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PROPAGATION OF WAVE FRONT SET IN GEVREY CLASS

FOR AN EXAMPLE OF HYPERBOLIC SYSTEM

YOSHINORI MORIMOTO

Dedicated to the memory of Professor Hitoshi Kumano-go

Introduction

In this paper we show, for an example of hyperbolic system, that the

wave front set in Gevrey class of a certain solution propagates precisely

along "generalized broken null-bicharacteristic flow" defined by Kumano-

go-Taniguchi [7] and Wakabayashi [10] [11].

Let L be a hyperbolic system of the form

(01) (p^ *' D»Dχ) ° Λ , /0 1\ . R1 Ri

V 0 p2(t, x, Dt, DX)J l l 0/ '

where Pj = Dt + λj(t, x, Dx), j = 1, 2, and

(0.2)
(t, x, ?) = ?! + x1ξ2 + x2f3 + (? - Sxf + 48x2t* - 192x3t)ξ< .

We consider the Cauchy problem

(C.P) LU = 0 , E7(0, Λ) = G , G e ί ' .

Let ô be a point (0; (0, 0, 0, 0, 1)) in the cotangent space T*(Rt χ R$) and

let Co be an integral curve in T*(Rt χ jRJ) through ^ by Hamilton vector

field HP1+P2. For β0 e T*(Rt χ Ri) we put ^0 - (0, ^0) € T*R*X, rf = (0, 0, 0,1)
e i?|\0. Assume that the initial value G of (C.P) satisfies

(0.3) WFKG = {eft ΞΞ {(0, c^0); c > 0}, 1 < κ < 3} ,

where we denote by WFK u the wave front set in Gevrey class of order

κ of u e 3)r defined by Hδrmander [1] (see Definition 1.1 in § 1). In the

present paper we shall show that the wave front set in Gevrey class of

order smaller than 3 of a certain solution U of the Cauchy problem (C.P)
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132 YOSHINORI MORIMOTO

propagates precisely along the curve Co. (See Corollary 2.4 in § 2). We

remark that

(0.4) Co a Σ, = {pe T*(Rt X R4J\0; Pl(p) = p2(p) = 0}

and any Hamilton flow by Hp. (j = 1, 2) passing Co intersects Σλ only once

with tangency of fourth order. Namely, Co is the generalized broken

null-bicharacteristic flow (but not broken null-bicharacteristic flow).

The motivation of this study is derived from the work of Kumano-

go-Taniguchi [7], where they constructed the fundamental solution of the

Cauchy problem for a hyperbolic system of first order with diagonal

principal part by using Fourier integral operators with multi-phases.

Their fundamental solution gave the following description about the prop-

agation of C°°-wave front sets of solutions; if we also denote by U and

G the solution and the initial value of the Cauchy problem, respectively,

then we have

(0.5) WF U(t0) c Γ(t0; WFG), t0 > 0 , (see Theorem 3.4 of [7]) .

Here Γ(t0; K) for a closed conic set K of T*R"\0 is defined as follows:

For ε > 0 and integer έ ^ O w e denote by Γk

ε(t0; K) the set composed of

end points (at t — t0) of all ε-admissible trajectories of step k issuing from

K. We put

(0.6) Γ(to;K)= Π UΓKto;Kε),
0<ε<l Λ = 0

where Kε denotes the ε-conic neighborhood of K in T*(Rχ)\0. We refer

the reader to [6] about the definition of ε-admissible trajectory for a

hyperbolic system.

The description (0.5) seems to be rough to appearance because the set

Γ(t0; K) for a closed conic set K contains the end point (at t = t0) of a

limiting curve (ε —> 0) of the set composed of all ε-admissible trajectories

issuing from Kε. It should be noted, for hyperbolic system with charac-

teristics of variable multiplicity, that the end point of the limiting curve

is not always contained in the closure of the set of end points of all

0-admissible trajectories issuing from K, that is,

I
there exist a <L e T*i?£\0 and a closed conic set K

of Γ*JRS\O such that
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HYPERBOLIC SYSTEM 133

In fact, examples satisfying the property (0.7) were given in [4] and [5].

(See last sections of [4] and [5]).

Let's return to the present example. If π denotes the natural projec-

tion from T*(Rt X Rx) to Rt X T*R\. then the curve πC0 is obtained as a

limiting curve (ε —> 0) of admissible trajectories issuing from ε-conic neigh-

borhood of p0 (see Propositions 2.1 and 2.2 in § 2). If cL is the end point

of πCQ at t = t0 and if K is the right hand side of (0.3) then we have the

property (0.7) and furthermore for any 1 < κ < 3 there exists an initial

value G satisfying (0.3) such that

(0.8) WFKU{Q3dM ,

where U is the solution of (C.P) (see Theorem 2.3 in § 2). This fact

shows that the description (0.5) is optimal for the present example if we

consider the propagation of wave front sets in Gevrey class of order

1 < κ < 3 instead of that of C°° wave front sets. (See also Corollary 2.5

in §2).

Recently, Wakabayashi [11] has given a description about the propa-

gation of C°° wave front sets of solutions of the Cauchy problem for sym-

metric hyperbolic systems, by using the work of Ivriϊ [3]. For hyperbolic

systems of first order with diagonal principal part, the description of [11]

is equivalent to (0.5), We remark that one direction of equivalence was

proved in [11] (Theorem 4.4 of [11]) and another direction will be proved

in the forthcoming paper [8] by K. Taniguchi and the author. The

description of Wakabayashi is convenient to determine the set Γ(t0; ) for

the present example (see § 6). Finally we remark that the description

(0.5) is also valid for wave front sets in Gevrey class if the symbol of

hyperbolic system belongs to the corresponding Gevrey class. (See [8] and

Wakabayashi [10]).

§1. Wave front set in Gevrey class

Let Ω be an open set in Rn and let κ ^ 1. We denote by PK)(Ω) the

set of all functions in Gevrey class of order κ, i.e. u e C°°(β) and for any

compact K of Ω there exists a constant C such that for any multi-index a

(1.1)
χeκ

According to the Definition 3.1 of Hormander [1] we define the wave

front set in Gevrey class of order κ ^ 1.
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134 YOSHINORI MORIMOTO

DEFINITION 1.1. Let (x°, ξ°) e T*Rn\0 and let u e &'. We say that

(x°, ξ°) is in the complement of the wave front set in Gevrey class of

order κ (^ l ) of u if and only if there exist an open neighborhood Uo of

x°, an open conic neighborhood Γo of ξ° and a bounded sequence {uN} C £'

such that

(uN = u in UQ

(1.2) | |ώiv(ί)| ^ Ĉ -̂ XAΓ y |f |-^ , ξ eΓ0

[ N = 1, 2,

for a constant C > 0 independent of N. We denote by WFK u the wave

front set in Gevrey class of order κ of u.

Remark, When κ — 1 the definition above is that of analytic wave

front set.

In the same way as in the proof of Corollary 1.4 of Chapter V of

Treves [9] we get the following lemma in view of (2.3) of [1].

LEMMA 1.2. The point (x\ ξ°) e T*Rn\0 does not belong to the wave

front set in Gevrey class of order κ of ue 2' if and only if there exist an

open neighborhood Uo of x° and an open conic neighborhood Γo of ξ° such

that we have the following property: For any sequence of functions {hN}

(N = 1, 2, ) in Co(Uo) such that

(1.3) \D«hN\

for a constant CΊ independent of N, we get

(1.4) l ( C ί ) ( f ) | £ Cξ+\NV\ξ\-N , ξ e Γo

for a constant C2 independent of N.

Therefore we get the following

COROLLARY 1.3. Suppose that κ > 1. Let (x°, ξ°) e T*Rn\0 and let

u e Q)f. Assume that there exist an increasing sequence of constants {CN}, a

sequence {ζN;ζNeRn\0} and a sequence of functions {hN} in C°° satisfying

(1.3) (N = 1, 2, ) such that

( ' t u t ; I ?7lfΊ , IC*I -> oo (N

https://doi.org/10.1017/S0027763000000362 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000362


HYPERBOLIC SYSTEM 135

(1.6)

and

supp hN -> {x0} (N -> oo)

Then (x°, ξ°) belongs to WFκu.

Remark. Let {Nk} be a subsequence of {1, 2, 3, •}. Clearly we have

the same conclusion even if we replace {N} by {Nk} in the corollary.

§ 2. Results

Let L be the hyperbolic system in Rt X Rx defined by (0.1) and (0.2).

Let t0 be any (but a fixed) positive. For an even integer μ = 2, 4, 6, ,

we put

(2.1)
Pμ = (0, τf) e T*Ri , = (~(φμ)\ 0, 0,1) .

PROPOSITION 2.1. As admissible trajectories issuing from ρμ one can

find only the following μ + 2 trajectories; two bicharacteristic curves with

respect to λx and λ2, issuing from pμ, and trajectories C(J'r, Vr9 pμ) of step

r = 1, , μ. Here J'r = (1, 2, , 1) or (2, 1, 2, , 1) according to r even

or odd, and ΐr = (ί[, ., t*) = (σu . . , σr), σv = (2q - ΐ)β (q = 1, - , μ,

β = (tJ2μ)). (See Fig. 1 and 2). Furthermore, for the trajectory Cμ =

C(Jμ, tμ9 pμ) all hypotheses of Theorem 1 of [6] are verified with pύ = ρμ.

T*(Rn)

ft = 4, β = tJ8, J\ - (1, 2,1, 2,1).

Fig. 1.
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136 YOSHINORI MORIMOTO

F(t; J'μ, t'μ, Pμ) ( = on C(Jμ, t'μ, Pμ)9 see (5.2))

μ = 4, /3 = ίo/8, J ί - (1, 2, 1, 2, 1).

Fig. 2.

As £&e positive σ and the neighborhood Vo in the hypothesis (H-3) we can

take an arbitrary positive smaller than 1 and Rx, respectively.

We denote by δμ the end point of the trajectory C(J'μ, Va, ρμ) and con-

sider a sequence of end points {δμ} (μ = 2, 4, 6, •)• Let β0 e T*(Rt X Rx)

be (0, (0,0,0, 0, 1)) and let Co be an integral curve through pQ by the

Hamilton field HP1 + P2.

PROPOSITION 2.2. i) There exists a unique limiting point <L = lim^^ δμ.

The limiting point δ^ equals the end point of the curve πC0 C Rt X T*Rl

at t — t0, where π is the natural projection from T*(Rt χ R4

X) to Rt χ T*RX.

ii) It follows that

(2.2) Ξ ^ e T*(Rt χ Rx)\0; Pl(p) = p2(p) = 0}

and any Hamilton flow of Hp. (j — 1, 2) passing CQ intersects only once with

osculation of fourth order.

iii) Let Co

+ be the part of the curve Co corresponding to t ^ 0 and let

BPQ be a bundle of half hamilton flows by Hp. (j = 1, 2) emanating from

CQ, that is,

(2.3) Bpo = . U 9 {(exp sHPJ)p; s ^ 0, p e Co

+} .

// K is a closed conic subset in T*RX\O

(2.4) {cPo = (o, cv°); c > 0, v° = (0, 0, 0, 1)}

then it follows that

(2.5) Γ(t0; K) = {(x, cξ) e Γ*^\0; c > 0, (x, ξ) e πBpo\Mo} ,

where πBβ0\t=tQ is the section of πBHdRt χ T*RX at t = t0.
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Let's admit these propositions, which will be proved in Section 5 and

Section 6, respectively.

THEOREM 2.3. If K is the closed conic set defined by (2.4) and δO0 =

lim^oo δμ then we get

(2.6) ^
\fc = 0

Furthermore, for any positive 1 < κ0 < 3 there exists an initial value G e £'

such that

(2.7) WFG= WFK0G = K

and

(2.8) δ«, e WFt.U(t0) for any tc0 ^ κ' < 3 ,

where U is the solution of the Cauchy problem (C.P).

COROLLARY 2.4. For any 1 < κ0 < 3 there exists an initial value G e £'

satisfying (2.7) such that

(2.9) Co C ΨFK,U (dT*(Rt χ i£)\0) for κQ £ κf < 3 ,

where U is the solution of (C.P).

COROLLARY 2.5. For any 1 < /c0 < 3 £/ιere existe <m initial value G e £'

satisfying (2.7) swc/ι ίΛαί

(2.10) WFK,U(Q - Γ(ί0; ̂ ) for any *0 ^ ^ < 3 ,

where U is the solution of (C.P).

§ 3. Plan of the proof of Theorem 2.3

Put μ = 2N for N = 1, 2, 3, and ^ = if,

(3.1) V* = (-(toim', o , o , i ) .

We put

^ ) = (2^)"2 exp ( - Σ ^ /2) , 2: e C4

and

(3.2) 5(2) = fj τ-N

ιφ(τ^z) exp ί r ^ ?Λr ,
N l
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where ϊ is a positive satisfying

(3.3) 0 < r < 1/2

and {τN}#=1 is an increasing sequence of positive numbers such that τN+1/τN

is large enough to satisfy conditions demanded later on. Let g(x) be

the restriction of g(z) to R\ The function g(x) is also a modification of

Example 2.3 of Hδrmander [2]. In the similar manner as in [6] we get

(3.4) WFg = WFKΰg = {(0, of); c > 0, rf = (0, 0, 0, 1)} ,

where κ0 = 1/2T > 1. Indeed, note that φ(z) exp iz-η for \η\ 5j 2 is bounded

in an open set of C4

Ω0 = {ze C4; |Re zf > |Im z\2 + 4|Im z\) .

Since we may assume Σ τ^1 < oo the sum of the right hand side of (3.2)

converges uniformly in Ωo. Therefore g(z) is analytic in Ωo and g(x) is

real analytic except the origin. Now we have

g(ξ) - Σ
N

Since we have

(3.5)

it follows that

which shows

{(0,cf); c>Q}(zWFgaWFKog.

Let V be an open conic neighborhood of η°. By the same way as in

(2.17) of [6] we have for a positive constant Cv

(3.6) \ξ - WNIT'N1 ^ Cy\ξ\*

if ξ g V and N is large enough. It follows from (3.5) that there exists a

constant c0 > 0 such that

(3.7) \g(ξ)\ ^ co-1exp(-co |f |20 if ξ £ V,

which shows another direction of inclusion of (3.4).

We choose, as the initial value G of (C.P),
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(3.8) G{x) = £(ψ0

where ψo(x) is a function in r(*o) Π Co°° (ΛΓ0 = V%) such that 0 ̂  ψ0 ̂  1,

ψo(x) = 1 for \x\ <̂  Ro. Here Jϊ0 is a positive large number. Clearly we

get Getf' and

(3.9) WFKQ G = WFG = {(0, cφ c > 0, yf = (0, 0, 0, 1)} .

We put δμ = 32iY = (xiY, ξN) and <L = (x°, f°). Note that δ*. = l i m ^ ̂ 2iV by

means of Proposition 2.2. Let {/#(#)} (iV = 1, 2, ) be a sequence of

functions in Co°° such that 0 <^ fN <l, fN = l on |x — x°| ̂  1, /7V = 0

except \x — x°\ ̂  2 and for any α:

(3.10) |B β /^ |^(CiV) | β | , k l ^ i V

for a constant C > 0 independent of N. It is easy to construct {fN} (see

Lemma 1.1 of Chapter V of [9]). Let {βN}χ=1 be an increasing sequence

of positive numbers such that βN rg log N. If we put

hN(x) = fN{x° + βN(x - x0)) ,

the sequence {hN} satisfies conditions (1.3) and (1.6). We may assume that

βN is slowly increasing such that

(3.11) hN = 1 near xN .

Let U = \uu u2) be the solution of (C.P) for the G defined by (3.8)

and (3.2). We shall show that for any N there exists a constant c1 > 0

independent of N such that

where ζN = rvfv. Admitting this, by means of Corollary 1.3 we can

obtain the last part of Theorem 2.3. The first part of Theorem 2.3 will

be proved in Section 5 with Proposition 2.1.

§4. Proof of (3.12)

When we consider hNux{tQ, x), in view of (2.4) of [6] we may assume

G = *(§> g) instead of (3.8). Indeed, we have

hN(x)(l - ψo(πJv(l)x)) - 0

if i?0 is large enough. By the same way as in getting (2.20) of [6] we

have
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(4.1)

where w

(4.2)

and

(4.3)

;,(.*», τH. I)

F

GJX?N, τN

»; ΓΛ-?*) =

'Λl) = -

';«.) = }
X

= Σ
N'

+

" f N

exp

Σ
v = l J

l)

(iy

r i)

Σ,

exp

(*v)

I,
vw(τκ, τN,)

wJv(rAr, τN,

>

NFJXI) (V

(note y =

xy) + djfi

t,)dt.),

= 0)

MyX-

= (D)

Here we used β̂ , = (—0" because detΛί^ = 1. By the similar way as in

(2.24) of [6] we get for a To satisfying 0 < ϊ0 < ϊ

(4.4) IτN.ηN. - τN

tMJv(l)ξN\τr

N~ι ^ r^

if \τN — τN,\ is large enough. We remark that directions of ηN, and ξN

do not concern the derivation of (4.4). Integrating by parts with respect

to y [(N + 3 + 4(r - l))/r0] times, we obtain

if |rΛr — τ>| large enough ,

where CN is a constant independent of v and iV7. Note that J^τ^r^'1 <

+ oo and that the volume of Au is tv

olvl. If we denote by R(τN) the sum

with respect to N' Φ N in the right hand side of (4.1), there exists a

constant Cf

N such that

(λ P\ I T?ίτ \\ <* f^t ff~ (ΛΓ + 2) + 4(r-l)

if Ir^ — τ^/| for N' Φ N is so large that the inequality (4.4) holds.

From now on we shall consider the term with iV7 = N in the right

hand side of (4.1), that is,

where 7,/r) is defined by (2.26) of [6] with GJa as follows:

(4.7) G J t ί.) = ( - 0' j exp ιV(^ - M ^

x
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Since it follows from Proposition 2.1 that, for the trajectory C(Jμ, tμy ρμ)

(μ = 2N), all hypotheses of Theorem 1 of [6] are satisfied, we can use

the same method as in Section 3 of [6] and obtain the result correspond-

ing to Lemma 2.1 of [6], that is; there exist two constant cμ > 0 and

Cμ > 0 independent of v such that

(4.8) \IJμ(τ)\^cμτ^ if r ^ τ(μ)

and for any J, Φ Jμ

(4.9) |J,v(τ)| < Cμτ-"*-rηv\ if τ ^ τ(μ) ,

where τ(μ) is a large number depending on μ = 2N. Here we used (3.11)

to show cμ > 0 (see Remark 1 in § 3 of [6]).

Since μ = 2N, the conjunction of (4.6), (4.8) and (4.9) shows that there

exists a constant C% > 0 such that

(4.io) \(Qd(t0; τNξN)\ ^ (c2A, - c ^ ^ ) ^ ' ^ ^ - 1 ^ 1

if {r̂ } satisfies

(τN ^ τ(2iV)

" r , - τ>| (iV ^ iVO large enough to get (4.4) .

If we choose {r̂ } furthermore such that

(4.12) c2N - C%τ-N<w ^ c2N/2 ,

for the proof of (3.12) it remains to show that for any N there exists a

constant cx > 0 independent of N such that

(4.13) c2N = cfW3^ (or c, - cί/2(^/2)3^2) .

In consideration of the formula (3.35) of [6] and Remark 1 of Section 1

of [6], it suffices to show that for any μ — 2iV there exists a constant

c2 > 0 independent of μ such that

(4.14) c^μ-^ ^ |det (dtpdtqξN.dJμ(rμ))\ < cίμ-^ .

This inequality will be proved in the next section.

§ 5. Proof of Proposition 2.1

If Hj denotes the Hamilton vector field of pjy that is, Hj = HVj

(j = 1, 2) then it follows that
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(N.5) HhHh HhPh = 0, jke {1, 2} .

The condition (N.m) with integer m ^ 1 was already defined in Introduc-

tion of [4], to which we refer the reader about motivation of the definition

and results under the condition with m <^ 3. By the same way as in the

proof of Lemma 2.1 of [4] we get

LEMMA 5.1. If the condition (N.5) is verified then HhHh Hjiph

(jk e {1, 2}) are constants along any trajectory.

By this lemma we see that along any trajectory issuing from pμ

(H\p, = HtPl = H\HlPι = H\HlPΐ = 24

[HJPjt, = HMPι = HΆHlPz = HΆHlPi = -24 .
(5.1)

Let {(t, x(t), ξ(t)); t € [0, *„]} c S « X T*Ri be a trajectory C(JV, I, pμ). Then

t, x(t), ζ(t)), -Hlpάt, x(t), ξ(t)) and H.Hξp^t, x(t), ξ(t)) (= -H2H\plt, x(t),

f on C ( j ; , Vμ, Pμ)

μ = 4, β = <0/8, J ; = (1, 2 , 1 , 2,1).

Fig. 3.

m on C(J^, ί'«, />,,)

12i5
2

1 >H
β Sβ 5/3 7β

μ = 4, β = φ, J[ = (1, 2, 1, 2,1).

Fig. 4.
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ξ(t)), which follows from the Jacobi identity) are equal to f(t), a continuous

piecewise linear function such that f'(t) on (tq, ί̂ _2) is 24 or —24 accord-

ing to j q = 1 or 2 and /(0) = 0. Indeed, by means of (5.1) we can see,

for example, that d{H\p2)jdt on (tq9 tq_t) is equal to H\p2 = 24 or H2H[p2

= — 24 according to j q = 1 or 2. Clearly H\p2{0, pμ) = 0 and it follows

from (N.5) that d2(Hlp2)/dt2 = 0. (See Fig. 3).

On the other hand, it follows from (N.5) and (5.1) that H\p2{t, x(t), ξ(t))

and H\px{t, x(t), ξ(t)) are equal to m{t) a continuous piecewise quadratic

function such that m(0) = 0, m" = 24 and m! on (tq9 £9_i) is equal to / or

— / according to j q = 1 or 2. (See Fig. 4)

If we put

(5.2) F(t; Jv, I Pμ) = (Λ - λd(t, x(t), ξ(t))

for the trajectory C(JV, tv9 pμ) = {(t9 x(t), ξ(t)); t e [0, tQ]} then F is a con-

tinuously differentiable function of degree 1 and piecewise polynomials of

order 4 such that

(F"'f = 24 or -24, F'" = -f or /
(5.3) I

[F" = — m or m on (tq9 ίg_i) according to j q = 1 or 2 ,

because d3F/dtj (j = 1, 2, ) are equal to H[(p1 — p2) = — H{p2 or

H{{p1 — p2) = H{pί on (tq, ί9_j) according to j q = 1 or 2 and because we

have H1p2 = — Ή2px trivially.

Noting that flip2(0, pμ) = 0 and (Λ - Λ)(0, ^ ) - β' (β = tJ2μ) we get

\F+(t) = F(<; (2), 0, p.) = ^ + ϊ (see Fig. 2),

where we denote by C((l), 0, ^ ) and C((2), 0, pμ) two bicharacteristic curves

with respect to λ1 and ^2, respectively. Furthermore, for r = 1, , μ9 we

have

(5.5) Fr(ί) = F(ί; J , ί'r> ^ ) = (-ΐ)r-«ψ - (t - 2(r -

on ί e [*;, ί . J (g = 1, , r + 1, ^+i = 0, Fo = t0) .

(See Fig. 2) .

By means of (5.3)-(5.5) we get the first part of Proposition 2.1. The hy-

pothesis (H-l) of Theorem 1 of [6] follows from (5.5). By the similar way

as in getting Proposition 5.2 of [4], in view of (5.3)-(5.5) we get (5.3) of

[4], which shows that the hypothesis (H-3) of Theorem 1 of [6] is satisfied.
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As the σ of (H-3) we can take an arbitrary positive smaller than 1 be-

cause constant times ε is inferior to εσ for small ε < 1. As the Vo of

(H-3) we can take R*x because the ξ variables of end points of admissible

trajectories issuing from pμ are different each other, which is easily

checked by the direct calculation if we take notice of the ξs component.

Before the check of the hypothesis (H-2) of Theorem 1 we shall show

the first part of Theorem 2.3. By the same way as in the last paragraph

of Section 7 of [4], noting that (λ, - Λ2)(0, p0) = 0 (p0 = (0, η°)) we have by

(5.3) and (5.4)

(5.6) U Γfto K) = mo; K) = Γ%t0; K)

for the set K defined by (2.4). We get

(5.7) δ^

because λx — λ2 = 0 at (t0, δj) and it is not zero on Γ°0(tΌ; K).

Now we shall check the hypothesis (H-2), that is,

(4.14/ ci-'/r*1 < |det (dt9dtqξ" djβ'μ))\ < cζμ'"

for a constant c2 > 0 independent of μ. Here we putted δμ = (xμ, ξμ)

(^δ2N = (xN, ξN)). We recall that FJμ(f'β) = - ξ' dj.βμ). By means of

(3.13) and (3.14) of [61 with y° = 0, η° = γ and ξ° = f" we get

(5.8) dtJFJμ = (λjq - λjq+1)(tqi x*, f«) + C M ? ^ - ξ>)-dt<djμ .

Differentiating with respect to tp and putting tμ — tμ we have

(5.9) ap,q = dtJ5t9Fjβμ)

= («/2/f')ίPf β + (S./M ^ O 3fβd^)(ί ) if p ^ ςr ,

where we used (dF(t; Jμ9 tf

μ, pμ)ldi)\t=(2μ_2q+ί)β = ( — l ) ' " 1 ^ 8 to obtain the

derivative of the first term of the right hand side of (5.8). Here δp%q is

the δ of Kronecker. Since the direct calculation shows that the second

term of the right hand side of (5.9) is equal to ( — I ) 9 ' 1 multiplied by a

constant independent of q, we get by (5.9)

(5.10) ap,q + αp,g+1 - (φμ*)δPtq if p < q .

Furthermore, the direct calculation gives

(5.11) α l f l = (4μ -
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If we denote by Tμ a μ χ μ matrix

fl 0

145

1 1 0

1 . .
. 1 0

0 1 1

then it follows from (5.10), (5.11) and ap>q = αg>p that

Tμ(apJTμ = (φμyS, .

Here we denoted by Sq for 1 <; q <Ξ μ, q X q matrix of Jacobi

oi a2 0

d2 b2 • .

0 yu

ij = 4μ — 1 ,

\ = - 2 , d, = 1 ,

7^2.

If we put Π« — det Sq then we have

(5.12) Q =

if q ^ 3 ,

which shows

(5.13) det (αPίβ) -

Thus we obtain (4.14)7.

§ 6. Proof of Proposition 2.2

It is easy to see that when μ —> oo the trajectory Cμ given in Proposi-

tion 2.1 converges the part of πC0 corresponding to t e [0, t0]. Then the

assumption i) of Proposition 2.2 is obvious. Since it follows from (5.5)

that the difference between λ1 and λ2 is estimated by β4 — (tJ2μy on the

trajectory Cμ we get (2.2). By means of the argument in the previous

section it is not difficult to see the rest of the assertion ii) of Proposition

2.2 because HI& - λ2) = 0 (k = 1, 2, j = 0,1, 2, 3) on πC0.

As stated in Introduction, for the proof of the assertion iii) of Prop-

osition 2.2 we need to review the result of Wakabayashi [11] and [10],

where the propagation of C°° wave front sets and that of wave front sets

in Gevrey classes, respectively, were studied for the hyperbolic Cauchy

problem. If we apply the result of [11] (resp. [10]) to the Cauchy problem
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for any hyperbolic system of the form (0.1), we get the following descrip-

tion about C°° wave front set (resp. the one in Gevrey class) of solutions:

If U and G denote the solution and the initial value of the Cauchy

problem, respectively, then we get

(6.1) WFUalK pep-χθiΓlπ-χMχ WF G)} ,

(6.1)' WFn Ud{Kt;pe p-'(O) Π π-\{0} X WFn G)}

(Kκι<2),

where

p-\0) = U2PJ\O) , pj\O) = {p 6 T*(Rt χ iζ)\0, />,(# - 0}

and i f ί is defined as follows:

(6.2) K; = {p(s) e T*(Rt XRΪ)\ s > 0 and <δ(s) is a Lipshitz

continuous curve satisfying dp(s)jds e Γσ

β(s) for

a.e. s and p(0) = p) . (See (1.2) of [11]) .

Here Γ\ is the set of vector fields in T*(RtχRl) defined by

(6.3) Γ; = {(Σ ctjHPJ)(p); aj > 0} if βe Π p ^O) ,
ye© ye®

where © is a subset of {1, 2}.

Noting that WFUap-\ϋ) dT*{Rt χ JSJ)\O we can see that the de-

scription (6.1) is equivalent to (0.5) in Introduction because we have the

following:

PROPOSITION 6.1. For any closed conic set Kd T*R%\0 we pet

(6.4) Γ(t0; K) - {πKt\t=t0; β e ̂ '({0} X K) Πp-^O)} ,

where πKt\t=to is the section of πK c Rt X T*Rn

x at t = t0.

The inclusion relation that the left hand side contains the right hand

side was proved in [11] (see Theorem 4.4 of [11]) and another direction

of inclusion will be proved in the forthcoming paper [8] by K. Taniguchi

and the author.

On account of this proposition, for the proof of the assertion iii) of

Proposition 2.2 it suffices to show

(6.5) BH = Kta .
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In the similar manner as in the observation of [11] for a simple example

of hyperbolic system given by [4] (see Example 4.9 of [11]) we get the

following: Since Σ1 = prXO) Π prXO) = {p e T*(fitflJ)\O; λ2(πp) = 0} we get

(6.6) TPΣX Π Γ; =
T; if dtλ2(πp) =

{0} otherwise ,

because it follows from (<XγHpl + a2HP2)(p) e TβΣί that (aλ + a2)dtλ2(πp) — 0.

Put i:2 = {p e Σ,; dtλ2 = 0}. Then we get

(67) TΣ n Γ ' = ί Γ ; if ί 2 - 4 ^ + 8*2 = 0
" ' " \WHpι + HP2)(p); a>0} otherwise ,

because it follows from {a^H^ + a2HP2)(p) e TβΣ2 that

(αi - ^)(^2 - 4^ί + 8x2) - 0 .

Putting ί 3 = {^e22; ί2 - 4xJ + 8x2 = 0} we have

(6.8) TPΣ^Γ; \
[{aHpl+P2(p); a ^ 0} otherwise ,

because we have (a^ — a2)(t — 2x^ — 0 by the same argument. If we put

Σ± — {p e Σz ί — 2xJ then we have

(6.9) TpΣk Π Γ ; = {aHpl + P2(p); a ^ 0} .

In view of (6.6)-(6.9) we obtain (6.5), noting the assertion ii) of Proposi-

tion 2.2.

§ 7. Proofs of Corollaries 2.4 and 2.5

If U is the solution of (C.P) it follows from Theorem 5.1 of [1] that

WFK Uap-χθ) = U PJ\O) for κ ^ 1 .

If δ(*;) e Γ*22i\O denotes the end point of πC0 a Rt χ T*(Ri) at t = t', for

the proof of Corollary 2.4 it suffices to show for any t'

(7.1) δ(t') e WFK, U(t') for Λ;0 < κf < 3

because Co = π'\π

Let ί0 be a fixed positive and let G be the initial value defined by

(3.8) and (3.2). Unfortunately, G depends on t0. However, if we choose

the sequence {τN} suitably we have (7.1) for any t' of a countable set
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(7.2) {tfj j = 1, 2, , t'j = (τ'jlrfa, rj9 r's > 0 integers}

Indeed: For g of (3.2) we put

(g(x) = ΣφN{x, τN)

(7.3) < φN(x, τ) = τ^φi^-rχ) exp iτx-ηN

UN = ηN(Q = (-(ΦN)\ 0, 0, 1) .

Note that for a if = (r'/r)t0 (r, r' > 0 integers) we have ^(ί 0) = ηwr>/r)(tf).

Put iV = iVr'/r for AT = rk (k = 1, 2, .). Let UR = \uf, uξ) denote the

solution of (C.P) for the initial value

t(ψ0(x)φN(x, τN), ψo(x)φN(x, τN)) with N = Nr/r',

where ψo(x) is the cut function given in (3.8). If (x#, ζ$) is the end point

of admissible trajectories issuing from (0,^) ( = ( 0 , ^ ) ) of step 2iV, then

by the same way as in the proof of (3.11) we see that there exists a con-

stant c3 > 0 independent of N such that

(7.4) |(/Qf)(ί'; r£*)| ^ c8*+i#»*τ-*+4(r-i>-i if τ ^ τ(N, t') ,

where τ(N, tf) is a large number determined in the same manner as for

τ(2N) of (4.8) and (4.9). Recall that we have (4.6) only if \τN - τ> | for

N Φ N' is large enough to hold (4.4). If the sequence {r^} satisfies

(7.5) τN > τ(N9 0 for N = rk (k = 1, 2, 3, .)

then there exists a constant C^ > 0 such that

(7.6) κCίX^; r ^ ) | ^ (cξ+iN™ - C^1)^*^-1^1 ,

where U = c(uu u2) is the solution of (C.P) for the G defined by (3.8) and

(3.2). If we assume that τ(N, f) is large enough to hold for τN satisfying

(7.5)

it follows from Corollary 1.3 and its remark that we have (7.1) for t' =

(rflr)t0. If we choose the sequence {r^} such that

τN ^ max τ(Njy t'j)

we get (7.1) for any t1 e {t^J^. Here we putted τ(Nj, t'j) = 0 if Nj =

is not integer.
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Since [tfj] is dense in R+ we have (7.1) for any tf > 0 because WFK U

is closed set in T*(Rt χ i?J)\0. Since we can obtain the same result as

Theorem 2.3 for negative t09 we get (7.1) for any t'.

In the rest of this section we shall prove Corollary 2.5. We first

remark that if U and G are the solution and the initial value, respec-

tively, of the Cauchy problem for any hyperbolic system of the form (0.1)

then it follows that for any κ > 1

WFκU(t0)dΓ(t0;WFκG), to>O.

In view of Proposition 6.1 the inclusion with 1 < κ < 2 follows from (β.l)'

The case for κ >̂ 2 will be proved in [8].

For a fixed t0 > 0 let t' be a positive such that 0 < t' < t0. Let Cj

be the continuous curve in T*(Rt X R4

X) such that

(Co for 0 <> t £ t'
1 ~ [Hamilton flow by HPJ (j = 1, 2) for t' < t ^ t0 .

If <5 6 T*R4

x\0 denotes the end point at t = ί0 of the curve ττCχ then it

follows that

(7.7) δ e WFK, U(t0) , Λ:0 ^ κ' < 3 .

For the proof of (7.7) it suffices to consider the sequence of admissible

trajectories issuing from ρμ which converges the curve πCx and to find an

initial value G corresponding to the sequence of admissible trajectories,

as in the proof of Theorem 2.3. Though the initial value G depends on

δ eΓ(t0; K) we can complete the proof of Corollary 2.5 by the same argu-

ment as in the proof of Corollary 2.4.
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