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1. INTRODUCTION

It is well known that the regression of progeny on mid-parent value in a random-
mating population measures the additive genetic fraction of the phenotypic
variance of that population, for any quantitative character, and this relationship
has often been used to estimate the heritability of such characters. In practice,
such progeny tests are often limited in size for technical reasons, and lead to
estimates of the regression coefficient with such large standard errors as to be
virtually useless.

Statistically more accurate estimates can be obtained with the same sample size
by mating parents assortatively (like with like), or in any other way which in-
creases the mid-parent variance—e.g. by selecting only plus and minus extremes
as parents, which may be combined with assortative mating. The variance of the
regression coefficient will obviously be reduced in the same proportion as the
variance of mid-parent phenotype is increased.

This method was proposed, with some reservations, by Reeve (1953), but has
been criticized by Wright (1952) on the grounds that assortative mating must
introduce correlations between the non-additive genetic effects of parents and
offspring, and so will lead to an unpredictable bias in the regression estimate.
Reeve (1955), in a brief contribution which is untitled and buried deeply in the
discussion pages of the reference in question, gave a mathematical argument to
show that the bias from non-random mating will often be negligible, but the prob-
lem needs rather more detailed examination, which I shall attempt to give here.
The effects of assortative mating on the correlation between sibs will also be
considered.

2. THE REGRESSION OF PROGENY ON MID-PARENT

(i) Effects of assortative mating
Consider a population in equilibrium under random mating, in which a charac-

ter, say body size, is normally distributed with phenotypic standard deviation a.
We want to know in what way the regression of progeny on mid-parent will be
affected, if we draw a random sample of each sex from the population and then
mate them assortatively for body size, so as to introduce a correlation /x between
mates.
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It is mathematically more convenient to suppose that an infinitely large sample
of each sex is drawn at random, and assortative mating introduced so that body
size of the two sexes follows a bivariate normal distribution with correlation
coefficient ft. The sample of pairs chosen for our progeny test may then be sup-
posed to have been picked at random from this correlated population. The usual
procedure of picking samples of each sex at random and then mating them assorta-
tively may not give precisely a random sample from a bivariate normal distri-
bution, if the correlation is high, but any deviation in practice from our model is
not likely to be appreciable.

We consider now a single pair of alleles A and B, with frequencies p and
q = 1 — p. The complete population consists of the three sub-populations of genetic
constitutions AA, AB and BB. Let the means of these be a, b and c, respectively;
and let us choose the origin so that p2a + 2pqb+q2c = 0. If there is any sex dif-
ference in size or variance, this may be eliminated by a suitable transformation.

It will be assumed that all gene substitution effects such as a, b or c are small
compared with the phenotypic standard deviation, so that the standard deviation
of each sub-population can be taken as approximately a.

Then the probability that a particular male parent in our sample is of genotype
AA and size x is

and the probability that a particular female parent is of genotype AB and size y is

but the probability that a pair of mates have these sizes and genetic constitutions
is, in view of the correlation between mates,

(3)

By integrating (3) over the ranges of x and y, we obtain the total frequency of
matings between AA males and AB females as p2. 2pq. exp [fiab/a2]. This treatment
and result are due to Fisher (1918), and we shall use these overall frequencies later
in considering the effects of assortative mating on the correlation between sibs
(see also Kempthorne, 1957, pp. 492-4).

To find the regression of progeny on mid-parent, we need to determine the pro-
geny mean for a given mid-parent value X = i(x + y). Substituting y = (2X — x)
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in (3) and rearranging terms, we obtain

P(x,a; 2X — x,b) = „ 2u/2e xP \~~73. 7M\ ^

— ————•—• • I Cl*C • Cl st\. 1 4 )

for the probability that a pair of mates of sizes x and (2X—x) have the genetic
constitutions AA and AB, respectively. Integrating out x, we obtain the relative
frequency of matings with male and female parents AA and AB and mid-parent
size X as

P(X; a,b) = P(X; b,a) = g ^ ( 1 + M ) p / a e x P [^2 4*P(l+p) J

Now write X = ka, giving, after some simplification,

a • a b) = "* * *" |«(o + 6)

Expanding the exponential in terms of l/<y, and omitting constant terms which
do not change when c is substituted for a or b, the frequency is proportional to

o 3 r k(a + b) (2k2-l)(a + bf-(ji(a-b)2 . s 1
2»8{ 1 + - - + - ——r-s—— + terms m 1/cr etc. . (7)

|_ O iCT J

Since individual substitution effects are assumed to be small compared with a,
we can ignore terms in I/a2 and higher powers of I/a, and (6) reduces to

P(ha ;a,b) = Constant x p2. 2pq 1H . dk. (8)
L a J

Substituting b = a, b = c, etc. in (8) gives the relative frequencies of matings of
each type shown in Table 1.

Table 1. Mating frequencies with mid-parent k/cr, after assortative mating

Mating Frequency (/) Progeny mean (0)

AAxAA y>4ll + 2-

, f k,AA x AB 4ps ql 1 + - (
' a

I j .

AAxBB

! 1 + 2-6}
I " 1ABxAB 4p2g:

ABxBB 4pg3ll + -(

BB x BB o4
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Since the terms containing /* in (7) are at most of order 1/CT2, they are eliminated
from (8) and from Table 1. It follows immediately that, assuming we can ignore
terms in l/o-2, a phenotypic correlation between mates will have no appreciable
effect on the progeny mean for a given mid-parent size, and so will not bias the
regression of progeny on mid-parent.

We notice, in fact, that the frequencies (/) in Table 1 add to unity, since the
sum of terms in k[cr has a factor p2a + 2pqb + <fc = 0. Multiplying the frequencies
by the progeny means (O), also given in the table, and adding over matings, the
progeny mean for all matings with mid-parent phenotype ha is seen to be

2 / 0 = 2n{p{a-b)+q{b-c)Yklo, (9)

which is hfa times the additive genetic variance due to the gene pair A,B. Since
2 fO — 0 when X = lea — 0, the regression coefficient of progeny on mid-parent is

S/O/Z = 2pq{j>{a-b) + q{b-c)Yl^, (10)

which is the usual formula for random mating.
Evidently non-additive intra-locus gene effects will not bias the regression,

under the conditions assumed. But, since fx only appears in (7) in terms of order
I/a2 and less, it is clear that a correlation between mates will not bias the regression
even when interactions between loci occur, since it can only introduce a distur-
bance of the second order.

(ii) Effects of selection of parents

One might guess that selection of parents so as to increase their variance over
that of the general population would also leave the regression coefficient virtually
unchanged given the same conditions, and this may be shown by the following
argument.

Suppose we select only parents which differ from the population mean (taken as
zero) by at least + ta, and mate selected males and females together at random
except that males from the plus group are mated to females from the plus group,
and minus to minus. This is what generally happens when a generation of two-
way selection is carried out.

We require first the mid-parent mean for each group, which will be the same as
the mean for each sex, since both sexes are assumed to have the same variance.

These means are

where F(t) is the distribution function 7̂—̂72
(2TT) J
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Now the probability that a parent in the plus group is drawn from the AA
sub-population with mean a and variance a2 is

I 6 " " 0 " * * =

where L is a constant to be determined so that the similar expressions P(a),
P(b) and P(c) add to unity. But since a/a is small, we have

On expanding the exponential terms involving a, we have, with sufficient
accuracy,

J
Substituting in (12) and ignoring terms in 1/CT2 etc., we obtain

(14)

P(6) and P(c) are obtained from (14) by substituting b and c for a, and 2pq and
q2 for p̂2, respectively; and since these three probabilities add to unity and
p2a + 2pqb + q2c — 0, we find

L =

so that P(a) =

P(b) = 2^( l + C-J [ (15)

where C = e~ik* /(2T7)1'2{1 -F(t)}.

It is now easy to obtain the mean progeny value for matings within the plus
group, since the frequencies are {P(a)}2 for AAxAA matings, 2P(a).P(6) for
AA x AB matings, etc., and the progeny mean for each mating type is given in
Table 1. Ignoring terms in I/a2,

(P(a)}2 =^4{l + 2Ga/a}, 2P(a).P(b) = 423
3
3{l + <7(a + 6)/a},

etc., so that the frequencies become identical with those given in Table 1, except
that C is substituted for h. We thus have immediately from (9),

2 / 0 = 2pq{p(a-b) + q(b-c)}2Cl<r (16)
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for the plus group, while minus this value is the progeny mean for the minus group
of matings.

The regression of progeny on mid-parent is, therefore, (16)-^ (11), i.e.

c)}*lo2, (17)

which is the same as (10). It may be seen from (13) that deviations from this
value due to the selection of parents are of the order of I/a2.

Clearly, given our assumption that individual gene substitution effects are small
compared with the phenotypic standard deviation, neither selection of parents
nor assortative mating, nor indeed a combination of the two, will introduce an
appreciable bias into the regression coefficient of progeny on mid-parent, regard-
less of the presence of interactions within and between loci. The effect of these
methods of increasing the mid-parental variance will be almost confined to reduc-
ing the sampling variance of the regression coefficient.

Equations (15) are of some interest, as they give the relative frequencies of the
three phases of any pair of alleles A,B among individuals selected so as to be at
least ha units above the population mean. We notice that

P(a) .P(c) - |P2(6) = p2 q2(a -2b + cf

where a% is the genetic variance due to dominance at the (A,B) locus. This shows
that the extent to which the three phases of a gene pair are out of equilibrium in
such a selected population is a function of the intensity of selection and the amount
of dominance.

Equations (9) and (16) differ only in the substitution of C for 1c in the latter, and
it is of interest to compare these two coefficients more directly. If X is a given
mid-parent size in the correlated population, and x is the mean of parents deviating
from the population mean by at least + to units in the case of selected parents,
then we have

k = X\a,

G = x/tr.

This brings out clearly the equivalence of the two coefficients.

3. THE CORRELATION BETWEEN SIBS AFTER ASSORTATIVE MATING

When the genetic variance is entirely additive, a correlation /x between mates
has no effect on the regression coefficient of progeny on mid-parent, since both the
numerator and denominator of this coefficient are multiplied by the same factor
(l+fx). The covariance between sibs and the progeny variance are, however,
multiplied by different factors, so that the correlation between sibs is changed in
the ratio (l + /zA2)/(l +JJUA4), as shown by Reeve (1953). We might expect, there-
fore, that the bias from non-additive effects would be greater for the sib-correlation
than for the regression, after assortative mating. An examination of the two-allele
case will show that this is so.
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Terminology here presents a problem, since there has been a confusing variety
in the symbols used by different authors for the same genetic parameters (compare,
for example, the symbols used by Kempthorne, 1957, and Falconer, 1960). I shall
therefore first summarize the definitions and basic formulae used in the present
analysis.

As before, the three phases at the (A,B) locus have phenotypic values a, b and c}

the gene frequencies being p and q, and the total phenotypic variance a2. Let
OG> °A> a n ( i °T) be the total genetic variance and the contributions to it of additive
and dominance effects, for this particular locus, in the random-mating population.
Then

oi = 2pq{p(a-b) + q(b-c)}2 = 2pq(b*-ac),

of, = p*q\a-2b + cf = (pa + qcf.

Let A = p(a — b) + q(b — c), whence o\ = 2pqA2,

D = —pq(a — 26 + c), whence a% = D2.

Then A is the average substitution effect and D the mean dominance deviation.
Both these terms occur in the formula for the correlation between sibs after
assortative mating.

As we saw earlier, the introduction of a correlation p between mates has the
effect of multiplying the frequency of matings between AA and AB by the factor
exp(/xa6/a2), with similar factors for other matings. Assuming that the individual
substitution effects are small compared with the phenotypic standard deviation,
we can write this expression as {1 + (yMb\CT2)} , which leads to the correlation table
for sibs, following one generation of assortative mating, shown in Table 2. This
case should not be confused with the one discussed by Fisher (1918), where the
population is in equilibrium under a small degree of continued assortative mating.

Table 2 also gives the total frequency of occurrence of each of the three geno-
types among the progeny, so that we can calculate from it the mean phenotype
of progeny (0), the covariance between sibs cov(0,0), and the genetic variance in
the progeny generation due to the gene pair (A,B), which will be called af̂ . All
three indices lead to rather heavy algebraic expressions, which can be simplified
into the following formulae:

0 = 2/0= - ^

cov(0,0) = ^d + ial+^K.-l^

i 2

where K, = [ 4 + K + %(p - q) ADf - \o\

and I ^
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Table 2. Correlation table for sib-pairs after assortative mating

Sib-pair Frequency (/) of occurrence together

AA,AA(a,o)

AA, AB (a,b)

, AA,BB (a,c) fc»V+£[**>

AB, AB (6,6) pq(l+pq) + -2

AB, BB (6, c) ZpqHhp + <?) + -2 Vpq2 Hipb + qc)]
a

BB, BB (c, c) g2(£p + q)» + £ [g2(i^6 + qc)*]
a*

Progeny genotype Total frequency of occurrence

AA p2\l + !L

AB 2pq

BB
a"

Total frequency 1

If all genes act additively, erf, = D = 0, so that

cov(0,0)= io

Summing over loci, and adding the environmental variance to a\^ to give the
phenotypic variance of progeny, of, we see that then

cov(0,0) =

4 =
whence the correlation between sibs is

roo = ¥'

which is the formula derived by Reeve (1953).
When dominance deviations are present, however, the occurrence of terms in

AD in Kx and K2 implies that assortative mating will introduce correlations be-
tween the additive and dominance components of different loci, and also between
their dominance components. These correlations will bias the sib-correlation in
an unpredictable way, and probably to a serious extent if some of the genes are
strongly non-additive in effect and assortative mating is close.

One special case is of interest. If the gene frequencies are all \ or close to \,
the terms with a factor (p — q) can be ignored, and then, if rx is the correlation
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between sibs after assortative mating, compared with r when mating is at random,
we have approximately,

= r

where h2 is the fraction of the phenotypic variance which is due to additive genetic
effects. This again reduces to the formula for additive effects where r = JA2, but
if some dominance is present acting in either direction, then r > \h2 and rjr
becomes larger than in the additive case. This gives an example of the kind of
bias which assortative mating may introduce into the estimate of the correlation
between sibs, when non-additive gene effects are present.

In conclusion, then, it appears that assortative mating, or selection to increase
mid-parental variance, will not bias appreciably the regression of offspring on
mid-parent, provided that individual gene substitution effects are fairly small,
but that more serious bias is likely to arise in the correlation between sibs.

4. SUMMARY
The regression of progeny on mid-parent value is often used in progeny tests

to estimate the heritability of a quantitative character. The statistical precision
of such an estimate can be considerably increased without increasing the size of
the test, by using assortative mating or selection of parents (or both together) so
as to increase the mid-parent variance; but the danger arises that this may
introduce bias into the estimate through correlation between non-additive gene
effects.

It is shown by a mathematical argument that such bias will be negligible pro-
vided that all individual gene substitution effects are small compared with the
phenotypic standard deviation of the character. Under this condition, deviations
from additive effects either within or between loci will not appreciably affect the
expected value of the regression on mid-parent, compared with its expected value
in a test using random mating.

Correlation between the non-additive gene effects is likely to cause more serious
bias to the correlation between sibs, when non-random mating is used.
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