensional
modes largely follows that given in Brown & Stewartson (1973), but will be described here
for completeness (and in the notation of the present paper).

The behaviour of the basic (Blasius) flow is of importance for the Brown–Stewartson
modes, particularly for large values of η. Referring to (2.10),

f ∼ η − β0 + 2A0

(η − β0)2 exp
(

−1
4
(η − β0)

2
)

, (6.1)

where β0 ≈ 21/2 × 1.2168 = 1.7208 and A0 ≈ 21/2 × 0.331 ≈ 0.4681. Thus, we have

1 − f ′ ∼ A0

η − β0
exp

(
−1

4
(η − β0)

2
)

. (6.2)

The disturbed flow has the form (2.5)–(2.7). Unlike in the previous sections we choose
not to eliminate p2 (which was primarily useful when dealing with numerical solutions),
so these are supplemented by

p2 = 1
x

p20(η) + ε eitp(x, η) sin(μZ) + . . . , (6.3)

where p20 is determined from (2.3), although it does not appear in the subsequent analysis.
We are interested in the solutions of the linear perturbation equations when x is large.

As in Brown & Stewartson (1973) we consider the disturbances to propagate
downstream with the main stream velocity, and we write

(u, x−1/2v, w, p) = e−ix(Ũ(x, η), Ṽ(x, η), W̃(x, η), P̃(x, η)). (6.4)

Then, the full three-dimensional linear perturbation equations, written in terms of x and η

are

x(−iŨ + Ũx) − 1
2ηŨη + x1/2Ṽη + xμW̃ = 0, (6.5)

Ũηη + 1
2ηf ′′Ũ + 1

2 f Ũη − x1/2f ′′Ṽ − x(i(1 − f ′)Ũ + f ′Ũx + μ2Ũ) = 0, (6.6)

Ṽηη + 1
2

f Ṽη − 1
2
ηf ′′Ṽ − Ũ

4x1/2 (−ηf ′ − η2f ′′ + f ) − x1/2P̃η

−x(i(1 − f ′)Ṽ + f ′Ṽx + μ2Ṽ) = 0, (6.7)

W̃ηη + 1
2 f W̃η + xμP̃ − x(i(1 − f ′)W̃ + f ′W̃x + μ2W̃) = 0. (6.8)

Thus, for x large we will consider solutions of these equations which are located at the
outer edge of the boundary layer.

Similar to the two-dimensional problem there are three regions to consider depending on
the size of x(1 − f ′). Let η̂ = η − β0, then these regions are (following the nomenclature
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Eigensolutions of the unsteady boundary-layer equations

of Brown & Stewartson 1973)

Region I : x(1 − f ′) � η̂2,

Region II : x(1 − f ′) ∼ η̂2,

Region III : x(1 − f ′) 
 η̂2.

⎫⎪⎪⎬
⎪⎪⎭ (6.9)

If η̂ = η̂0 when x(1 − f ′) ∼ η̂2, then A0xη̂−1
0 exp(−1

4 η̂2
0) ∼ η̂2

0. For large x the dominant
balance yields

η̂0 = 2(log(A0x))1/2, (6.10)

and to a sufficiently close approximation region I is defined by η̂ > η̂0. Below region I is
region II, where η̂ ∼ η̂0, and below that is region III where η̂ < η̂0.

The matching of the solutions in regions I and II will determine the eigenvalues for the
problem. It is found that the solutions in region III play a passive role in this process and
only the solutions for Ṽ are required. Thus, the interested reader is referred to Appendix A
for the remaining solutions in regions I and II and for the details of region III. We start by
considering region I.

6.1. Region I, η̂ > η̂0

Here, f ′′ and 1 − f ′ may be neglected to leading order, f replaced by η̂ and f ′ replaced by 1.
Then (6.5)–(6.8) become

x(−iŨ + Ũx + μW̃) − 1
2 (η̂ + β0)Ũη̂ + x1/2Ṽη̂ = 0, (6.11)

Ũη̂η̂ + 1
2 η̂Ũη̂ − xŨx − xμ2Ũ = 0, (6.12)

Ṽη̂η̂ + 1
2
η̂Ṽη̂ + β0

4x1/2 Ũ − x1/2P̃η̂ − xṼx − xμ2Ṽ = 0, (6.13)

W̃η̂η̂ + 1
2 η̂W̃η̂ + xμP̃ − xW̃x − xμ2W̃ = 0. (6.14)

The solutions of (6.11)–(6.14), for μ /= 0, are determined by writing

(Ũ, Ṽ, W̃, P̃) = (U1(η̂), x1/2η̂−1
0 V1(η̂), W1(η̂), P1(η̂)) exp(−1

8 η̂2 − g(x)), (6.15)

where

x
dg
dx

= xμ2 + 1
16

η̂2
0 + 1

4
χη̂

2/3
0 + 1

4
, (6.16)

and χ is an eigenvalue to be determined. In order to match with region II we must have
P1 = 0. Then we find that V1 satisfies

V ′′
1 − (Ȳ − χ)V1 = 0, (6.17)

where a prime denotes differentiation with respect to Ȳ , with Ȳ defined from

η̂ = η̂0 + 2η̂
−1/3
0 Ȳ. (6.18)

The appropriate solution is
V1 = B1Ai(Ȳ − χ), (6.19)

where Ai() is the appropriate (decaying) Airy function, as in § 5, and B1 is constant. The
solutions for U1 and W1 are not required here but are given in Appendix A. As Ȳ → 0
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these solutions will match with those in region II, which we consider next. First we give the
behaviour of Ṽ for Ȳ � 1, required for the matching which will determine the eigenvalue
χ , namely

Ṽ ≈ B1x1/2η̂−1
0 exp(−1

8 η̂2 − g(x))(Ai(−χ) + ȲAi′(−χ) + . . .). (6.20)

6.2. Region II, x(1 − f ′) ∼ η̂2

In region II let x(1 − f ′) = η̂2T so

T = A0x
η̂3 exp

(
−1

4
η̂2
)

. (6.21)

Then we find

η̂ = η̂0 − 2
η̂0

(3 log η̂0 + log T), (6.22)

in region II and

∂

∂η
= ∂

∂η̂
≈ −1

2
η̂0T

∂

∂T
. (6.23)

The form of the solutions is indicated from those found in regions I and III, thus, we write

(Ũ, Ṽ, W̃, P̃) = (U2(T), x1/2η̂−1
0 V2(T), W2(T), x−1μ−2P2(T))h(x), (6.24)

where

x
dh
dx

≈ −
(

xμ2 + 1
16

η̂2
0

)
h(x). (6.25)

Note that the pressure perturbation is smaller for the three-dimensional modes compared
to the two-dimensional ones, unless μ is small and of O(x−1/2). In this region, f ∼ η̂,
x(1 − f ′) = η̂2T , f ′ ∼ 1, η̂ ≈ η̂0, and −xf ′′ ≈ −1

2 η̂3
0T . Then we find that V2 satisfies

T2V ′′
2 +

(
1
4 − 4(i + μ2)T

)
V2 = 0, (6.26)

where a prime denotes differentiation with respect to T . Thus, the solution for V2 is

V2 = −A2T1/2K0(4(i + μ2)1/2T1/2), (6.27)

where A2 is a constant and K0 is a modified Bessel function of the second kind.
The solution for Ṽ must match with that from region I as T → 0. Using the behaviour

of K0 as T → 0, and expressing this in terms of Ȳ , we find that

Ṽ ≈ 1
2 A2A1/2

0 h(x)xη̂−5/2
0 exp

(
−1

8 η̂2
)

(−η̂
2/3
0 Ȳ − 3 log η̂0 + 2γ + 2 log 2 + log(i + μ2)),

(6.28)

as T → 0. Further details on region II and a discussion on region III appear in Appendix A.
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Figure 6. Numerical (locally parallel) results for first two Brown & Stewartson modes, x = 100, 200, 400
with increasing wavenumber.

6.3. The three-dimensional eigenvalues

Matching Ṽ in regions I and II as Ȳ → 0 and T → 0 gives from (6.20) and (6.28)

Ai(−χ)

Ai′(−χ)
= 3 log η̂0 − 2γ − 2 log 2 − log(i + μ2)

η̂
2/3
0

. (6.29)

Thus, the eigenvalues are

χn = ρn + 1

η̂
2/3
0

(2γ + 2 log 2 + log(i + μ2) − 3 log η̂0), (6.30)

where ρn satisfies (5.14). We also have

h(x) = A3x−1/2η̂
5/6
0 e−g(x), (6.31)

where A3 = −2B1A−1
2 A−1/2

0 Ai′(−χn).
Finally, we can compute g(x) from (6.16). The result, involving integrals of log

functions, yields

g(x) = μ2x + 1
8
(log(A0x))2 + 1

2

(
γ + 1

2
log(i + μ2) − 1

2
log 2 + 9

4

)
log(A0x)

+ 3ρn

210/3 (log(A0x))4/3 − 3
8

log(A0x) log(log(A0x)). (6.32)

Thus, we find that three-dimensional modes corresponding to the two-dimensional modes
of Brown & Stewartson (1973) exist and that the effect of three-dimensionality is to
further stabilise these disturbance modes. Note that if μ = 0 the eigenvalues χn are also
appropriate to both the two-dimensional case of Brown & Stewartson (1973) and the
three-dimensional case where u = v = 0 and w /= 0.

Figure 6 shows the variation of the first two Brown & Stewartson eigenvalues
(specifically Re{−νx} ≈ Re{g(x)}) for small values of μ for x = 100, 200, 400 obtained
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using the methodology of § 4). Comparing asymptotic behaviours with fully numerical
results is notoriously difficult when dealing with the logarithms of large (or small)
parameters, however, there is encouraging correlation between the asymptotic and
numerical approaches, including the clear parabolic behaviour with increasing spanwise
wavenumber (that becomes more accentuated with increasing downstream location x).

7. Conclusions

This paper has presented a multi-pronged attack, using numerical and analytic
(asymptotic) means, on describing the downstream development of three-dimensional
unsteady eigenmodes associated with the Blasius boundary layer. The fully numerical
(and fully non-parallel) approach in § 2 indicates the potential for downstream growth
of three-dimensional disturbances, in contrast to their two-dimensional ‘cousins’ which
are well known to always decay (at least prior to very far downstream, the regime
considered by Goldstein 1983). This indicates that Squire’s theorem is not relevant for
the boundary-region equations. Further enlightenment of this is presented in § 4, in
which a locally parallel stability analysis is presented. In the case of two-dimensional
disturbances, the Lam & Rott (1960)/Ackerberg & Phillips (1972) modes are seen to
been spawned from the Brown & Stewartson (1973) modes, with progressively more of
the former emerging from the latter at increasingly far-downstream locations. There are
two distinct subfamilies in this case, with one with zero spanwise velocity components,
i.e. w∗ ≡ 0, and the other with only a spanwise velocity component, i.e. u∗ = v∗ ≡ 0.
In the case of three-dimensional disturbances, it is seen that the leading-order Lam &
Rott (1960)/Ackerberg & Phillips (1972) (two-dimensional) mode exhibits the potential for
downstream growth, a perhaps unexpected observation, but reassuringly is in accord with
the numerical results of § 2. The asymptotic analyses of § 5 conclusively (including fully
analytically) confirms the possibility of downstream growth, for spanwise wavenumbers
above a critical value. The results presented for the flow perturbations are inherently linear.
It would be of some interest to include nonlinear effects, although the computational task
would be substantially more intensive for these (unsteady, time-periodic) problems (the
boundary-region studies mentioned in § 2 were nonlinear, but steady).

Intriguingly, the existence of this downstream-growing mode then suggests the
possibility of a connection with Klebanoff (1971) modes. Certainly the (non-dimensional)
frequency of those described in § 5 is O(1) in high Reynolds number asymptotic terms,
whilst the corresponding frequency for Tollmien–Schlichting waves is much higher,
namely O(Re1/4), qualitatively in line with Klebanoff (1971) modes (and as noted by
Ricco (2011) the spanwise length scales of Klebanoff modes are, just as in this paper,
generally comparable with the boundary-layer thickness). However, such modes in the past
have generally been linked to free-stream disturbances (rather than fully inhomogeneous
systems, as considered in this paper). There has been considerable effort using the DNS
approach to understand such modes (for e.g. Bake, Meyer & Rist 2002), whilst a good
overview (including experiments) of these can be found in Schmid & Henningson (2001).
A more recent direct numerical simulation is that of Hosseinverdi & Fasel (2018), in
which a likely link is made between transient growth and lift-up mechanisms. Herein
lies a difference with the present study, insofar as the velocity component normal to the
wall, although present in the growing mode, plays but a minor role. There is therefore
scope for further analytic/asymptotic study of these modes, with a view to establishing the
connection with some of the previous experimental and DNS transition results (or whether
these modes have yet to be observed, given the intricacy of parameter space).
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The effect of three-dimensionality on the Brown & Stewartson (1973) family is
described in § 6; the (complicated) structure found in the two-dimensional case persists,
but the three-dimensionality appears in this case to stabilise disturbances (i.e. the
downstream decay rate increases). This too has been observed in both our numerical and
analytic results.
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Appendix A. Further details in the three-dimensional Brown–Stewartson modes

Further details of the three-dimensional solutions for the Brown–Stewartson modes are
given here in all three regions.

The leading-order equations in region I, with P1 = 0, for U1, V1 and W1 become

−(i + μ2)U1 + μW1 − 1
4 V1 = 0, (A1)

U′′
1 − (Ȳ − χ)U1 = 0, (A2)

V ′′
1 − (Ȳ − χ)V1 = 0, (A3)

W ′′
1 − (Ȳ − χ)W1 = 0, (A4)

where a prime denotes differentiation with respect to Ȳ . The solutions are found to be

U1 = A1Ai(Ȳ − χ), (A5)

V1 = B1Ai(Ȳ − χ), (A6)

W1 = C1Ai(Ȳ − χ), (A7)

where A1, B1 and C1 are constants. As Ȳ → 0 these solutions match with those in region
II. Note that the next terms in the solutions are O(η̂

−2/3
0 ).

In region II, the governing equations at leading order for U2, V2, W2 and P2 become

−(i + μ2)U2 + μW2 − 1
2 TV ′

2 = 0, (A8)

T2U′′
2 +

(
1
4 − 4(i + μ2)T

)
U2 − 2TV2 = 0, (A9)

T2V ′′
2 +

(
1
4 − 4(i + μ2)T

)
V2 = 0, (A10)

T2W ′′
2 +

(
1
4

− 4(i + μ2)T
)

W2 + 4
μη̂2

0
P2 = 0. (A11)

The solution of (A10) yields

V2 = −A2T1/2K0(4(i + μ2)1/2T1/2). (A12)
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Then, by manipulating (A8)–(A11), P2 is determined as P2 = −η̂2
0(i + μ2)TV2, i.e.

P2 = η̂2
0(i + μ2)A2T3/2K0(4(i + μ2)1/2T1/2). (A13)

With V2 and P2 determined, the inhomogeneous equations for U2 and W2 can be solved to
yield

U2 = −(i + μ2)−1/2A2TK′
0(4(i + μ2)1/2T1/2) + B2T1/2K0((4(i + μ2)1/2T1/2), (A14)

and

W2 = −2(i + μ2)1/2μ−1A2TK′
0(4(i + μ2)1/2T1/2) + C2T1/2K0(4(i + μ2)1/2T1/2),

(A15)

where from continuity
− (i + μ2)B2 + μC2 + 1

4 A2 = 0. (A16)

The form of these solutions was guided by the behaviour of the solutions in region III, as
described below.

Following Brown & Stewartson (1973), in region III we write

Ũ = k1(x)U3(η) e−xμ2
exp

(
(A0x)1/2

∫ η

Q dη1

)
, (A17)

Ṽ = k2(x)V3(η) e−xμ2
exp

(
(A0x)1/2

∫ η

Q dη1

)
, (A18)

P̃ = k3(x)x−1/2P3(η) e−xμ2
exp

(
(A0x)1/2

∫ η

Q dη1

)
, (A19)

W̃ = k4(x)W3(η) e−xμ2
exp

(
(A0x)1/2

∫ η

Q dη1

)
. (A20)

These are substituted in (6.5)–(6.8). The O(x) terms in (6.5) yield

−(i + μ2)k1U3 + A1/2
0 Qk2V3 + μk4W3 = 0. (A21)

The function Q is determined from the O(x) terms in (6.6), to give

Q2 = A−1
0 (i + μ2)(1 − f ′). (A22)

Then the O(x1/2) terms in (6.6)–(6.8) yield

U′
3 =

(
− Q′

2Q
− 1

4
f + f ′

4Q

∫ η

Q dη1

)
U3 + f ′′

2k1A1/2
0 Q

k2V3, (A23)

V ′
3 =

(
− Q′

2Q
− 1

4
f + f ′

4Q

∫ η

Q dη1

)
V3 + 1

2k2
k3P3, (A24)

W ′
3 =

(
− Q′

2Q
− 1

4
f + f ′

4Q

∫ η

Q dη1

)
W3 − μ

2k4A1/2
0 Q

k3P3. (A25)

By manipulating the equations we obtain a relation between V3 and P3, namely

(i + μ2)f ′′k2V3 = 1
2 ((i + μ2)(1 − f ′) − μ2)k3P3. (A26)
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Then substituting for P3 in (A24) we obtain the following equation for V3

V ′
3 =

(
− Q′

2Q
− 1

4
f + (i + μ2)f ′′

i − (i + μ2)f ′ + f ′

4Q

∫ η

Q dη1

)
V3. (A27)

Integrating (A27), using f = −2f ′′′/f ′′, we find

V3 = (1 − f ′)−1/4( f ′′)1/2

(i + μ2)(1 − f ′) − μ2 exp
(

1
4

∫ η

0

f ′

Q

∫ η1

Q dη2 dη1

)
. (A28)

Then, using (A26), the solution for P3 is

P3 = 2k2(i + μ2)(1 − f ′)−1/4( f ′′)3/2

k3((i + μ2)(1 − f ′) − μ2)2 exp
(

1
4

∫ η

0

f ′

Q

∫ η1

Q dη2 dη1

)
. (A29)

Note that when μ = 0 these solutions reduce to those for the two-dimensional case. Using
these solutions we find that the corresponding solutions for U3 and W3 are

U3 = ± k2

2k1(i + μ2)1/2 ( f ′′)1/2(1 − f ′)−1/4I1(η) exp
(

1
4

∫ η

0

f ′

Q

∫ η1

Q dη2 dη1

)
,

(A30)
and

W3 = ∓μk2

k4
(i + μ2)1/2( f ′′)1/2(1 − f ′)−1/4I2(η) exp

(
1
4

∫ η

0

f ′

Q

∫ η1

Q dη2 dη1

)
,

(A31)
where the integrals I1 and I2 are defined as

I1(η) =
∫ η f ′′

((i + μ2)(1 − f ′) − μ2)(1 − f ′)1/2 dη3, (A32)

I2(η) =
∫ η f ′′

((i + μ2)(1 − f ′) − μ2)2(1 − f ′)1/2 dη3, (A33)

and the signs correspond to the signs of the square root of Q in (A22). Note that these
integrals are indefinite integrals.

If we take the positive root for Q from (A22) and take the lower limit of the integral of
Q to be ∞, we can show that these solutions match with those in region II as η → η̂ if
k2(x) ≈ η̂−1

0 h(x)x3/4.
These solutions do not satisfy the wall boundary conditions. However, similar to

the two-dimensional case of Brown & Stewartson (1973) we can add an appropriate
multiple of the solution corresponding to the negative root in (A22). This solution will
be exponentially small for η > 0. A similar procedure was also necessary in the study of
Leib et al. (1999). In both cases, the further addition of the exact solution of the governing
equations presented in Lam & Rott (1993) is also required, which is also negligible for
η > 0.
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