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  Abstract
  In the last two decades, advances in computational imaging techniques and digital visualization have created novel avenues for the study of fossil organisms. As a result, paleontology has undergone a shift from the pure study of physically preserved bones and teeth, and other hard tissues, to using virtual computer models to study specimens in greater detail, restore incomplete specimens, and perform biomechanical analyses. The rapidly increasing application of these techniques has further paved the way for the digital reconstruction of soft-tissue structures, which are rarely preserved or otherwise available in the fossil record. In this contribution, different types of digital soft-tissue reconstructions are introduced and reviewed. Provided examples include methodological approaches for the reconstruction of musculature, endocranial components (e.g., brain, inner ear, and neurovascular structures), and other soft tissues (e.g., whole-body and life reconstructions). Digital techniques provide versatile tools for the reconstruction of soft tissues, but given the nature of fossil specimens, some limitations and uncertainties remain. Nevertheless, digital reconstructions can provide new information, in particular if interpreted in a phylogenetically grounded framework. Combined with other digital analytical techniques (e.g., finite element analysis [FEA], multibody dynamics analysis [MDA], and computational fluid dynamics [CFD]), soft-tissue reconstructions can be used to elucidate the paleobiology of extinct organisms and to test competing evolutionary hypotheses.
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