Y. Morimoto
Nagoya Math. J.
Vol. 101 (1986), 131-150
PROPAGATION OF WAVE FRONT SET IN GEVREY CLASS
FOR AN EXAMPLE OF HYPERBOLIC SYSTEM
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Dedicated to the memory of Professor Hitoshi Kumano-go

Introduction

In this paper we show, for an example of hyperbolic system, that the
wave front set in Gevrey class of a certain solution propagates precisely
along “generalized broken null-bicharacteristic flow” defined by Kumano-
go-Taniguchi [7] and Wakabayashi [10] [11].

Let L be a hyperbolic system of the form

D, D,) 0 0 1 .
0-1 (pl(t7 x’ 2] x ) < > Rl R; R
O 0 it D,D)) T\1 o) X

where p, = D, + 2;,(¢, x, D,), j = 1,2, and
(0.2) 21(t7 x’ 5) = O
Zz(t, X, 5) =& + x6; + xt, + (t4 — 8x,t° + 48.7C2t2 — 192x3t)§4 .
We consider the Cauchy problem
(C.P) LU=0, UW0,x)=G, Geé&.

Let g, be a point (0; (0,0, 0,0, 1)) in the cotangent space T*(R, X R%) and
let C, be an integral curve in T*(R, X R;) through g, by Hamilton vector
field H,,,,,. For g,e T*(R, X R;) we put p, = (0, ") € T*R:, 7" = (0,0,0, 1)

e R;\0. Assume that the initial value G of (C.P) satisfies
0.3) WE.G = {co, = {0, c1); ¢ >0}, 1 <& <3},

where we denote by WF, u the wave front set in Gevrey class of order
t of ue 2 defined by Hormander [1] (see Definition 1.1 in §1). In the
present paper we shall show that the wave front set in Gevrey class of
order smaller than 3 of a certain solution U of the Cauchy problem (C.P)
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propagates precisely along the curve C’o. (See Corollary 2.4 in §2). We
remark that

(0.4) éo cl = {,5 e T*(R, X Ri)\O, p1(16) = pz(ﬁ) = 0}

and any Hamilton flow by H, (j = 1, 2) passing C, intersects 3, only once
with tangency of fourth order. Namely, C, is the generalized broken
null-bicharacteristic flow (but not broken null-bicharacteristic flow).

The motivation of this study is derived from the work of Kumano-
go-Taniguchi [7], where they constructed the fundamental solution of the
Cauchy problem for a hyperbolic system of first order with diagonal
principal part by using Fourier integral operators with multi-phases.
Their fundamental solution gave the following description about the prop-
agation of C~-wave front sets of solutions; if we also denote by U and
G the solution and the initial value of the Cauchy problem, respectively,
then we have

(05) WFU®)CI(t; WEG), t,>0, (see Theorem 3.4 of [T]) .

Here I'(t,; K) for a closed conic set K of T*R2\0 is defined as follows:
For ¢ >0 and integer 2= 0 we denote by I%(t,; K) the set composed of

end points (at ¢ = ¢,) of all e-admissible trajectories of step k issuing from
K. We put

(0.6) Ity B) = M UJTI'ty; R,

0<e<t k=

where K, denotes the e-conic neighborhood of K in T*(R)\0. We refer
the reader to [6] about the definition of c-admissible trajectory for a
hyperbolic system.

The description (0.5) seems to be rough to appearance because the set
I'(t;; K) for a closed conic set K contains the end point (at ¢ = ¢,) of a
limiting curve (¢ — 0) of the set composed of all e-admissible trajectories
issuing from K.. It should be noted, for hyperbolic system with charac-
teristics of variable multiplicity, that the end point of the limiting curve
is not always contained in the closure of the set of end points of all
0-admissible trajectories issuing from K, that is,

there exist a 6, T*R"0 and a closed conic set K
0.7 of T*R?\0 such that

b..e '(L,; K)\Qofé‘(to; K).
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In fact, examples satisfying the property (0.7) were given in [4] and [5].
(See last sections of [4] and [5]).

Let’s return to the present example. If = denotes the natural projec-
tion from T*(R, X R:) to R, X T*R: then the curve nC’o is obtained as a
limiting curve (¢ — 0) of admissible trajectories issuing from e-conic neigh-
borhood of p, (see Propositions 2.1 and 2.2 in § 2). If 4., is the end point
of zC, at ¢ = ¢, and if K is the right hand side of (0.3) then we have the
property (0.7) and furthermore for any 1 < r < 3 there exists an initial
value G satisfying (0.3) such that

0.8 WF.U(,) 5 6.. ,

where U is the solution of (C.P) (see Theorem 2.3 in §2). This fact
shows that the description (0.5) is optimal for the present example if we
consider the propagation of wave front sets in Gevrey class of order
1 < £ < 3 instead of that of C~ wave front sets. (See also Corollary 2.5
in §2).

Recently, Wakabayashi [11] has given a description about the propa-
gation of C> wave front sets of solutions of the Cauchy problem for sym-
metric hyperbolic systems, by using the work of Ivrii [3]. For hyperbolic
systems of first order with diagonal principal part, the description of [11]
is equivalent to (0.5). We remark that one direction of equivalence was
proved in [11] (Theorem 4.4 of [11]) and another direction will be proved
in the forthcoming paper [8] by K. Taniguchi and the author. The
description of Wakabayashi is convenient to determine the set I'(¢); -) for
the present example (see §6). Finally we remark that the description
(0.5) is also valid for wave front sets in Gevrey class if the symbol of
hyperbolic system belongs to the corresponding Gevrey class. (See [8] and

Wakabayashi [10]).
§1. Wave front set in Gevrey class

Let 2 be an open set in R" and let £ > 1. We denote by 7®(2) the
set of all functions in Gevrey class of order «, i.e. ue C*(2) and for any
compact K of 2 there exists a constant C such that for any multi-index «

(1.1) sup | D*u(x)| < C'=!+Y(al)* .
zEK

According to the Definition 3.1 of Hérmander [1] we define the wave
front set in Gevrey class of order ¢ > 1.
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DeriNITION 1.1, Let (x% &% € T*R™\0 and let ue 2. We say that
(x%, &% is in the complement of the wave front set in Gevrey class of
order £ (=1) of u if and only if there exist an open neighborhood U, of
x°, an open conic neighborhood I'; of & and a bounded sequence {u,} C &’

such that
Uy = U in U,
(1.2 |2, < CY (N g™y,  &el,
N=12 ..

for a constant C > 0 independent of V. We denote by WF, u the wave
front set in Gevrey class of order & of w.

Remark. When r = 1 the definition above is that of analytic wave
front set.

In the same way as in the proof of Corollary 1.4 of Chapter V of
Treves [9] we get the following lemma in view of (2.3) of [1].

Lemma 1.2. The point (x° &) e T*R™\0 does not belong to the wave
front set in Geurey class of order  of ue 2’ if and only if there exist an
open neighborhood U, of x° and an open conic neighborhood Iy of & such
that we have the following property: For any sequence of functions {hy}
(N=12,---)in C3(U,) such that

(1.3) |D*hy| < (CN)™*',  Ja| < N

for a constant C, independent of N, we get

PN ! .
(1.4) [(Chyu)@)| < CYHUN Y)Y,  éel
for a constant C, independent of N.

Therefore we get the following

CoroLLARY 1.3. Suppose that £ > 1. Let (x" &) € T*R"\0 and let
ue 2. Assume that there exist an increasing sequence of constants {Cy}, a
sequence {Cy; Ly € R"\0} and a sequence of functions {hy} in C* satisfying
(1.3) (N =1,2, ---) such that

(1.5) {CN —o (N— ),

CN/ICAI - 50/150\ , lCI\I —> 0 (N"" °°)
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(1.6) supp Ay — {x°} (N — )
and
1.7 I(h/ND>(CN)] = CY(NDIG ™Y, N=1,2-.-.

Then (x°, &%) belongs to WF.u.

Remark. Let {N,} be a subsequence of {1,2,3, ---}. Clearly we have
the same conclusion even if we replace {N} by {V,} in the corollary.

§2. Results

Let L be the hyperbolic system in R, X R: defined by (0.1) and (0.2).
Let ¢, be any (but a fixed) positive. For an even integer ¢ = 2,4,6, -- -,
we put

2.1 0, =0,7)e T*R;, 7" =(—(/21)%0,0,1).

ProrosiTioN 2.1. As admissible trajectories issuing from p, one can
find only the following p + 2 trajectories; two bicharacteristic curves with
respect to 2, and 2, issuing from p, and trajectories C(J),t,, p,) of step
r=1---,p. Hered,.=@,2,---,1) or (2,1,2, ---,1) according to r even
or odd, and t, =, -+, t) = (o, +,0,), 0, =Q2g—1B (g=1,---,p
B = (t,/21). (See Fig. 1 and 2). Furthermore, for the trajectory C, =
CW.,t,p,) all hypotheses of Theorem 1 of [6] are verified with p, = p,.

Al
t, 1
7/3 4
58 1
3L+
pt /
py Tbiz(Rn)

=4, p=1J8, J,=(1,2,1,2,1).

Fig. 1.
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F(t; 0,1, p0,) (=@ — ) on CWJ}, 1., p,), see (5.2))
A

N 1

1

1 ’ 1
' ¢

’ \ 3[3/'/\ 7&// ; -
N

M= 4, ﬂ = t0/8’ J; - (17 2’ 17 2, 1)-

Fig. 2.

As the positive ¢ and the neighborhood V, in the hypothesis (H-3) we can
take an arbitrary positive smaller than 1 and R, respectively.

We denote by d, the end point of the trajectory C(J/, 7., p,) and con-
sider a sequence of end points {4,} (# =2,4,6,.-.). Let g, T*(R, X R%)
be (0,(0,0,0,0,1)) and let C'o be an integral curve through g, by the
Hamilton field H

p1+pe*

ProposITION 2.2. 1) There exists a unique limiting point §,, = lim,_.. d,.

The limiting point J,, equals the end point of the curve nC’OCRt X T*R:
at t = t,, where n is the natural projection from T*(R, X R.) to R, X T*R:.
1) It follows that

(2.2) G, 3, = {pe THR, X RO\O; p(p) = pdp) = 0}

and any Hamilton flow of H,, (j =1, 2) passing C, intersects only once with
osculation of fourth order.

iiil) Let C; be the part of the curve C, corresponding to t = 0 and let
B,, be a bundle of half hamilton flows by H,, (j = 1,2) emanating from
Cy, that is,

(2.3) By, = | {(exp sH,)p; s =20, 5eCs}.

If K is a closed conic subset in T*R:\0

(2.4) {coo = (0, ¢p); ¢ >0, 5 = (0, 0,0, 1)}

then it follows that

(2.5) I(ty; K) = {(x, c&) € T*R\0; ¢ > 0, (x, &) € 2By)is} »

where zB,,-,, is the section of zB,,C R, X T*R; at t = t,
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Let’s admit these propositions, which will be proved in Section 5 and
Section 6, respectively.

THEOREM 2.3. If K is the closed conic set defined by (24) and 6., =
lim,_.. 8, then we get

(2.6) 5. e I'y; IZ)\ QOF{,‘(tO; R).

Furthermore, for any positive 1 < g, < 3 there exists an initial value Ge &’
such that

@ WFG = WF,G =K

and

(2.8) 6. WE,U(t,)  for any k, < <3,

where U is the solution of the Cauchy problem (C.P).

CoROLLARY 2.4. For any 1 <k, < 3 there exists an initial value G e &’
satisfying (2.7) such that

(2.9) C,c WF.U (CTH*R, X R)\0)  fork,<i <3,
where U is the solution of (C.P).

CoroLLARY 2.5. For any 1 <k, < 3 there exists an initial value Ge &’
satisfying (2.7) such that

(2.10) WFE,U(t) = I'(t;; K)  for any k, < ¥ < 3,
where U is the solution of (C.P).

§3. Plan of the proof of Theorem 2.3
Put ¢ = 2N for N =1,2,8,--- and 7, = 7",

(3'1) Ny = (—(t0/4N)4) 07 Oa 1) .
We put
#a) = o exp (- 3 2/2),  zecC

and

(3.2) g(2) = 2. o' ¢(ci72) exp ityz-ny ,

N=1
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where 7 is a positive satisfying
(3.3) 0<r<1/2

and {zy}%_, is an increasing sequence of positive numbers such that z,,/zy
is large enough to satisfy conditions demanded later on. Let g(x) be
the restriction of g(2) to R'. The function g(x) is also a modification of
Example 2.3 of Hérmander [2]. In the similar manner as in [6] we get

(3.4) WFg = WF,g =1{0,c;); ¢c>0, 77 =1(0,0,0, 1)},

where k, = 1/2r > 1. Indeed, note that ¢(z) expiz-y for || < 2 is bounded
in an open set of C*

2,={zeC* |Rez] > |Imz[ + 4|Im 2|} .

Since we may assume 73" <oo the sum of the right hand side of (3.2)
converges uniformly in £, Therefore g(z) is analytic in 2, and g(x) is
real analytic except the origin. Now we have

88 = 2T — )i ) -
Since we have
(3.5) $(€) = exp (—|£F/2) = 0
it follows that
8(ragy) Z ™07,
which shows
{0, c1); ¢ > 0C WFgC WF, g .

Let V be an open conic neighborhood of 7°. By the same way as in
(2.17) of [6] we have for a positive constant C,

(3.6) [& — oyl = Cyler

if £¢ V and N is large enough. It follows from (3.5) that there exists a
constant ¢, > 0 such that

3.7) 8] < catexp(—c,|&f) if gV,

which shows another direction of inclusion of (3.4).
We choose, as the initial value G of (C.P),
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(3-8) G(x) = "(Vo(2)&(%), Vo(x)8(x)) ,

where ,(x) is a function in 7% N Cy (k, = 1/2r) such that 0 < 4, < 1,
Yo%) = 1 for |x] < R, Here R, is a positive large number. Clearly we
get Ge &’ and

(3.9) WF, G = WFG = {(0, cf); ¢ >0, 7 = (0, 0,0, 1)} .

We put §, = d,y = (xy, &) and 0., = (x°, &°. Note that ., = limy_., 9,5 by
means of Proposition 2.2. Let {fy(x)} (N =1,2,---) be a sequence of
functions in C; such that 0 </, <1, fy=1 on [x—2x°Z1, fy=0
except |x — x°| £ 2 and for any «

(3.10) |D*fx| = (CN)"',  Ja] = N

for a constant C > 0 independent of N. It is easy to construct {f,} (see
Lemma 1.1 of Chapter V of [9]). Let {8y}%_. be an increasing sequence
of positive numbers such that g, < log N. If we put

hy(x) = f(x® + By(x — %),

the sequence {h,} satisfies conditions (1.3) and (1.6). We may assume that
By is slowly increasing such that

3.11) hy=1 near Xy .

Let U = “(u,, u,) be the solution of (C.P) for the G defined by (3.8)
and (3.2). We shall show that for any N there exists a constant ¢, > 0
independent of N such that

AN
(3.12) |(hyu)(to, E)| = e INPY |Gy |7V et

where ¢, = cy&y. Admitting this, by means of Corollary 1.3 we can
obtain the last part of Theorem 2.3. The first part of Theorem 2.3 will
be proved in Section 5 with Proposition 2.1.

§4. Proof of (3.12)

When we consider Ayu,(t, x), in view of (2.4) of [6] we may assume
G = (g, g) instead of (3.8). Indeed, we have

hy(x)(1 — 1!’o(”J,(zy)x)) =0

if R, is large enough. By the same way as in getting (2.20) of [6] we
have
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P
(4.1) (hyu)(ty; Téy) = 4]\: oy TV N wy Ty, Ta)
+ Z; .7;10 ,L va(TN, TNy Zv)dzu) s
=1

where wJp(TN’ Ty k) = G./,(Tz\', Tyrs L) exp iTNFJ.)(Zv) =0, J,=(Q),

(4-2) FJ»(E») = — fA"dJ,,(Zu) (nOte Y= 0)
and
(4°3) G./,,(TN; Ty f,,) = feXp @y- (TN'WN' — thMJ,(Zu)fA')TRZI)

X hy(M, (E)(5'y) + dy @)y (—i)ydy .

Here we used B,, = (—i)* because det M, = 1. By the similar way as in
(2.24) of [6] we get for a 7, satisfying 0 <7, <7

4.4) ley e — o' My (E)Ex| Tt =

if |ty — 7| is large enough. We remark that directions of 7, and &,
do not concern the derivation of (4.4). Integrating by parts with respect
to y [V + 3 + 4 — 1))/r,] times, we obtain

(4~5) ‘GJV(TN, Tyrs Zu)' < Cyry®ensta=d

if |ty — y.| large enough ,

where Cy is a constant independent of v and N’. Note that > z{-! <
+ oo and that the volume of 4, is #/v!. If we denote by R(ry) the sum
with respect to N’ = N in the right hand side of (4.1), there exists a
constant C/ such that

(4.6) [R(zy)| < Cheyrorta=n
if |ty — tu| for N’ = N is so large that the inequality (4.4) holds.
From now on we shall consider the term with N’ = N in the right
hand side of (4.1), that is,
40D L), (o= (1), J,e I such that j, = 1),
v=0
where I, (z) is defined by (2.26) of [6] with G,, as follows:

o) Goi(e3 8 = (=i [ exp vy — ‘M E)E)-y
X (M, EXE) + o ENGIY
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Since it follows from Proposition 2.1 that, for the trajectory C(J), ., p,)
(# = 2N), all hypotheses of Theorem 1 of [6] are satisfied, we can use
the same method as in Section 3 of [6] and obtain the result correspond-
ing to Lemma 2.1 of [6], that is; there exist two constant ¢, > 0 and

C, > 0 independent of v such that

(4.8) [, (@) = e,em” if = = ()
and for any J, # J/,
4.9) L) < Coerilif « = (),

where z(x) is a large number depending on p = 2N. Here we used (3.11)
to show ¢, > 0 (see Remark 1 in § 3 of [6]).
Since 1 = 2N, the conjunction of (4.6), (4.8) and (4.9) shows that there
exists a constant Cy > 0 such that
P !
(4.10) [(Ayu)(to; Thén)| = (Co — Clzy)ephrta-n-t
if {zy} satisfies

(4.11) {TN = (2N)
) ey — x| (N = N') large enough to get (4.4) .

If we choose {ry} furthermore such that
(4.12) Coy — CHe ™ Z en/2,

for the proof of (3.12) it remains to show that for any IV there exists a
constant ¢, > 0 independent of IV such that

(4.13) Coy = T N (or ¢, = ci*(p/2)*7) .

In consideration of the formula (3.35) of [6] and Remark 1 of Section 1
of [6], it suffices to show that for any p = 2N there exists a constant
¢; > 0 independent of x such that

(4.19) et < [det (0,0, doy ()] < cip~e.

This inequality will be proved in the next section.

§5. Proof of Proposition 2.1

If H; denotes the Hamilton vector field of p;, that is, H, = H,,
(j = 1, 2) then it follows that
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(N.5) Hthz e Ii’jsl)]“i = 0 N jk 6{1, 2} .

The condition (N.m) with integer m > 1 was already defined in Introduc-
tion of [4], to which we refer the reader about motivation of the definition
and results under the condition with m < 3. By the same way as in the
proof of Lemma 2.1 of [4] we get

Lemma 5.1. If the condition (N.5) is verified then H;H;, --- H,p;,
(Jx €11, 2}) are constants along any trajectory.

By this lemma we see that along any trajectory issuing from p,

Hip, = Hip, = HiH}p, = H;Hip, = 24

5.1
G {HzH?pz = H Hip, = HH,Hip, = H,HHip, = —24.

Let {(¢, x(2), &(t)); t€ [0, t,]} C R, X T*R: be a trajectory C(J,, %, p,). Then
H?pz(t, x(t), E(t))’ _ngl(t7 x(t)’ S(t)) and HIszpl(t> x(t); f(t)) (E —HZpr2(t9 x(t)’

fon C(J,, 1. p,)

A
243

—24p¢ |

p=4, 3=1/8, Ji=(@1,2,1,2,1).

Fig. 3.

m on C(J,, 1}, p,)
A
12624

—

B 3B 53 Bt

n=4, 8=1/8 Ji=(1,2121).

Fig. 4.
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&(2)), which follows from the Jacobi identity) are equal to f(¢), a continuous
piecewise linear function such that f’(¢) on (¢,,t,_,) is 24 or —24 accord-
ing to j,=1 or 2 and f(0) =0. Indeed, by means of (5.1) we can see,
for example, that d(H:p,)/dt on (¢,,t,.,) is equal to Hip, = 24 or H,H:p,
= —24 according to j, =1 or 2. Clearly Hip,0,p,) =0 and it follows
from (N.5) that d*(Hip,)/dt* = 0. (See Fig. 3).

On the other hand, it follows from (N.5) and (5.1) that H3p,(¢, x(2), &(£))
and Hip,(, x(¢), &(t)) are equal to m(tf) a continuous piecewise quadratic
function such that m(0) = 0, m” = 24 and m’ on ({,,t,_,) is equal to f or
—f according to j, = 1 or 2. (See Fig. 4)

If we put

(5.2) F@t; d., 1 0) = (& — ), x(2), £@))

for the trajectory C(J,, i, p,) = {(t, x(¢), &(@1)); t[0, 4]} then F is a con-
tinuously differentiable function of degree 1 and piecewise polynomials of
order 4 such that

5.3) F"" = 24 or —24, F" = —forf
' F”= —m or m on (,,t,_;) according to j, =1 or 2,
because d’F/dt? (j=1,2,---) are equal to Hi(p, — p,) = — Hip, or

H{(p, — p.) = Hip, on (¢, t,.,) according to j, =1 or 2 and because we
have H,p, = — H,p, trivially.
Noting that H,p,(0, p,) = 0 and (1, — 4,)(0, p,) = 8* (8 = t,/21) we get
{F-(t) =Ft;(1),0,0)=p -0
F.()=F(t;2),0,0)=p +1t  (see Fig. 2),

where we denote by C((1), 8, p,) and C((2), §, p,) two bicharacteristic curves

(5.4)

with respect to 2, and 1,, respectively. Furthermore, for r=1, - .-, p, we
have
(5.5) F@O) =F@¢d,t,0) = (=19 — ¢ —20r — 9)p)")
on te[t;9t;—1] (q: 17 "'3r+ 1’t;+l :07tg: to)-
(See Fig. 2).

By means of (5.3)-(5.5) we get the first part of Proposition 2.1. The hy-
pothesis (H-1) of Theorem 1 of [6] follows from (5.5). By the similar way
as in getting Proposition 5.2 of [4], in view of (5.3)-(5.5) we get (5.3) of
[4], which shows that the hypothesis (H-3) of Theorem 1 of [6] is satisfied.
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As the ¢ of (H-3) we can take an arbitrary positive smaller than 1 be-
cause constant times ¢ is inferior to & for small e < 1. As the V, of
(H-3) we can take R: because the & variables of end points of admissible
trajectories issuing from p, are different each other, which is easily
checked by the direct calculation if we take notice of the & component.

Before the check of the hypothesis (H-2) of Theorem 1 we shall show
the first part of Theorem 2.3. By the same way as in the last paragraph
of Section 7 of [4], noting that (1, — 2,)(0, p,) = 0 (p, = (0, 4°)) we have by
(5.3) and (5.4)

(5.6) U I'éte; K) = I'ilt; K) = Iite; K)
for the set K defined by (2.4). We get

(5.7) . eI t; K),

because 2, — 1, = 0 at (¢, 0..) and it is not zero on I'}(Z,; I%).
Now we shall check the hypothesis (H-2), that is,

(4.14y crrpn < |det (3,9,,6" dry ()| < chu~

for a constant c¢, > 0 independent of p. Here we putted 09, = (x, &)
(=0 = (xy,&y)). We recall that F,.(f)) = — &*-d,;(f,). By means of
(3.13) and (3.14) of [6] with y* =0, 7 = »* and & = &* we get

(5.8 0. Fs, = (i, — 25, ), X7, €9 + (‘M;;;;“ — £9:0,ds, .
Differentiating with respect to ¢, and putting #, = f, we have
(5.9) a,q, = a;,,a;qFJ;,(Z;)

= (t§/21%8,,, + 0., (M;ly)-0.d,)F) fp=q,

where we used (dF(¢; J., t), 0,)/At)|~cp-2qe0p = (—1)77'48° to obtain the
derivative of the first term of the right hand side of (5.8). Here d,, is
the ¢ of Kronecker. Since the direct calculation shows that the second
term of the right hand side of (5.9) is equal to (—1)?"! multiplied by a
constant independent of g, we get by (5.9)

(5.10) Qg + Upgrr = (G/2690,, ifp<gq.

Furthermore, the direct calculation gives

(6.11)  a, =@y -2, a,,+a,,= =362, 2Z<p=p.
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If we denote by T, a ¢ X g matrix
10
1 1 . 0
1 ..
.10
11
then it follows from (5.10), (5.11) and @, , = a,,, that
T (a, )T, = (t,/21)"S, .

Here we denoted by S, for 1 < g < ¢, ¢ X ¢ matrix of Jacobi

by dz_ 0 by=4p—1,

“o o b=—2, d,=1,
. d,

0 "4 s q=2

q q

If we put [], = det S, then we have

(.12) (0, = b,00dyos — d T,
=_2Dq—l'—Dq—2 ifqga)

which shows
(5.13) det (a,,,) = t,/215)"(1 — 4°) .
Thus we obtain (4.14)'.

§6. Proof of Proposition 2.2

It is easy to see that when y— oo the trajectory C, given in Proposi-
tion 2.1 converges the part of zC, corresponding to t¢[0,%]. Then the
assumption i) of Proposition 2.2 is obvious. Since it follows from (5.5)
that the difference between 2, and 2, is estimated by g' = (¢,/2¢)* on the
trajectory C, we get (2.2). By means of the argument in the previous
section it is not difficult to see the rest of the assertion ii) of Proposition
2.2 because Hi(h, —2) =0 (k=1,2, j =0,1,2,3) on zC,

As stated in Introduction, for the proof of the assertion iii) of Prop-
osition 2.2 we need to review the result of Wakabayashi [11] and [10],
where the propagation of C” wave front sets and that of wave front sets
in Gevrey classes, respectively, were studied for the hyperbolic Cauchy
problem. If we apply the result of [11] (resp. [10]) to the Cauchy problem

https://doi.org/10.1017/50027763000000362 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000362

146 YOSHINORI MORIMOTO

for any hyperbolic system of the form (0.1), we get the following descrip-
tion about C~ wave front set (resp. the one in Gevrey class) of solutions:
If U and G denote the solution and the initial value of the Cauchy
problem, respectively, then we get

(6.1) WFUC{K;;pep(0)Nz ({0} X WFG)},

(6.1 WF,  UcC{K;;pep'(0)N='({0} x WF, G)}
1<k<?2,

where

PO = U pi(0),  pi0) = {pe T*E, x B)\0, p(p) = 0}
and K, is defined as follows:

(6.2) K; = {p(s)e T*(R, X Ry); s =0 and §(s) is a Lipshitz
continuous curve satisfying dg(s)/ds € I'y(s) for
a.e. s and §(0) = g} . (See (1.2) of [11]) .

Here I'; is the set of vector fields in T*(R, X R;) defined by
©3) = (S a )i e =0 it pe N p7'0),

where © is a subset of {1, 2}.

Noting that WF U cC p~'(0) € T*(R, X R)\0 we can see that the de-
scription (6.1) is equivalent to (0.5) in Introduction because we have the
following:

PROPOSITION 6.1. For any closed conic set K C T*R)\0 we pet
(6.4) I'(ty; K) = (zK3|,_.; §€x'({0} X K)Np-(0)},
where ©K;|,,, is the section of nK; C R, X T*R% at t = t,

The inclusion relation that the left hand side contains the right hand
side was proved in [11] (see Theorem 4.4 of [11]) and another direction
of inclusion will be proved in the forthcoming paper [8] by K. Taniguchi
and the author.

On account of this proposition, for the proof of the assertion iii) of
Proposition 2.2 it suffices to show

(6.5) B, = K;, .
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In the similar manner as in the observation of [11] for a simple example

of hyperbolic system given by [4] (see Example 4.9 of [11]) we get the

following: Since X; = py(0) N ps'(0) = {p € T*(R,Ry)\0; 2(xp) = 0} we get
I if 8, 2,(=p) =0

6.6 T.2Nr;=1{" o

(6.6) por (15 {{0} otherwise ,

because it follows from (a,H,, + «,H,,)(p) € T,2, that («, + @,)0,A(zp) = O.
Put 2, ={ge2,; 9.4, = 0}. Then we get

I if £# —4xt 4 8x, =0
(67) szl n[v; - { s 1 Xt + xz'
{e(H,, + H,,)(p); « =0} otherwise,
because it follows from (o, H,, + a.H,,)(p) € T,2, that
(a; — a)(* — 4x,t + 8x,) = 0.

Putting 3, = {p e 2,; t* — 4x,t + 8x, = 0} we have

(6.8) T3 np,_{l"; i L=
. 53 = {aH,,.,,(3); a = 0} otherwise ,

because we have (o, — a,)(t — 2x;) = 0 by the same argument. If we put
2, ={pel,; t = 2x,} then we have

(6.9) T,5, N3 = {aH,,, ,(7); a = 0}.

In view of (6.6)-(6.9) we obtain (6.5), noting the assertion ii) of Proposi-
tion 2.2,

§7. Proofs of Corollaries 2.4 and 2.5
If U is the solution of (C.P) it follows from Theorem 5.1 of [1] that

WF, Ucp0)= U p;¥0) for k>1.
j=1,2
If 6(¢') e T*R:\0 denotes the end point of néOCRt X T*(R:) at t =1, for
the proof of Corollary 2.4 it suffices to show for any ¢
(7.1) o)y e WFE., U(t) for v, < ¢ <3
because C, = n“(:rC'O) N p~%0).

Let ¢, be a fixed positive and let G be the initial value defined by
(3.8) and (3.2). Unfortunately, G depends on #{. However, if we choose
the sequence {r,} suitably we have (7.1) for any ¢ of a countable set
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(7.2) {t; 7 =12, .-, t) = (r)[r)t, r;, v, > 0 integers}
Indeed: For g of (3.2) we put
g(x) = 2¢N(x, Ty)

(7.3) éu(x, ) = v7'¢(z'7x) exp itx- 7y
N = 771\1()50) = (_(t0/4N)4, 0, 09 1) .

Note that for a ¢ = (r'/r)t, (r, " > 0 integers) we have (%) = pwrnt).
Put N=Nr'/r for N=rk (k=1,2,---). Let U = "(u¥, u¥) denote the
solution of (C.P) for the initial value

t(‘lfo(x)sﬁw(x, TN)) l,b'o(x)gﬁN(x, TN)) WIth N = Nr/r’ ’

where ,(x) is the cut function given in (3.8). If (xz, &) is the end point
of admissible trajectories issuing from (0, 77) (=(0, 7y)) of step 2N, then
by the same way as in the proof of (3.11) we see that there exists a con-
stant ¢, > 0 independent of N such that

M) (Rl )| Z N T T i o> (W, )

where z(N, t) is a large number determined in the same manner as for
7(2N) of (4.8) and (4.9). Recall that we have (4.6) only if |ty — 74| for
N + N’ is large enough to hold (4.4). If the sequence {r,} satisfies

(7.5) ty=t(N,t) for N=rk (k=123 --)

then there exists a constant C; > 0 such that

(7.6) |t txém)| Z (6N — Cyry)ez oot

where U = ‘(u,, u,) is the solution of (C.P) for the G defined by (3.8) and
(3.2). If we assume that =(IV, ¢') is large enough to hold for z, satisfying
(7.5)

caﬁ+1N3N _ CN’L'X,I > Cf“NW/Z
it follows from Corollary 1.3 and its remark that we have (7.1) for ¢ =

(r'Irt,. If we choose the sequence {ry} such that

ty = max (N, )

1SjSN

we get (7.1) for any ¢ e {t/}7.,. Here we putted (N, t)) = 0 if N, = Nr//r,
is not integer.
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Since {t;} is dense in R* we have (7.1) for any ¢ > 0 because WF, U
is closed set in T*(R, X R;)\0. Since we can obtain the same result as
Theorem 2.3 for negative ¢, we get (7.1) for any ¢.

In the rest of this section we shall prove Corollary 2.5. We first
remark that if U and G are the solution and the initial value, respec-
tively, of the Cauchy problem for any hyperbolic system of the form (0.1)
then it follows that for any « > 1

WF, U(t,) C I'(t,; WF, G) , th>0.

In view of Proposition 6.1 the inclusion with 1 < < 2 follows from (6.1)
The case for £ = 2 will be proved in [8].

For a fixed ¢, > 0 let # be a positive such that 0 < ¢ <¢,. Let C,
be the continuous curve in T*(R, X R!) such that

~_{6’0 for 0t
"~ |Hamilton flow by H, (=12 fort Zt<t,.

If § € T*R:\0 denotes the end point at t=1¢, of the curve zC, then it
follows that

(1.7) SeWF, Ut), r=<r<3.

For the proof of (7.7) it suffices to consider the sequence of admissible
trajectories issuing from p, which converges the curve zC, and to find an
initial value G corresponding to the sequence of admissible trajectories,
as in the proof of Theorem 2.3. Though the initial value G depends on
§ e I'(t,; K) we can complete the proof of Corollary 2.5 by the same argu-
ment as in the proof of Corollary 2.4.
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