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INDECOMPOSABLE ALMOST FREE
MODULES—THE LOCAL CASE

RUDIGER GOBEL AND SAHARON SHELAH

ABSTRACT. Let R be acountable, principal ideal domain which is not a field and
A be a countable R-algebra which is free as an R-module. Then we will construct an
R;-free R-module G of rank X; with endomorphism algebra Endg G = A. Clearly the
result does not hold for fields. Recall that an R-module is R;-freeif all its countable
submodules are free, a condition closely related to Pontryagin’s theorem. This result
has many consequences, depending on the algebra A in use. For instance, if we choose
A =R, then clearly G isan indecomposable ‘almost free’ module. The existence of such
moduleswasunknown for ringswith only finitely many primeslikeR = 7, theintegers
localized at some prime p. The result complements a classical realization theorem of
Corner’s showing that any such algebrais an endomorphism algebra of some torsion-
free, reduced R-module G of countable rank. Its proof is based on new combinatorial-
algebraic techniques related with what we call rigid tree-elements coming from a
module generated over aforest of trees.

1. Introduction. Let R beafixed countable, principal ideal domain which is not a
field. An R-module A is reduced for if (Ns.sSA = 0where S=R\ {0} and Aistorsions-
freeif sa=0(s € Sa € A) impliesa = 0. Note that R is reduced because R is not a
field. We will consider R-algebras A which are torsion-free and reduced as R-modules
Ar. In particular thisisthe case when Ag is free.

Let x < X beinfinite cardinals. We are interested in R-modules of size A which are
r-free, which isthe case when all its submodules of cardinality < « are free R-modules.

Can we find indecomposabl e x-free R-modules of cardinality \?

We are mainly interested in the case when x = X\ and in particular when this cardina
iSNl.

Such modules—by freeness—most likely want to decomposeinto non-trivial direct
sumsand in fact, if A isasingular cardinal, then by Shelah’s[31] singular compactness
theorem it follows that such R-modules are free (hence very decomposable), this holds
in particular for cardinals of cofinality w, e.g. for X, aresult dueto Hill [26], see Eklof,
Mekler [14].

On the other hand, the existence of non-free, X;-free R-modules of cardinality ¥,
follows from Griffith [23], Hill [26], Eklof [11], Mekler [29] and aresult of Shelah’sin
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Eklof [12, p. 82, Theorem 8.8]. By an induction it can be shown, that there are non-free
R,-free modules of cardinality X,. A similar result for non-commutative groupsisdueto
Higman [24, 25]. Thefreeness-result at R, illustrates that induction breaks down at X +1
and new techniques are needed to show that for certain cardinals A only the existence
of non-free A-free R-modules of cardinality A follows, see Shelah, Magidor [28].

However only very little is known in ZFC about algebraic properties of the non-free
A-free R-modules of cardinality A and this is also the case when A = k = Xy, see Eklof
[11] and Eklof, Mekler [14]. The following problem isimmediate.

Investigate the algebraic properties of A-free modules of cardinality A.

The only earlier result known to us uses a construction from Shelah [33] of non-
separable groups[12, 14] and is due to Eda [10]. He shows the existence of an X;-free
group G of cardinality ®; with Hom(G, Z) = 0. In this paper we want to present new
techniques which allow us to shed some more light on this problem. In order to work
exclusively in ZFC we restrict ourself to x = Ry and A < 2%, Recall that under negation
of CH the cardinal A can be quite arbitrary, see [27]. We will state the next corollary
which will follow immediately from our Main Theorem in Section 3.

MAIN COROLLARY 3.1. Let A # 0 be a R-free R-algebra over a countable, principal
ideal domain R which is not a field and let |A] < A < 2%, then there exists an X;-free
R-module G of cardinality A with EndG = A.

We will construct G as an A-module and A is identified with endomorphisms acting
by scalar multiplication. If A = R, we derive the existence of RX;-free R-modules of
cardinality ®; with EndG = R, a result about indecomposable R-modules known only
in the case R = Z from our recent paper [21]. The main difficulty in passing from Z to R
can be seen in the local casewhen Risalocal ring with just one prime p, e.g. if R=Z,
is the ring of integers localized at p # O. Infinitely many primes—by arithmetic—
provide arigid system (= modules with no homomorphisms # 0 between them). Hence
homomorphisms can berestricted in their activity on G by building into G arigid system
in a suitable way [21]. Finally they ‘calm down’ to scalar multiplication on G. Thisis
no longer possiblein the local case. The only chance we haveis to utilize the existence
of sufficiently many algebraically independent elementsin the p-adic completion of Z,
and thisis hidden in our construction.

It may be interesting to see this result in the light of its predecessors. The first
example of an X;-free module which is not free is the Baer-Specker module R¥, which
is the cartesian product of countably many copies of the ring R, known for sixty years;
cf. Baer [1] or [16, p. 94]. Assuming CH, this module is an example of an R-module of
cardinality X; = 2%, However, it issurely (by slendernessof R) afinite but not aninfinite
direct sum of summands # 0. Under the same set-theoretic assumption of the continuum
hypothesisit can be shown that A above can be realized as the endomorphismring of an
N;-free R-module G of cardinality X;. The chronologically earlier realization theorem
of this kind uses the weak diamond prediction principle which follows from 2% < 2%,
See Devlin and Shelah [5] for the weak diamond, Shelah [35] for the case EndG = Z
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and Dugas, Gobel [7] for the case A = End G and extensionsto larger cardinals. Using,
what is called Shelah’s Black Box, the existence of X;-free modules G with |G| = A%
also follows from Corner, Gobel [4] using Dugas, Gobel [8] and combinatoria fine
tuning from Shelah [36, 37], see also Shelah [41, Chapter VII] and [40]. Many of the
older results however do not concentrate on the additional demand that the constructed
modules with prescribed endomorphism algebra are X;-free, see[2, 18, 19, 20]. This of
course was due to other difficulties that had to be settled first.

Assuming Martin’s axiom (MA) together with ZFC and R, < 2% any R,-free group
G of cardinality < 2% is separableand hence has endomorphismring Z only in thetrivial
casewhen G = Z, see[21].

Hence X, in the Main Corollary can not be replaced by R,. This is in contrast to
the result [7] which holds in Gddel’s universe: All algebras A as above are of the form
A =~ EndG for al uncountable regular, not weakly compact cardinals A = |G| > |A|
such that G is a A-free R-module. A similar result was shown recently [22] using the
generalized continuum hypothesis G.C.H. only. In view of the theorem under Martin's
axiom,

the exi stence of indecomposabl eX,-free R-modulesof cardinality X, and the existence
of such modules with endomorphismring R, respectively, is undecidable.

Endomorphism ring results as discussed have well-known applications using the
appropriate also well-known R-algebras A.

If I isany abelian semigroup, thenwe use Corner’s R-algebraAr, implicitly discussed
in Corner, Gobel [4], and constructed for particular ['s in [3] with special idempotents
(expressed below), with free R-module structure and |Ar | = max{|I"|,Ro}. If || < 2%,
we may apply the main theorem and find a family of X;-free R-modules G, (« € I) of
cardinality R, suchthat for o, 3 € T,

Gy ® Gy = Guipg and (G, = Gyifandonly if a = 3).

Observe that thisinduces all kinds of counterexamplesto Kaplansky’stest problems
for suitable '’s. If we consider Corner’s algebrain [3], see Fuchs[17, p. 145], thenitis
easy to see that Ag is free and |A| = Ro. The particular idempotentsin A and our main
theorem provide the existence of anX;-free superdecomposable R-module of cardinality
N7, which seems to be new as well. Recall that a group is superdecomposable if any
non-trivial summand decomposesinto a proper direct sum.

Finally, we remark that, as the reader may suspect, it is easy to replace G in Theo-
rem 3.1 by arigid family of 2* such groupswith only thetrivial homomorphism between
distinct members.

2. Theconstruction of X;-free modules.

a. THE TopoLOGY. Let R be a countable, principal ideal domain which is not a
field, hence Ris reduced. We consider any free R-algebra A of cardinality |A| < 2%, In
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particular A istorsion-free and reduced aswell. Enumerating S= R\ {0} = {sp : n € w}
we obtain adescending chain of principal ideals g,A for

(1) Qo=landgui =S foradlnew

with N, GnA = 0. The system g,A (n € w) generates a Hausdorff topology, the R-
topology on A.

b. THE GEOMETRY OF A TREEAND A FOREST. LetT = “~2denotethetree of dl finite
branchesv: n — 2, n < w, where £(v) = n denotesthe length of the branch v. The branch
of lengthOisdenotedby 1= ) € Tandwealsowritev = (v I n—1)"v(n—1). Moreover,
“2 = Br(T) denotesall infinite branchesv: w — 2and clearly v [ n € T for all v € Br(T),
n € w. We often identify infinite branchesv with their nodesv = {v | n: n € w} which
isacountable, maximal, linearly ordered subset of T. Following convention we will call
anodev | nfinite branch of length n of the tree Br(T). If v # w € Br(T), then

br(v,w) =inf{n € w : v(n) # w(n)}

denotes the branch point of v and w. Hence m = br(v, w) is the largest ordinal with
vim=w/lm
If C C w, then we collect the subtree

Tc={veT: ifeec ((v)\ Cthenv(e) = 0}.
Similarly
Br(Tc) = {veBr(T): ifecw) Cthenv(e) = 0},
hencev [ n € T¢ for al v € Br(T¢), n € w and as before we omit C if C = w. Many of
our arguments use afinite trunk of these trees. If m < w, then we define

2 Te={reTc: {(r) < m}.

Finaly let Tc = Tc U Br(Tc).

Next we use treesto build aforest.

Letk < A < 2% betwo fixed infinite cardinals and let x be regular and uncountable.
Then we choose afamily ¢ = {C, C w: o < A} of pairwise aimost disjoint, infinite
subsets of w. Let T x o = {vx « : v € T} be adigoint copy of the tree T and let
To = Tc, X afor a < A betheforest of trees (with finite branches), say

T@:UTa

a<i

and choose disjoint sets of infinite branches from T. We have T, = Br(T¢,) C Br(T)
(or < A) and take afamily of pairwise disjoints subsets, i.e.

B={V, CT,:a <A} with|V,| =k.
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Moreover, for any m € w at least x pairs of branchesin V,, branch at mor above. It will
be very convenient, however not necessary to restrict to perfect trees. A treeis perfect if
it has no isolated points (in the order topology), i.e. every branch has an unbounded set
of branch points. It is easy to seethat we may assumefor theforest that all trees T, C T
are perfect trees. This additional assumption about the treesis only used in the proof of
Proposition 3.7 in form of the following:

OBSERVATION 2.1. Any perfect subtree of T hasasubtree order isomorphicto T such
that for any ordinal n € w thereisat most onefinite branchv | n of the subtree such that
vl (n+1)#w ! (n+ 1) for somebranchw of this subtree.

PrROCF. Let T be aperfect tree. We will define atree embedding p: T — T such that
p(T) hasthe desired branching property. The map p is defined as the union of a chain of
partial mapsp;: T' — T, Let

B(T)={vIbrivw) eT:vZweT}

bethe set of all branch pointsin T. Using that Br(T) has no isolated infinite branchesand
Konig's Lemma, inductively we can choose a sequence of natural numbers n; (i € w)
such that np = 0 and if n; is given, then nj;; is the least number x > n; such that for any
ve T theset B(v,x) = {e:n < e< xV | ee B(T)} has cardinality |B(v,Xx)| > 2".
Now we have enough room to extend a partial embedding pi: T' — T™ to pi+1 in such
a way that the branching condition of the Observation 2.1 holds when restricted to
Pi+1(T*1). Hencep = Ui, pi is the desired tree embedding of T into that perfect tree.
Theforest T of pairwise digjoint perfect trees T,, and the sequence of sets of infinite
branches 3 from T which branch at ‘ almost disjoint sets' will form our basic geometrical
objectsfor building modules. The geometry will help to distinguish elementsand to carry
out calculation in the corresponding module. In view of Observation 2.1 we will assume

3 If T, C Tg and n € w thereis at most one finite branch v | n such that
vIi(n+1) Zw/ (n+1)for somew € T,.

c. THE BASE MODULE AND ITS COMPLETION. We consider the free A-module

BQ:@TA

TE€Ts

which is a pure and dense submodule of its R-adic completion Bg taken in the R-
topology on Bi. The A-module B will be our base module and we will often omit G for
convenience. The sequence X3 of infinite branchesis used to identify certain elementsin
the completion Bs. Any infinite branch v € V,, n < w and any g € B giveriseto an
element yyng in the completion B . Note that

(@) Vg =X Tv i x @) +gz%v(i>

i>n On i>n Yn
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is a well-defined element of the A-module BA@ The reader should keep in mind that
the branch element y,ng connects an infinite branch v € Br(Tc,) C Br(T) with finite
branches from the digjoint tree T,. We will write y\oq = Yig and often omit the suffix g if
thisis clear from the context. Moreover

) Yung — ShOnYn+1g =V [ N X o + gv(n)

follows from (1) and (4). We immediate obtain an equation concerning branching
branches. For v # w € V,, and the branch point m = br(v, w) we havev(i) = w(i) € {0, 1}
fori < mandv(m) —w(m) = +1. Hence

m m—1
(6) W= (v Iixa)+g > V(i) + OmerYume1 + 90mv(mM)  and
i=0 i=0

m ) m-1 ) m ) m-1 )
Yaviixa)+gd gvi)=> agWwlixa)+g) gw(i) and
i=0 i=0 i=0 i=0

(7) Yo — Yw £ Om0 = Ome1 (Yo — Yarmer)  FOr br(v, w) = m.

The specia form of branch elements allows us to recognize the geometry of the trees
through the

d. SuPPORT AND NORM OF ELEMENTS AND SUBSETS OF EZ Elementsgin Eg have
a natural support [g] C T, the at most countable set of finite branches used in the
sum-representation with respect to the R-adic completion of B; defined by

9= > 9
€[]
where g, # 0 is a unique element in A If r € Tg and 1 € A we identify 7 with the
element 71 in B, hence T C B and support is defined on T as well.
Let v € V,, and notethat in particular [yyno] = [Vn X ], where

anxa]l={vijxa:jewj>n} CT,.

This infinite part of the branch v we also denote by [v, x o] = [v,] becauseit is clear
that like v it comesfrom «. The notion of support trivially extendsto subsets X of B¢ by
taking unions [X] = Uyex[X], seeaso [4].

Each element g = 3°,¢[g 9, Of B also has a special—possibly empty—subset in [g],
the

R-support [glr={r €[g] : 0# g, € TR}.

Branch elements g = yuno asin (4) have R-support [g]r = [g] = [va]. The support of an
element immediately givesrise to its norm.

If X C T then || X]| =inf{8 < A : X C Uy To} denotesthe normof X. If || X|| does

not exist we write ||X|| = co. Moreover ||g|| = ||[g]|| denotes the norm of an element
g € By, for example ||ywnol| = o + 1 whenever v € V,. The following lemma is used
several times.
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LEMMA 2.2. Let G bean A-submoduleof B; suchthat |G| < a andg € G. If
Fo = (Ta.Ying 1 VE Vo N < w)a

is a submodule of B, then GN F,, = Ag.
Proor. Recall that v(n) € {0, 1}. Take any n < w with v(n) = 1. From (5) we have

9= Ywng — ShOnYwn+1g — (V r n) X o

andAg C F,NG. If h € F,, then h can be expressed asalinear combination of elements
from afinite subset of T, and afinite set of elements of the form yyng. Using (5) we can
choose m € w subject to the following conditions.

he ({gtuTgU{ym:vEEHACF,
where E isafinite subset of V,, and T} as defined in (2) such that

® [AN[vm] =0 foralveE
9) [Vl N [Wm] =0 foralv#we E

We can write h = Yycg avyvmg + 899 + t where ay.ag € Aandt € (T)a. If dsoh € G
we take any 7 € [vi] to seethat a, = 0 and similarly t = 0, hence h = ayg € Ag which
showsthe lemma.

e. THE DESIRED R1-FREE MODULE. We use these basic toolsto construct the desired
R-module.

THE R-MODULE-CONSTRUCTION 2.3. Let A be the free R-algebra over the countable
principal ideal domain R which is not afield with |A] < A < 2% and k = |A[* + Ry. If
¢, % and Bg. Bg are as given, then choose a transfinite sequenceb,, (o < A) which runs
A timesthrough the non-zero elementsbin B with B / Ab A-free. Wedefineinductively
A-submodulesG, C By subject to the following condition for any o < A. The sequence
G, isincreasing, continuous with

Go=0andG= |J G,.

a<A

(10) Ga+]_ = <Ga @) Ta @) {yvnga ve VO(- ne (JJ}>A

Wealsolet g, = by if by € G, with ||ga|| < o and g, = 0 otherwise.

Notethat x < XA < 2% isaregular cardinal. The constructed A-module G has visibly
cardinality A\, and we want to show that it isRX;-free as A-module. Wereserve G to denote
this module for the rest of this paper.

In view of Pontryagin’stheorem we say that an R-moduleisR;-freeif any submodule
of finite rank is contained in a free R-submodule. If R is a principal ideal domain,
Pontryagin’s theorem [16, p. 93, Theorem 19.1] ensures that any countably generated
submoduleis free. This gives usthe following:
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OBSERVATION 2.4. Let A be afree R-algebra over a principal ideal domain R and M
an A-module such that any finite subset is contained in an A-free and R-pure submodule,
then M is an R;-free R-module, i.e. al its countably generated R-submodules are free.

Next we will show that G is ®;—free. Thiswill be the case when 3 = 0 in the next
proposition.

PROPOSITION 2.5. Let A be a free R-algebra and G = |J,., G, be the constructed
R-module. Then |G| = XA and G/ G; is an X;—free R-module for any 5 < A.

PrROOF. Inview of Observation 2.4 we consider any non-empty finiteset E C G/Gg.
Choose o < A minimal with E C G, /Gg. First note that > 3 must be a successor
because E is a proper finite set, hencey = « — 1 > 3 exists. Also note that G, /G isa
quotient of A-modules, hence an A-module. By induction it is enough to show that

(11)
EC (U+Gpy)/Gs& Gy /Gy Cs Gya1/Gy  for somefree A-module (U + Gg) /Gg.

First we want to find inductively an A-submodule U C G,. We note by (10) that
G’y+l = GN’ + F’y Where

If E' C G,+1 isaset of representatives of the elementsin E, then by (12) and (5) thereis
afiniteset F C V,, and anumber m < w such that

ECU+G, whereU = (T]"U{yung, :VE F})a

Moreover we may assume that [viy] N [wm] = 0 for al v # w € F. A support argument
showsthat the defining generators of U are A-independent modulo G,, henceU +G; / G
must be A-freeand G, /G; N (U + G;) /G = 0.

Now it is easy to show that U is R-pure in G which also implies the purity in (11).
If h € G\ Gy41, then an easy support argument shows that Gy, is purein G that is to
say that dh ¢ G,41 for any 0 # d € Rand in particular dh ¢ U. We may suppose that
h € Gy41, and by the last considerations we find afinitely generated A-submodule

U = (T U {Yung, : VEF DA

for some number Y > mand finiteset F C F’ C V, with h € U’. We may assume that
m' is chosen such that also

[Vl N[Wiw] =0 foralv#weF.

One more support argument now shows that U is a summand of U’, we leaveit to the
reader to write down a complement of U in U’. If dh € U for some 0 # d € R, then
h € U followsfrom h € U’, which showsthat U is purein G.
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3. The constructed modules and their endomor phism algebras. The following
Definition 3.2 rigid tree-elements is the critical tool of this paper. The short proof of
our Main Theorem 3.1, following immediately below, is based on a Main-Lemma 3.3
which indicates our strategy. Moreover, the Definition 3.4 explains how to convert rigid
tree-elements into algebraic content. We think that it may help the reader if we start at
theend:

Themain result of this paper is the following:

THEOREM 3.1. If Ais a free R-algebra over a countable, principal ideal domain R
which is not a field and |A] < A < 2%, then there exists an ¥;-free R-module G of
cardinality A with EndG = A.

REMARK. G will be the A-module constructed in (2.3) and we haveidentifieda € A
witha- idg.

PrROOF. Let G be the A-module from the Construction 2.3. Clearly A C End G by
scalar-multiplication because A acts faithfully on G, and G is an X;—free R-module of
cardinality A by Proposition 2.5. It remains to show that EndG C A.

Suppose ¢ € EndG\ A. Recall from (2.3) that T, C Gfor al o < A, henceBg C G.
Inspection of (10) showsthat G/ By istorsion-free divisible. Thisis needed to prove that
there exists
(13) g € B; with Bg /gA Afreeand gy ¢ Ag.

Note that Bi is a free A-module freely generated by some set J C Bg. If (13) does not
hold, then ey € Aeforal e € J,say ep = ae. If dsof € J\ {e} then fp = af
and similarly e + f is another basic element and the negation of (13) would also give
(e+f)p = aus(e+f) for some aeis € A, hence a. = as = & by independence.
The element a = a. does not depend on e € J, and ep = ae for al e € J, hence
¢ [ Bg = a- idg,. The endomorphism extends uniquely to the A-module G by density,
and ¢ = a-idg € A, which was excluded. Condition (13) is shown.

By Construction 2.3 we canfind o’ < A such that the element g from (13) belongsto
G,, moreover we find o < o < X with g =g,, henceG, C G, andg =g, € G,. In
particular g¢ # 0 by (13) and, since G is reduced, we find my € w such that

0=0a andgy ¢ gnG foral m> m.
We now apply (10)
(14) Gor1 = (Ga U Ty U {yin : VE Vo N € w})a Where yun = Ying
and (7) impliesfor v# w € V,, that
Y — Yw & OGmd = Amea(Yomer — Yamea) I br(v,w) =m.

We may assumem > myp by assumption on 3. Lett, = yyp (Vv € V, € L) and apply ¢
to the last equation. We derive the existence of a family of rigid tree-elements as defined
on the next page:
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The set of elementst, € G (v € T), T asubset of V,, satisfying the hypothesisof (3.3),
constitute afamily of rigid tree-elements for gy, where

tv — tw £ dmdy € gmaG.
We now apply our Main-Lemma 3.3 and obtain

gy € Ag, =Ag

which contradicts (13). Hence ¢ does not exist and the Main Theorem 3.1 follows.
We proceed with the definition of rigid tree-elements.

DEFINITION 3.2. Let G bethe A-moduleand k < A betheregular cardinal from (2.3)
andT C V, forsomea < X beasetof cardinality x.1f 3 < A, afamily {t, e Gg: ve T}
is called afamily of rigid tree-elementsfor z € G at atree T, if

® ty —tw £ gmz € gm1G  for al v #w e T with br(v, w) = m.

MAIN-LEMMA 3.3. Let G be the A-module constructed in (2.3) and « < A, 3 < A.
If T is a set of branches from V,, branching above some m € w with |T| = x and
{tv € Gy : ve T}isafamily of rigid tree-elementsfor z € G\ gnG, thenz € Ag,.

The proof of (3.3) follows after a number of steps where we replace T above by
equipotent subsets with ‘stronger’ families of rigid tree-elements. Our final goal is a
family asin the following definition.

DEFINITION 3.4. Let mg be anatural number. We will say that the family {t, € G :
v € T} asin (3.2) is an independent family of rigid tree-elements for z at some tree T,
over my if thereare asequenceof ordinas oy < -+ - < ag < A\, m,j* > my, afinite set F
with elementsa, € A for x € F and an injective map

5:T x F— | Ve, (i

i<s

suchthat any t, (v € T) can be expressed as

ty = Z AYs(xv)m- (i)

xeF

Moreover,

(,U[gai]) N [Ysexyml = 0. (iii)
i<s
the branchesé(x, v) I j* (x € F) are dl distinct and independent of v,

F=Fands(T xF)CV, (i<9. (iv)

i<s
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For conveniencewe will some times omit « above, writing V; for V,,. Often we only
deal with partial maps of  say

by =46 1 {v} x Fandwrite é,: F — F, = Im(5y).

In order to find an independent family of rigid tree-elements we first concentrate on
finding a weaker family which satisfies (w) in (3.5) and comes from a given family of
rigid tree-elements at some fixed tree.

PIGEON-HOLE-LEMMA 3.5. Let G be the A-module, x be the cardinal given by (2.3),
and let o« < A and 8 < \. Assume that we also have a family of elements

ty€ Gs (veT)for somesubset T C V, of cardinality

and elementshy, ... ., hy € G with the property that

ifv,we Tand br(v,w) =m, thent, —t, € (hy,..., ho)a + qmGs. (8)
Then we find an equipotent subset T’ of T and ordinals 81 < - - - < s < 3 with
tw € (Ts, Yimg, VE Vg, n<wandi <s)a foralweT. (w)

Notethat (3) is aweak form of the definition of afamily of rigid tree-elements. If for
the above family 3 = A, then by (w) wealsofind 8 < A suchthatt, € Gy (v € T) for an
equipotent subfamily.

PrOOF. We must collect a small *pigeon-hole’—the right-hand side of (w)—and
enough ‘pigeons’ t,, to land in (w). There are plenty of pigeons and we just discard al
trouble makers.

The proof isby inductionon 3 < A.

If 3 =0, then Gp = 0 and it is nothing to show.

Next we assumethat 3 < X isalimit ordinal. We will distinguish three cases (a),(b)
and (c) depending on the cofinality cf(3) of 3.

(a) Supposecf(B) > k.

Hence | T| < cf(3) and note that cf(3) is aregular cardinal. Then we can find ¥ < 8
with hy, ..., h € Gy andt, € G, for al v € T. Condition (V) in (3.5) holdsfor v <
and the induction hypothesis appliesto finish this case.

(b) Supposecf(3) < k.

Note that G = Uj<ct(s) Go(iy fOr some strictly increasing, continuous sequence of(i)
convergingto 3. In this case we immediately find somei < cf(3) andy = o(i) < 3 with
hi.....hk € Gyand T' = {v € T : t, € Gy} has cardindlity . The claim follows by
induction like (a).

(c) Supposecf(B) = k.

Let (3: € 3: £ < k) beastrictly increasing, continuouschain of ordinals converging
to 3, and enumerate T = {v¢ : £ < &} without repetition. We also may assume that
hy..... he € Gg,. Consider the set

Y={{€n ty, €Gg} Ch.
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Supposefirst that

() Yisastationary subset of «.

If £ €Y, then wefind a smallest G (6 € ) which containst,,. Since (§¢ : £ € x)
and (G, : v € k) are continuous sequences, 5 must be a successor ordinal, say = v + 1.
We get afunction g:Y — (¢ — g(¢) = 7) and note that g(¢) < ¢ fromt,, € Gg,.
Hence g is regressive and Fodor’s lemma applies, see [27, Theorem 22, p. 59]. Thereis
astationary subset X of Y—which must be stationary in « by hypothesis (i)—on which
g is constant, taking some fixed valueé € . Clearly [X| = x and T’ = {ty, : £ € X} and
Gg, (35 < 3) satisfy the induction hypothesis (3;) in (3.5). Again, the claim follows in
case (i) by induction.

Finally we assume that

(i) Yisnot astationary subset of «.

In this case we have to work showing that (ii) can not occur. Thereisacub Cinx
with YN C = (. Inductively we may replace C by an equipotent subset, called C again,
and replace the 3,’s by new ones such that

t\/5 € G/3{+1 \ G{fg for all ¢ e C.

Notethat T' = {ty, : £ € C} still has cardinality «, and apply Proposition 2.5 to note that
Gg..,/ G, is¥y-freefor al ¢ € C. Moreover,

0# tv{ + G/gs € Gﬁgﬂ/Gﬁs
and there are elements 0 # d; € R such that

tVE + GBg ¢ dg(Gﬂgﬂ/GBg)' (d)

From |R| < |C|wecanfind0 #d € RwithC' = {¢ € C: d, = d} of cardinality x. Pick
any j € w with d|g.

Theset X' = {t, : £ € C'} of cardinality x must have elementst, . t, fore <, € C’
with branch point br(v,. v,) = m > j. In particular d|gm. We derive from the hypothesis

(8) that
t, —t, € (... .NJa+mGs,..-

However hy, ... . h € Gy, C Gg, andalsoty, € Gg, frome < 1. Hence
ty, + Gs, € Am(Gg,.,/Gg,) € d(Gg,.,/Gs,) = oy, (Gs,.,/G3s,)

which contradicts (d) and case (ii) cannot comeup. Thisfinishesthe caseof limit ordinals
8.

We may assumethat 3 = v + 1 isasuccessor ordinal, and the lemmaholdsfor v < 3.
We also have

GB = G'y+]_ = <T'y nyy\,ngq ve V’y, ne W>A.
Asin (10) and (12) we can write Gy+; = Gy + F, with

F'\, = <T‘y U {yvng" Y E V’\,, n < w}>A.
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Obviously ||G,|| <7 by construction (2.3) of G and Lemma 2.2 applies. We derive
Ag, =GyNF,

and G,/ Ag, ®©F,/ Ag, isadirect sum.

If h,....hx € Gg andt, € G (v € T) are given by hypothesis, then we can
write t, = t0 +t! for all v € T and similarly hy = h? + h! (i < k) with t0,h° € G,
and tl.h! € F,. Moreover, if v,w € T branch at br(v,w) = m, then by hypothesis
tv—ty € <h1. cees hk>A +gqmGs and

k k
@ — )+ (& —t2) = ah? + > ah! + qng, + gufy
i=1

i=1

follows for some g, € G, andf, € F,. Hence

k k
(0 =10 = > ah?) — angl = (th — + Do ah!) +aufs.
i=1 i=1

The left-hand side of the displayed equation is in Gy while the right-hand sideisin F.
The sum must be 0 modulo Ag, by the direct sum above. In particular

=ty € (h..... 1. gy)a+ amG:.

The induction appliesfor ¥ < 3. Wefind T C Twith |[T'| =k and 81 < -+ < B <7
such that
t\?v € (Tgi.y\,ngdi veVg,i<kne w>A

for all w e T'. Finaly let 8x+1 = v and note that
tW =t9v+t3'v € <Tff|*yvn9,fi ve V[fl.i S k + 1,n e w>A

for all w € T'. This completesthe induction.

Next we will use the Pigeon-Hole-Lemma 3.5 to find an independent family of rigid
tree-elementsfrom an ordinary family of rigid tree-elements. Then we are ready to prove
the Main-Lemma 3.3 which established already the Main-Theorem 3.1.

PrROPOSITION 3.6. Let my be a natural number and G be the A-module constructedin
(2.3). Suppose thereis a family of rigid tree-elements for 0 # z € G at some tree. Then
we can find an independent family of rigid tree-elements over mg for z at the same tree.

REMARK. The new family need not be a subfamily of the old one.

PROOF. Let {t, € G: v € T} be the given family of rigid tree-elementsfor z € G
where T C V,, for some o < A hascardinality .
Hence
ty —tw € Az+ gnaG  foral v#w e T with br(v,w) =m
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follows from (t) in Definition 3.2. Shrinking T, we may assume m > my. Then we apply
the Pigeon-Hole-Lemma 3.5 for k = 1. There is an equipotent subset T replacing T and
thereareordinals 81 < - -+ < Bs < A with

S
te> F foralveT
i=1

where we write [as before in (12)]
Fi = (Ts U {Ywng, 1 WE Vj.n<wha.
We replace 3; by i and put
95 = Gi- Tg, = Ti, Vg, = Vi and Yung, =Yun forwe Vi

Moreover let B = {s. . .., Bs} and Bg = (T, : i < s)a. For eachv € T we now can write

st m(v;)
(rp) ty = bV + Z Z Z aVIinyVIin

i=11=1 n=0
where by, € Bg, a,;n € Aandyy,, are branch-elementswith v; € V; dependingonv € T,
lewandi <s.

Next wewant to improve the representation (rp) by using relationsin G and discarding
some of the elements from T.

Notethat w [ n € T; for w € V; and (5) can be applied for g = g; to replace
) &y nyyn by multiples of g;, an element in Bg and of yy,my) Where m(v) is larger
then the maximum of all the m(v;;)’s and my, which is taken over afinite set of at most
st + 1 numbers. We find new elements ay,my), ai € A, by € Bg and m(v) € w and new
representationsfor al v € T which are

S t
(na,vrp) tV = t)\/ + Z(IZ avnm(v)yv“m(v)) + a‘Vlgl'

i=1 ‘=1
Moreover we may assume, enlarging m(v) for each v € T up to the supremum of all
branch points of distinct pairs {vii. vji } and the finite set Uiz<sGNG wherethe Gi’'sare
from C, that

Yuim] N Yugm] =0 foral (1) #(nj). 1<l n<t 1<i j<s

Also V = |Ji4[ai] isfinite and V N U;i[yv,my] = @ can be obtained by enlarging m(v).
This ensures the first part of (iii) in the Definition 3.4 of an independent family of
tree-elements. Next we apply a pigeon-hole argument to simplify (newrp) even further.
Recall that max{w, |A|, |Bg|} < & = |T|. Thereis asubset of cardinality x of T which
we denote by T aswell, with the following property.

Thereis afinite number of parametersfor 1 <i <s, 1 <| < t(i) with elements

t(v,i) =t(i), m(v) =m>mo, aymyv = a&i. & =&. by=Db
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independent of v € T. Equations (newrp) become

s (i)

(better) t=b+ (Y aiyyn) +ag.
i=1 \i=1
Recall that vij € Vi C T/, &, € A,b € Bg. Let

E={():1<i<sl<I<t()}. E ={w:xcE}CUV

i<s

and it is easy to verify from (better) that é,: E — E,(X — V) isabijection.
We can also choose j, € w large enough and > my such that the restriction map
Gv MW E—=UTi:(x— wIjv)
i<s

isinjectivewithimage (E, I jv) = {6u(X) | jv : x € E}. Notethat | J;s T; isacountableset
while T isuncountable. By apigeon-holeargument we can shrink T suchthat j, = j* > mg
and (E, ! j*) = A" are constant for all v € T, however the finite branchesin A’ that is
ou(X) I j* (x € E) aredl distinct.

In order to show that the total map ¢ is injective, we replace the old family of rigid
tree-elements t, by anew family t, — b — >, &g (v € T) and observe that the new
family is a family of rigid tree-elements for z as well. The new family has a better
representation, we can write

tv =D aYs,mm-
XeE

The set {E, : v € T} of finite sets of infinite branches constitutes a A-system and the
A-Lemma applies, see Jech [27, p. 225]. There is a new equipotent subset T replacing
the old T such that

EnNE,=A foradlv£ZweT.
If Fy=E,\ Afor (ve T)andF = E\ 6,14, then the F,/s are pairwise disjoint, hence$
isinjectiveon T x F and

d=dy= > aysmm (VET)

xeE\F

does not depend on v any more. Replacing t, again by t, — d, we obtain a new family of
rigid tree-elementsfor z at the tree T, with the best representation

(best) ty=> aysem (VeT).
XeF

The new family is the desired independent family of rigid tree-elements. Recall that
Fv = Ui<s(Fv N V;) and the preimage of this decomposition is the decomposition of F in
(3.4). The proposition follows.

The ultimate step in proving the Main-Lemma 3.3 is the following proposition. The
Main-Lemma 3.3 is now immediate from

PROPOSITION 3.7. Let G bethe A-module constructedin (2.3). If thereisan indepen-
dent family of rigid tree-elements branching above some m, for z € G\ gm,G at the tree
Ty, thenz € Ag,.
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PROOF. We want to extract the arithmetical strength hidden in the given independent
family of rigid tree-elements {t, € G : v € T} for z at some tree T, with T C V,, of
cardinality . By thelast Proposition 3.6 and Definition 3.4 the elements can be expressed
in theform

ty =) ayswm foraxeA

XeF

with pairwise disjoint sets F, of infinite branchesfrom (J7, V; where

F=UF. 6 F—F. &(F)=FNViCVi (i <9).

i<s

Ci:CaiGQ, Vi=Vy, Ti=Ty, ar<---<os<A

Letl ={o:i <s}U{a}. Recall from (1) that % = (nSh. Hence
(15) 2¢ -G=0 1516 C GG C amG foranj>m
-

by assumption on my. Moreover, note that F, is a finite set of distinct branches,
Uasmer Ca M Cp is a finite subset of w, M, 4G = 0 and N, A = 0. Also note
that F,NFy, = () for distinct v, w € T by Definition 3.4. We also have an element j* > my
satisfying (3.4). All branchesé,(x) T j* of lengthj* for any x € F are pairwise distinct but
independent of v. From thesefactsit is clear that the following combinatorial conditions

hold.
(16) ) " Z0uX) T
(17) br(5u(y)- Sw(y)) # br(5u(®).6w(¥) >J* forvZwe Tx#yeF
(18) 4--1Z€ G\ g-G
(19) sup U CanGp <,
azbel
and
(20) 70 a £ qg-—1A foralxeF.
We also may assume
(22) br(v,w) >j* >my foralvzweT.

Next wewill show that the branch point of any two distinct branchesv, w € T isbounded
by the branch point of some *6-pair’ of branches:

(22) br(v.w) > br(8,(x).6w(x)) for somex € F
If
(23) n=br(v,w), thent, —ty =+ gz € 1G
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by Definition 3.2 (t) of tree-elements and if also t, — ty € Qw1G, then gz € g1 G.
Hencez € gnshG C ¢+—15--1G C ¢-—1G by (21), which contradicts (15). We have

(24) ty — tw € GnG \ gnvaG  for n = br(v, w).
On the other hand t, = 3= awys,(ym and ty = 3= ayys,m for ax € A, hence

(25) ty—tw = ax(Ys,00m — Ysu(m)-
xeF

If br(5v(¥). 5w(x)) > nfor all x € F, then by (7) and the last expressiont, — ty € G1G
contradicts (24) and (22) follows.
We want to calculate (25) more accurate and define

Br(F) = {br(6v(¥).6w(x)) € w: x € F with ay # 0}.

Then min(Br(F)) = k = k(v,w) < nfollowsfrom (22).
Hence
F' = {x e F:br(5,(x).6w()) =k}

isanon-empty set.

We suppose that k < n for contradiction. Thenk +1 < n and g,.G C 0k G and
ty — tw € Qr+1G follows from (24).

If x € F\ F, then br(5y(x). 6w(x)) > k, and a(¥s,gm — Ys,0om) € G2 G and
(26) 0=ty —tw= D a(Ys,oom — Ysucom) = 2 &x(Ys,0m — Ys,09m) Mod q(l;l G.
xeF m

xeF!

For any x € F welet i(x) bethe unique integer i < swith x € F;. From (16) we infer
(27) br (84(x). Sw(x)) =k > *
for x € F’ and using (7) and (10) we can reduce (26) further

> &0 € Ok1G.

xeF’

Ifi(x) =i(y) forsomex #y € F/, thenx,y € F'NF; and al elementséy(x), dw(X), du(y),
bw(y) are branches of the same tree T; and if x # vy, then by (16) the pairs of branches
(6v(9- w(x)) and (év(y). 6w (y)) havetwo distinct branch pointson T; at the samelevel k.
This contradicts our assumption (3), which followed from T; being a perfect tree, hence
X =y, see Observation 2.1.

We have seen that |F' N Fj| < 1 and note that |[F' N F;| = 1 for at least one of thei’s,
because F’ # (). We discard all other i's and may assume

FNF={x} forali<s
If g = Giy = 9oy ad & = &, then the last displayed sum becomes
> a0di € G1G.

i<s
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Recall from (27) that k = br(6,(x). 6w(X)) > j*, hencek ¢ G N C; for any i # j and
k can not be the splitting level of pairs of branchesfrom two distinct trees T;, T;. Hence
splitting of branches ((Sv(x). 6W(x)) at thislevel k can only happen at one pair, say for the
one with label i(x) = 1. We can reduce the last sum expression to

a10kg1 € Gk+1G.

Hence
Ok+1
Ok

&g € G=suGC q:G

by (1) and (27). However, g1 ispurein G, hence0 # a; € g;-A contradicts(20). It follows
thatk=n,F=F and

(28) al pairs  6y(X),0w(X) (x € F) branch at level > n = br(v, w).

Notethat elements a(Ys, om—Ys.com) Suchthat v, w branchesstrictly abovenare absorbed
into g+1G by (7). As before, but now for n =k, it follows

(29) tv—tw = ax(yé\,(x)m - y(SW(x)m) modgn1G and F = {x}.

If 6u(X) = V. 6w(X) =W anday = athenv'.w' € V,,, andv,w € T C V,. Theindependent
family of t,’sfor zby (29) simply turnsinto

ty — tw = a(Yym — Ywm) Mod gn+1G.
Thepair v/, w' cannot branch at level > n because0 # t, — t, mod gn+1G by (24). Hence
v,w and V', w branch at the same level n > j* by (28). Either {v,w} = {V,w'} or the

pairs are different. In the second case branching of two distinct pairs of branchesat such
ahigh level n can only happen at the ‘same tree’. Hencein either case we must have

a1 =aandalsog; =gy
by (20). Using (7), (10) and (t) we have
0 # gnz = agng, Mod gn+1G.
Asbefore, we derive z = ag, mod MG = gn$hG from (1). The set T of infinite branches
has size x and henceits branches split at arbitrarily large level. Choose any sequence of

pairs (v, w) of branchesfrom T with branch points convergingtoinfinity and notethat Gis
N;-freeby Proposition 2.5, hence G isreduced. We derivethat z—agy € Nney, GnSiG = 0,
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hencez = ag,, € Ag, asrequired.

PROOF OF THE MAIN-LEMMA 3.3. The family of rigid tree-elements given by (3.3)
can be traded into an independent family of rigid tree-elements over the given number
m and the same tree by Proposition 3.6. Now the assumptions for Proposition 3.7 are
satisfied for m = my and that z. Hence the conclusion of (3.3) follows from (3.7).
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