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Abstract. The problem of computing the integral cohomology ring of the
symmetric square of a topological space has long been of interest, but limited progress
has been made on the general case until recently. We offer a solution for the complex
and quaternionic projective spaces �Pn, by utilising their rich geometrical structure.
Our description involves generators and relations, and our methods entail ideas from
the literature of quantum chemistry, theoretical physics, and combinatorics. We begin
with the case �P∞, and then identify the truncation required for passage to finite
n. The calculations rely upon a ladder of long exact cohomology sequences, which
compares cofibrations associated to the diagonals of the symmetric square and the
corresponding Borel construction. These incorporate the one-point compactifications
of classic configuration spaces of unordered pairs of points in �Pn, which are
identified as Thom spaces by combining Löwdin’s symmetric orthogonalisation (and
its quaternionic analogue) with a dash of Pin geometry. The relations in the ensuing
cohomology rings are conveniently expressed using generalised Fibonacci polynomials.
Our conclusions are compatible with those of Gugnin mod torsion and Nakaoka mod
2, and with homological results of Milgram.

2010 Mathematics Subject Classification. Primary 55S15, secondary 55R40,
55R80.

1. Introduction. The study of cyclic and symmetric powers has a long and varied
history, and has remained active throughout the development of algebraic topology. At
first, symmetric squares of smooth manifolds were associated mainly with critical point
theory [32], but by the 1950s cyclic powers of simplicial complexes had come to underlie
Steenrod’s construction of mod p cohomology operations [39] and related work on the
homology and cohomology of the symmetric groups [35]. These interactions were
extended to stable splittings of classifying spaces during the 1980s [31]. More recently
[23], symmetric powers of closed manifolds M have been viewed as compactifications
of configuration spaces of finite sets of distinct points on M, and also as important
examples of orbifolds [1]. Since 2000 or so, the latter perspective has gained popularity
within theoretical physics [9], and led to the theory of cyclic and permutation orbifolds.

For any topological space X , its cyclic or symmetric square SP2(X) is the orbit
space (X × X)/C2 under the action of the cyclic group C2, generated by the involution
ι that interchanges factors. Its elements are the unordered pairs {x, y} for all x, y in X ,
and the fixed points of ι determine the diagonal subspace Δ = Δ(X), which contains
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all pairs {x, x} and is homeomorphic to X . If X is a CW complex of finite type, then so
is SP2(X), and this condition will hold for every space considered below. The quotient
map q : X × X → SP2(X) is a ramified covering in the sense of [38], and its off-diagonal
restriction

q′ : (X × X) \ Δ −→ SP2(X) \ Δ

is a genuine double covering. By definition, the codomain SP2(X) \ Δ is the
configuration space C2(X) of unordered pairs of distinct points of X .

In a small number of special cases, SP2(X) may be identified with some other
familiar space. For example, there are homeomorphisms

SP2(S1) ∼= M, SP2(�P2) ∼= �P4 and SP2(S2) ∼= �P2,

where M is the closed Möbius band. In these cases, the integral cohomology
ring H∗(SP2(X)+) follows immediately, but for arbitrary X its evaluation is more
challenging, and few complete calculations appear in the literature.

Since work on this manuscript began, however, two independent advances
have been made. First, Gugnin [18] computed the torsion-free quotient ring
H∗(SP2(X))/ Tor for any CW complex of finite type, using the ring structure of H∗(X)
and the transfer homomorphism [38] associated to the projection q. Second, Totaro
[40, Theorem 1.2] converted Milgram’s description [28] of the integral homology groups
H∗(SP2(X)) into dualisable form, at least for finite connected CW complexes whose
integral cohomology groups are torsion free and zero in odd dimensions (such an X
may be called even). It will emerge below that our calculations are compatible with
these developments, as well as with Nakaoka’s classic papers [33] and [34], which focus
mainly on �/2 coefficients.

The simplest examples are the spheres Sn, studied by Morse in [32, Chapter VI,
Section 11], and in several papers by Nakaoka [34]. More generally, it is natural
to consider CW complexes with richer intrinsic geometry, such as the complex and
quaternionic projective spaces �Pn. Our main aim is therefore to focus on the
associated geometry of the spaces SP2(�Pn), and, by way of application, to define
generators and relations for their integral cohomology rings. As noted in [6], they
differ from those obtained by following [18], and seem more suitable for extending to
generalised cohomology theories, where analogues of the transfer may not exist for
ramified coverings [2].

The results are stated in Theorem 8.9, and summarised in Theorem 1.1. The
dimensions of the generators depend on the dimension d of � over �; thus d = 2
for � = � or 4 for � = �, and g, h, and ui,j have respective dimensions d, 2d, and
2i + jd + 1.

THEOREM 1.1. For any n ≥ 1, the ring H∗(SP2(�Pn)+) is isomorphic to

� [hp/2p−1, gqhs/2s, ui,j] / Jn ,

where p, q ≥ 1, s ≥ 0 and 0 < i < jd/2; the ideal Jn is given by

(2ui,j, ui,juk,l, ui,jhp/2p−1, ui,jgqhs/2s, rt, ui,t : t > n) ,

for certain homogeneous polynomials rt = rt(g, h) of dimension td.

https://doi.org/10.1017/S0017089518000034 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000034


SYMMETRIC SQUARES OF PROJECTIVE SPACE 705

REMARKS 1.2. The torsion elements of this ring all have order 2, and the constraints
on the integers i, j, and t ensure that they are finite in number; the highest dimensional
example is u(nd−2)/2,n, in dimension 2nd − 1.

The torsion-free product structure is indicated by the notation for the generators;
for example, g · h = 2 · gh/2 in dimension 3d, for any n ≥ 2. The ring is finitely generated
because the polynomial relations ensure that the monomial hn/2n−1 is top dimensional,
and generates a single � in dimension 2nd. The generators rt of Jn are redundant for
t > n + 2, by Remarks 8.2.

The cases n = 2 and 3 are made explicit in Example A.1.

An alternative perspective on Theorem 1.1 is given by exploiting the canonical
embedding of SP2(�Pn) into the infinite symmetric product SP∞(�Pn), which is a
product of Eilenberg–MacLane spaces [14]. However, the presence of torsion in their
cohomology rings adds complications to the integral situation; and even with �/2
coefficients the resulting generators differ from ours. Such a viewpoint is taken in
[24, Section 11], for example, and has the advantage of leading to a more systematic
understanding of the action of the mod 2 Steenrod algebra than is provided by [6].

In principle, the results of [18] and [40] may be combined with those of [34] to
show that Theorem 1.1 is in some sense generic, at least for even X . The reasons are
purely algebraic and will be explored in [8], whose goal is to reconcile the algebra with
our geometrical approach in certain less familiar cases.

A crucial supporting rôle is played by the homotopy theoretic analogue of SP2(X),
namely the Borel construction S∞ ×C2 (X × X), where C2 acts antipodally, and therefore
freely, on the contractible sphere S∞. It contains the diagonal subspace �P∞ × X ,
sometimes written as Δ̂ = Δ̂(X) below. There is a Borel bundle

X × X
k−→ S∞ ×C2 (X × X)

r−→ �P∞, (1)

in which π1(�P∞) ∼= C2 acts on the fibre by ι. The integral cohomology ring H∗(S∞ ×C2

(X × X)) may often be computed via the Leray–Serre spectral sequence of (1), as
carried out for X = �Pn in Theorem 8.3.

There is also a canonical projection map

π : S∞ ×C2 (X × X) −→ SP2(X), (2)

which identifies Δ̂ with π−1(Δ); its off-diagonal restriction

π ′ : S∞ ×C2 (X × X) \ Δ̂ −→ SP2(X) \ Δ (3)

is a fibration with contractible fibres, and hence a homotopy equivalence. The Vietoris–
Begle theorem confirms that π induces an isomorphism of integral cohomology with
�[1/2] coefficients, so the main difficulties in proving Theorem 8.9 involve 2-torsion and
2-primary product structure. Our assumptions on X ensure that the map of quotients

π ′′ : S∞ ×C2 (X × X)/Δ̂ −→ SP2(X)/Δ (4)

is also a homotopy equivalence, allowing cohomological properties of the Borel
construction to be related directly to those of SP2(X), following Bredon [10, Chapter
VII].

For X = �Pn, this relationship brings Pin geometry into play. Because �Pn is
closed, compact and admits a suitable metric, Δ is a canonical deformation retract of a
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certain singular open neighbourhood [25, Corollary 4.2]. It turns out that SP2(�Pn) \
Δ contains an analogous closed, compact submanifold Γn, which is a deformation
retract; it may be imagined as an anti-diagonal. The retraction is canonical because
SP2(�Pn) \ Δ is diffeomorphic to the total space of a Pin ‡(d) vector bundle θn over
Γn, where ‡ stands for c when d = 2, or − when d = 4 [19, Section 2]. In terms of (4),
SP2(�Pn)/Δ is therefore the Thom space of θn, whose cohomological structure helps to
unlock the 2-primary information. The relationship between Pin−(4) and Pin+(4) has
been clarified in the physics literature [5, Section 5.3], but continues to cause confusion
elsewhere.

Our results are inspired by two sources. One is James, Thomas, Toda, and
Whitehead [22], who describe SP2(Sn)/Δ as a Thom space over �Pn; our approach
applies equally well to their situation, and recovers H∗(SP2(Sn)) for n ≥ 1. The other
is Yasui [41], who introduces Stiefel manifolds into his determination of H∗(C2(�Pn)),
and builds on Feder’s mod 2 calculations [16]. Recently, Dominguez, Gonzalez, and
Landweber [15] have computed H∗(C2(�Pn)), so the quaternionic case of Theorem 8.1
completes the trio.

The computations of [15] do not lead directly to H∗(SP2(�Pn)), because �Pn

is neither simply connected nor even. Nevertheless, the dihedral group D8 of [15,
Definition 2.5] is the precise analogue of Pin ‡(d) for d = 1, and work is currently
in progress (J. Gonzalez, Private communication) to extend our methods to the
real case.

Since H∗(�Pn) ∼= �[z]/(zn+1) is the truncation of H∗(�P∞), the possibility suggests
itself of calculating H∗(SP2(�P∞)) and expressing H∗(SP2(�Pn)) as an appropriate
quotient. This is indeed feasible, and occupies the second half of Theorem 8.9. The
fact that colim Γn (denoted by Γ below) is a model for the classifying space BPin ‡(d)
provides a convenient point of departure for Section 2.

There are seven subsequent sections, as follows:

Section 2: Classifying spaces and Pin(d) bundles;
Section 3: Orthogonalisation and cofibre sequences;
Section 4: Characteristic classes;
Section 5: Mod 2 cohomology;
Section 6: Integral cohomology;
Section 7: Mod 2 truncation; and
Section 8: Integral truncation.

Appendix A makes the outcomes explicit in cases n = 2 and 3, and Appendix B records
the first appearances of crucial notation.

The results for �Pn are taken from the first author’s thesis [6], and were
presented in August 2014 in Seoul. They were originally intended for application
to quaternionic cobordism; that work remains in progress, together with extensions to
other cohomology theories and higher cyclic powers.

The authors wish to thank Andrew Baker for his ongoing interest and
encouragement, and Larry Taylor for helpful comments on Pin±(k). The referee also
suggested several valuable improvements.

2. Classifying spaces and Pin(d) bundles. This section establishes notation that
allows the complex and quaternionic cases to be treated simultaneously, and collates
background information on certain low dimensional compact Lie groups. The aim is
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to contextualise Pinc(2) and Pin±(4); the latter requires special care, having been the
subject of several ambiguities in the literature. Background sources include [36] for
quaternionic linear algebra, [4] for the accidental isomorphisms from a quaternionic
viewpoint, and [41] for aspects of the complex case.

Henceforth, � denotes the complex numbers � or the quaternions �, and d stands
for their respective dimensions 2 or 4 over �. Scalars act on the right of vector spaces
over �, unless otherwise stated; thus GL(n, �) acts on the left of �n, whose elements
are column vectors. By definition, the compact Lie group O�(n) < GL(n, �) consists
of all matrices Q that preserve the Hermitian inner product u�v = ∑n

i=1 ūivi on �n,
where � denotes conjugate transpose. These are characterised by the property that
Q−1 = Q�; thus O�(n) is the unitary group U(n) or the symplectic group Sp(n) over �

or �, respectively.
When n = 2 there exist important accidental isomorphisms

U(2) ∼= Spinc(3) and Sp(2) ∼= Spin(5). (5)

They may be understood in terms of the real (d + 1)-dimensional vector space

H
0
2(�) =

{(
r k
k̄ −r

)
: (r, k) ∈ � × �

}

of 2 × 2 trace 0 Hermitian matrices Z, on which O�(2) acts by

Q · Z = QZQ�. (6)

This defines the action of Spinc(3) on �3 or Spin(5) on �5, although the former is often
given by the equivalent action on skew-Hermitian matrices.

For any n ≥ 2, let Vn+1,2 denote the Stiefel manifold of orthonormal 2-frames in
�n+1; it is a closed compact manifold of dimension (2n + 1)d − 2, whose elements are
specified by (n + 1) × 2 matrices (u v) over �, with orthonormal columns. The group
O�(2) acts freely on the right, and has orbit space the Grassmannian Grn+1,2. For
n = ∞, the colimit V2 := V∞,2 is contractible, and Gr2 := Gr∞,2 serves as a classifying
space BO�(2). In view of the accidental isomorphism (5), BO�(2) is BSpinc(3) or
BSpin(5), and the associated real (d + 1)-plane bundle χ is induced by the action (6).
Of course BO�(2) also admits the standard universal �2 bundle ω2, which is written
as ζ2 over BU(2) or ξ2 over BSp(2) in Section 4.

Note that O�(1) is the unit sphere and multiplicative subgroup Sd−1 < �×, and
BO�(1) is the projective space �P∞, with tautological line bundle ω = ω1; the latter
is written as ζ over �P∞ or ξ over �P∞. Thus, Sd−1 × Sd−1 < O�(2) is the subgroup
of diagonal matrices, and isomorphic to Spinc(2) or Spin(4). The points of �P∞ are
the 1-dimensional subspaces [u] of �∞, each of which is an equivalence class of unit
vectors u.

DEFINITIONS 2.1. The subgroup Pd < O�(2) consists of all matrices

{(
a 0
0 b

)
,

(
0 a
b 0

)
: a, b ∈ Sd−1

}
;
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the subgroups Fd := C2 × Sd−1 and Sd−1 × Sd−1 < Pd consist of matrices{(
a 0
0 a

)
,

(
0 a
a 0

)
: a ∈ Sd−1

}
and

{(
a 0
0 b

)
: a, b ∈ Sd−1

}

respectively, where C2 is generated by τ := (
0 1
1 0

)
.

REMARKS 2.2. The group Pd is the wreath product Sd−1 
 C2, and the normalizer
of Sd−1 × Sd−1 in O�(2); so it is isomorphic to the compact Lie group Pin ‡(d), where ‡
stands for c when d = 2, or − when d = 4 [19, Section 2]. This motivates the notation,
and holds because Pin ‡(d) is the normalizer of Spin ‡(d) in Spin ‡(d + 1), and Spin− =
Spin. The quotient epimorphism Pd → C2 is the composition of the determinant map
with the double covering Pin ‡(d) → O(d).

The left action (6) of Pd on � × � is made explicit by

τ · (r, k) = (−r, k̄) and
(

a 0
0 b

)
· (r, k) = (r, akb̄) . (7)

This splits as the product of the actions on � by det, and on �d ∼= � by

τ · k = k̄ and
(

a 0
0 b

)
· k = akb̄ . (8)

PROPOSITION 2.3. There are homeomorphisms of left coset spaces

(1) O�(2)/(Sd−1 × Sd−1) ∼= Sd , (2) O�(2)/Pd ∼= �Pd ,

(3) Pd/Fd ∼= Sd−1 and (4) Pd/(Sd−1 × Sd−1) ∼= C2.

Proof. For (1), observe that the left action (6) of O�(2) on Sd ⊂ � × � is transitive,
and (1, 0) has isotropy subgroup Sd−1 × Sd−1. The induced action of O�(2) on �Pd is
also transitive, and (2) holds because τ · (1, 0) = (−1, 0), so [1, 0] has isotropy subgroup
Pd . For (3), note that the left action (8) of Pd on Sd−1 ⊂ � is transitive, and 1 has
isotropy subgroup Fd . Finally, (4) is the isomorphism of topological groups induced
by the quotient epimorphism. �

Any closed subgroup H of a compact Lie group G gives rise to a bundle

G/H
i−→ BH

p−→ BG,

in which p is modelled by the natural projection EG/H → EG/G; see [29, Chapter II],
for example. So Proposition 2.3 has the following consequences.

COROLLARY 2.4. There exist bundles

(1) Sd −→ B(Sd−1 × Sd−1)
p1−→ BO�(2), (2) �Pd i2−→ BPd p2−→ BO�(2),

(3) Sd−1 −→ BFd p3−→ BPd , (4) C2 −→ B(Sd−1 × Sd−1)
p4−→ BPd ,

where (1) is the sphere bundle of χ , (2) is the projectivisation of χ , (3) is the sphere bundle
of the universal Pin ‡(d) vector bundle θ , and (4) is the double covering associated to the
determinant line bundle det(θ ).
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Proof. The homeomorphisms of Proposition 2.3 associate the left actions of O�(2)
on the coset spaces (1) and (2) to their left actions on Sd and �Pd , as given by (6); and
the left actions of Pd on the coset spaces (3) and (4) to their left actions on Sd−1 and
C2, as given by Remarks 2.2 and (8). �

REMARKS 2.5. The proof of Corollary 2.4 uses the orbit space

Γ := V2/Pd = {
[u], [v] : u, v ∈ S∞, u�v = 0

}
as a model for BPd . Its elements are unordered pairs of orthogonal lines in �∞, so
Γ may be interpreted as a subspace of SP2(�P∞). The corresponding models for
B(Sd−1 ×Sd−1) and BFd are V2/(Sd−1 ×Sd−1) and V2/Fd , respectively.

REMARKS 2.6. The universal Pin ‡(d) structure on θ corresponds to the induced
Spin ‡(d + 1) structure on det(θ ) ⊕ θ , via the isomorphism

p∗
2(χ ) ∼= det(θ ) ⊕ θ (9)

associated to the splitting (8) of (7). In the quaternionic case, this exemplifies [26,
Lemma 1.7]; moreover, Pin−(4) and Pin+(4) are isomorphic [5, Section 5.3], so θ must
not be confused with the universal Pin+(4) bundle over Γ . The latter involves modifying
(8) by τ · k = −k̄, for any k in � [6].

In either case, the bundle of Corollary 2.4(2) arises from the bundle (1) by factoring
out the action of τ , so the double covering (4) is also the S0-bundle of the tautological
real line bundle λ over �P(χ ). Thus, (9) coincides with the standard splitting of p∗

2(χ )
as λ ⊕ λ⊥.

The universal Pin ‡(d) disc bundle may be displayed as the diagram

S(θ )
⊂−−→ D(θ ) ⊃←−−−−−−→e

Γ, (10)

where e is the projection and the zero-section its left inverse. By (8) this is
homeomorphic to the diagram

V2 ×Pd Sd−1 ⊂−−→ V2 ×Pd Dd
⊃←−−−−−−→e

V2/Pd , (11)

where Pd acts on the unit disc Dd ⊂ � by τ · q = q̄ and
(

a 0
0 b

) · q = aqb̄. Then
Proposition 2.3(3) identifies S(θ ) as a model for BFd .

The open disc bundle associated to θ has fibre the open unit disc Dd
o ⊂ �, and total

space Do(θ ) = V2 ×Pd Dd
o .

DEFINITIONS 2.7. For any n ≥ 1, the smooth manifold Γn ⊂ Γ is the orbit space
Vn+1,2/Pd , of dimension (2n − 1)d. Its elements are unordered pairs of orthogonal
lines in �n+1, so Γn may be interpreted as a subspace of SP2(�Pn); it also admits the
Pin ‡(d) bundle θn, obtained by restricting θ .

By construction, the inclusion Γ ⊂ SP2(�P∞) is the colimit of the inclusions
Γn ⊂ SP2(�Pn), and (10) is the colimit of the disc bundle diagrams

S(θn)
⊂−−→ D(θn) ⊃←−−−−−−→en

Γn .

Similarly, Do(θ ) is the colimit of the total spaces Do(θn).
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3. Orthogonalisation and cofibre sequences. Inspiration for this section is
provided by [22], where the cofibre sequence

Sn iΔ−−→ SP2(Sn)
bΔ−−→ Th(η⊥

n ) −−→ . . . (12)

is introduced; iΔ denotes the inclusion of the diagonal Sn, and Th(η⊥
n ) is the Thom

space of the complement of the tautological line bundle ηn over �Pn, for n ≥ 1. Here,
an analogue of (12) is developed for SP2(�Pn), and Th(θn) is identified with the 1-point
compactification of the configuration space C2(�Pn).

Henceforth, it is convenient to denote SP2(�Pn) by SP2
n. Following Section 2,

�Pn is taken to be the quotient space S(n+1)d−1/Sd−1; so for any element {[w], [x]}
of SP2

n, the real number |w�x| is well-defined and varies continuously between 0
and 1. As referenced in Section 1, the diagonal �Pn = Δn ⊂ SP2

n has an open
neighbourhood associated to the tangent bundle τ�Pn , with fibre the open cone on
�Pnd−1. Our immediate aim is to describe a complementary relationship, between an
open neighbourhood of Γn and the bundle θn.

A brief diversion is required before proceeding to Theorem 3.2.

DEFINITION 3.1. For any n ≥ 1, the non-compact Stiefel manifold

Ṽn+1,2 := {
(w x) : ‖w‖ = ‖x‖ = 1, |w�x| < 1

}
consists of all normalised 2-frames over �, topologised as a subspace of �2(n+1); it
contains Vn+1,2 as a natural subspace.

The right action of Pd on Vn+1,2 clearly extends to Ṽn+1,2 by

(w x) · τ = (x w) and (w x) ·
(

a 0
0 b

)
= (wa xb), (13)

and the orbit space Ṽn+1,2/Pd may be identified with the subspace SP2
n \ Δn of SP2

n
under the homeomorphism that maps each orbit (w x)Pd to {[w], [x]}. On Vn+1,2, this
restricts to the inclusion Γn ⊂ SP2

n of Definition 2.7.

THEOREM 3.2. For any n ≥ 1 (including ∞), there is a homeomorphism

m : (Do(θn), Γn) −→ (SP2
n \ �n , Γn)

of pairs, which induces a deformation retraction of SP2
n \ �n onto Γn.

Proof. For any h in Dd
o ⊂ �, define the real number R and the positive definite

Hermitian matrix Mh by

R := (1 + |h|)1/2 + (1 − |h|)1/2 and Mh :=
(

R2/2 h
h̄ R2/2

)
R−1.

Straightforward manipulation shows that

M2
h =

(
1 h
h̄ 1

)
and M−1

h =
(

R2/2 −h
−h̄ R2/2

)
R−1(1 − |h|2)−1/2

. (14)

So (uh vh) := (u v)Mh lies in Ṽn+1,2 for any (u v) in Vn+1,2, because u�
hvh = h.
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The formula f ′((w x), h) := (wh xh) determines a function

f ′ : Vn+1,2 ×Dd
o −→ Ṽn+1,2,

which is continuous because Mh varies continuously with h. The equations

Mhτ = τ Mh̄ and Mh

(
a 0
0 b

)
=

(
a 0
0 b

)
Māhb

hold for all a, b in Sd−1, so f ′ is equivariant with respect to the free Pd -actions of
(11) on Vn+1,2 ×Dd

o and (13) on Ṽn+1,2. Moreover, f ′′(w x) := ((w x)M−1
k ; k) defines an

equivariant inverse, where k := w�x satisfies |k| < 1. So f ′ induces a homeomorphism
f : Do(θn) → SP2

n \ �n of Pd -orbit spaces. It acts as the identity on the subspace of
elements ((w x), 0), which descends to the zero section Γn of Do(θn).

Since |u�
hvh| = t if and only if |h| = t, the required retraction is defined by lt :=

f ◦ t• ◦ f −1, where t• denotes fibrewise multiplication by t in Do(θn) for 0 ≤ t ≤ 1; in
particular, l0 = f ◦ en ◦ f −1 since 0• is projection.

For both statements, the case n = ∞ is obtained by taking colimits. �

REMARK 3.3. The homeomorphism f ′′ exemplifies Löwdin’s symmetric
orthogonalisation procedure [27], which originally arose in the literature of quantum
chemistry, albeit over �. There seem to be no explicit references over �, but the proof
remains valid because quaternionic matrices have polar forms [42]. For any normalised
2-frame (w x), where w�x = k and |k| < 1, the 2-frame

(wk xk) := (w x)M−1
k

is orthonormal, and its construction is invariant with respect to interchanging vectors
in each frame. The procedure works because Mk is the unique positive definite square
root of (w x)�(w x), as confirmed by (14).

COROLLARY 3.4. For any n ≥ 1, the configuration space C2(�Pn) is homeomorphic
to Do(θn), and homotopy equivalent to Γn. �

Since the quotient space SP2
n/Δn is homeomorphic to the one-point

compactification of C2(�Pn), Corollary 3.4 shows that both may be identified with
the Thom space Th(θn), for any n ≥ 1.

Now recall the canonical projection π : Bn → SP2
n of (2), where Bn denotes the

Borel construction S∞ ×C2 (�Pn × �Pn). Following (3), its restriction to the diagonal
Δ̂n is the projection π2 : �P∞ × �Pn → �Pn onto the second factor. For convenience,
�P∞ × �Pn will usually be abbreviated to RKn.

PROPOSITION 3.5. For every n ≥ 1, the map π induces a commutative ladder

RKn in−−−−→ Bn
bn−−−−→ Th(θn) −−−−→ . . .

π2

⏐⏐� ⏐⏐�π

⏐⏐�id

�Pn iΔ−−−−→ SP2
n

bΔ−−−−→ Th(θn) −−−−→ . . .

(15)

of homotopy cofibre sequences.
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Proof. Both in and iΔ are CW inclusions, and π is an off-diagonal homotopy
equivalence, as noted in (3). It therefore induces a map

RKn in−−−−→ Bn
qn−−−−→ Bn/Δ̂n −−−−→ . . .

π2

⏐⏐� ⏐⏐�π

⏐⏐�π ′′

�Pn iΔ−−−−→ SP2
n

qΔ−−−−→ SP2
n/Δn −−−−→ . . .

(16)

of cofibre sequences, where π ′′ is a homotopy equivalence. To complete the proof,
define bn to be the composition π ′′ ◦ qn. �

REMARK 3.6. The lower row of (15) is our promised analogue of (12).

The corresponding ladder of colimits is given by

RK∞ i−−−−→ B
b−−−−→ MPd −−−−→ . . .

π2

⏐⏐� ⏐⏐�π

⏐⏐�id

�P∞ iΔ−−−−→ SP2 bΔ−−−−→ MPd −−−−→ . . .

, (17)

where MPd (more commonly written as MPin‡(d)) denotes the Thom space of the
Pin ‡(d) bundle θ . Ladder (17) also commutes, and its rows are cofibre sequences; it
is the primary input for the cohomology calculations of the remaining sections. If so
preferred, the crucial properties of (16) may be deduced directly from Bredon’s results
[10, Chapter VII], using Čech cohomology.

The upper row of (17) may be replaced by the homotopy cofibre sequence

BFd p3−−→ BPd j−−→ MPd −−→ . . . , (18)

where MPd is homeomorphic to the mapping cone of p3, and j denotes the inclusion
of the zero section. The resulting ladder is homotopy commutative, because there are
homotopy equivalences h1 and h2 for which the square

BFd p3−−−−→ BPd

h1

⏐⏐� ⏐⏐�h2

RK∞ i−−−−→ B

(19)

is homotopy commutative. The existence of h1 and h2 involves standard manipulations
with models for classifying spaces, following [30], for example. Similar arguments with
h2 lead to a homotopy equivalence between fibrations

B(S3 ×S3)
p4−→ BPd −→ �P∞ and �P∞ × �P∞ k−→ B −→ �P∞ ; (20)

the former arises by classifying Corollary 2.4(4) and the latter is the Borel bundle (1).

4. Characteristic classes. In this section, characteristic classes are determined
for various of the vector bundles introduced above. The results are expressed in the
notation of Section 2, and play an important part in the final calculations.

https://doi.org/10.1017/S0017089518000034 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000034


SYMMETRIC SQUARES OF PROJECTIVE SPACE 713

The integral cohomology rings

H∗(BO�(1)+) ∼= �[z] and H∗(BO�(2)+) ∼= �[l1, l2] (21)

are standard, as are the properties of their generators. In particular, z has dimension d,
and is the 1st Chern class c1(ζ ) or the 1st symplectic Pontryagin class p1(ξ ); similarly,
l1 and l2 have dimensions d and 2d, and are the 1st and 2nd Chern classes of ζ2 or
the 1st and 2nd symplectic Pontryagin classes of ξ2, respectively. Tensoring with �/2
yields the corresponding rings with mod 2 coefficients, so z, l1, and l2 may be confused
with their mod 2 reductions by allowing the context to distinguish between them. With
this convention, the non-zero Stiefel–Whitney classes of the stated bundles are given
by

wd (ω) = z, wd (ω2) = l1, w2d (ω2) = l2 and wd (χ ) = l1

in H∗(BO�(1); �/2) and H∗(BO�(2); �/2) respectively.
Our calculations also involve �P∞, and its tautological real line bundle η. The

integral and mod 2 cohomology rings are given by

H∗(�P∞
+ ) ∼= �[c]/(2c) and H∗(�P∞

+ ; �/2) ∼= �/2[a], (22)

where c = c1(η�) has dimension 2 and a = w1(η) has dimension 1. In this case,
reduction mod 2 satisfies ρ(c) = a2. Because H∗(�P∞) is torsion free, it follows from
the Künneth formula that the integral and mod 2 cohomology rings of RK∞ are given
by

H∗(RK∞
+ ) ∼= �[c, z]/(2c) and H∗(RK∞

+ ; �/2) ∼= �/2[a, z], (23)

where a, c, and z are pullbacks of their namesakes along the projections.
The cohomology rings of �Pn, Grn+1,2, �Pn, and �P∞ × �Pn are obtained from

(21)–(23) by appropriate truncation.
Remarks 2.2 identify the epimorphism Pd → C2 with det, and Remarks 2.6 show

that the line bundle λ is classified by the induced map

Bdet : BPd −→ �P∞,

which will also be denoted by λ. In particular, w1(λ) is given by λ∗(a) in
H1(BPd ; �/2), and c1(λ�) by λ∗(c) in H2(BPd ). By definition, λ restricts to ηd

over the fibre �Pd of Corollary 2.4(2), so i∗2(w1(λ)) = a in H1(�Pd ; �/2) and
i∗2(c1(λ�)) = c in H2(�Pd ). Henceforth, w1(λ) and c1(λ�) are written as a and c,
respectively.

REMARK 4.1. The epimorphism det restricts to the identity on the subgroup C2 <

Pd , so H∗(�P∞; R) is a summand of H∗(BPd ; R) for coefficients R = � or �/2. All
powers of the elements a and c are therefore non-zero.

Now consider the pullback of ω2 along the projection p2 : BPd → BO�(2) of
Corollary 2.4(2), and its characteristic classes x := p∗

2(l1) and y := p∗
2(l2). Equating the

total Stiefel–Whitney classes of (9) gives

1 + x = (1 + a) w(θ ).
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in H∗(BPd ; �/2). Since wi(θ ) = 0 for i > d, it follows that

w(θ ) = 1 + a + · · · + ad + x, (24)

and hence that ad+j = ajx in Hd+j(BPd ; �/2) for every j ≥ 1.

REMARKS 4.2. These formulae highlight the importance of the integral
cohomology class m := cd/2 + x, whose mod 2 reduction ad + x will also be written
as m. Then equation (24) confirms that w2(θ ) = m is the reduction of an integral class
when d = 2, and that w2(θ ) = w2

1(θ ) (because both are equal to a2) when d = 4. These
are defining properties for Pin ‡(d)-bundles [19, Section 2].

The map p2 imposes an H∗(BO�(2)+; R)-algebra structure on H∗(BPd
+; R). For R =

�/2, the Leray–Hirsch theorem proves that p∗
2 injects �/2[l1, l2] as a direct summand

[20], and that H∗(BPd
+; �/2) has basis 1, a, . . . , ad thereover. Combined with (24), this

identifies H∗(BPd
+; �/2) as the �/2 algebra

G∗ := �/2[a, m, y]/(am). (25)

The integral characteristic classes of Pin ‡(d)-bundles are equally important.

THEOREM 4.3. The integral cohomology ring H∗(BPd
+) is isomorphic to

Z∗ := �[c, m, y]/(2c, cm).

Proof. Consider the Leray–Serre spectral sequence

Ep,q
2 := Hp(BO�(2)+; Hq(�Pd

+)) =⇒ Hp+q(BPd
+)

of the fibration p2, noting that BO�(2) is simply connected. Since H∗(BO�(2)) is free
abelian and even dimensional, there are isomorphisms

E∗,∗
∞ ∼= E∗,∗

2
∼= H∗(BO�(2)+) ⊗ H∗(�Pd

+);

thus p∗
2 is monic, and i∗2(c) = c in H2(�Pd

+). So any additive generator xiyj ⊗ ck of E∗,∗
∞

is represented by xiyjck in H∗(BPd
+), and there is an isomorphism E∗,∗

∞ ∼= H∗(BPd
+) of

H∗(BO�(2)+)+-modules, on generators 1, c, . . . , cd/2.
The multiplicative structure is described by the single relation cd/2+1 = cx, or

cm = 0, which follows from Remark 4.1 and the fact that cx �= 0. �
REMARKS 4.4. The homotopy commutative square (19) may be used to transport

the cohomology classes c, z, and a to H∗(BFd ), and c, a, x, and y to H∗(B) (supressing
h∗

1 and h∗
2 from the notation). The homotopy equivalence of (20) ensures that x and y

are then characterised by the facts that they satisfy

k∗(x) = z1 + z2 and k∗(y) = z1z2

in H∗(�P∞ × �P∞) and are pullbacks from H∗(BO�(2)). These conventions lead to
isomorphisms H∗(BFd

+ ) ∼= �[c, z]/(2c) and H∗(B+) ∼= Z∗.
Similarly, bundles η and ω are defined over BFd as pullbacks from RK∞.

Now recall Corollary 2.4 and consider the bundle

O�(2)/Fd −→ BFd p5−→ BO�(2),
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whose projection p5 factorises as p2 ◦ p3. The pullback γ := p∗
5(ω2) is a complex or

quaternionic 2-plane bundle, and is induced by a representation of Fd on �2, given by
Definitions 2.1. In terms of the basis {(1,±1)t}, the representation is equivalent to a
sum α ⊕ β of 1-dimensionals, where

α(τ, a) = · a and β(τ, a) = · (−a)

respectively, for any a in Sd−1. In other words, there is an isomorphism

γ ∼= ω ⊕ (η ⊗� ω). (26)

LEMMA 4.5. The characteristic classes of γ are given by

l1(γ ) = cd/2 + 2z and l2(γ ) = (cd/2 + z)z in H∗(BFd ), and

wd (γ ) = ad and w2d (γ ) = (ad + z)z in H∗(BFd ; �/2).

Proof. By (26), the total Chern or symplectic Pontryagin class is given by

l(γ ) = (1 + z)(1 + cd/2 + z) = 1 + cd/2 + 2z + cd/2z + z2.

This makes l1 and l2 explicit, and determines wd and w2d by applying ρ. �
Also, consider the real line bundle p∗

3(λ) over BFd . By analogy with Remark 4.1,
the composition C2 < Fd < Pd is the standard inclusion; so there is an isomorphism
p∗

3(λ) ∼= η, whence

w1(p∗
3(λ)) = a and c1(p∗

3(λ�)) = c (27)

in H1(BFd ; �/2) and H2(BFd ), respectively.

LEMMA 4.6. The homomorphism p∗
3 : Z∗ → �[c, z]/(2c) is determined by

p∗
3(m) = 2z, p∗

3(y) = (cd/2 + z)z, and p∗
3(c) = c.

Proof. It suffices to combine Lemma 4.5 with (27). �
Over �/2, the formulae become p∗

3(m) = 0, p∗
3(y) = (ad + z)z and p∗

3(a) = a.

5. Mod 2 cohomology. In this section, the homotopy commutative ladder (17) is
exploited to compute the cohomology ring H∗(SP2; �/2) in terms of H∗(B; �/2) and
the Thom isomorphism. Some results are specific cases of those of Nakaoka [33].

To ease the calculations, it is convenient to identify the upper cofibre sequence
with (18), and use Remarks 4.4. The long exact sequence

. . .
δ←− H∗(RK∞

+ ; �/2)
i∗←− H∗(B+; �/2)

b∗←− H∗(MPd ; �/2)
δ←− . . . (28)

becomes the Gysin sequence for the bundle θ , and may be rewritten as

. . .
δ←− �/2[a, z]

p∗
3←− G∗ ·m←− G∗−d δ←− . . . , (29)
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where .m denotes multiplication by the Euler class m = wd (θ ). The Thom isomorphism
identifies H∗(MPd ; �/2) with the free G∗-module G∗〈t〉 on a single d-dimensional
generator t, otherwise known as the Thom class, which satisfies b∗(t) = m. The
multiplicative structure of H∗(MPd ; �/2) is determined by the relation t2 = mt, and
may be encoded as an isomorphism

H∗(MPd ; �/2) ∼= tG∗[t]/(t2 + mt) (30)

of algebras over �/2, where tG∗[t] represents the ideal (t) ⊂ G∗[t]. The implication that
p∗

3(m) = 0 is confirmed by the mod 2 version of Lemma 4.6.
So the key to calculation is held by δ, and its values on zk for k > 0. For notational

simplicity, it is convenient to let R = � or �/2, and write

δk := δ(zk) (31)

in Hkd+1(MPd ; R). The Thom isomorphism is defined by relative cup product, and the
following basic property [13, (8.13)] is required.

LEMMA 5.1. For any u in H∗(BPd ; R) and v in H∗(BFd ; R), the equation

δ(p∗
3(u)v) = uδ(v)

holds in H∗(MPd ; R). �

Lemma 4.6 and (30) then imply that δ(ajzk) = ajδk for any j ≥ 0 and k ≥ 1, and
that the second order recurrence relation

δk+2 = adδk+1 + yδk with δ0 = 0, δ1 = at (32)

holds in H∗(MPd ; �/2). So δ may be found in terms of a, y and t by standard techniques
from the theory of generalised Fibonacci polynomials [3].

Over any commutative ring Q with identity, these polynomials lie in Q[x1, x2], and
are specified by the recurrence relation

qk+2 = x1qk+1 + x2qk with q0 = 0, q1 = 1; (33)

when x2 = 1, they reduce to the Fibonacci polynomials [21]. Alternative choices of
q0 and q1 create new sequences of polynomials, which may be written as sums of
monomials by adapting the methods of [3, Section 2]. When applied to (32) with
Q = H∗(MPd ; �/2), they lead to the following.

PROPOSITION 5.2. For any k > 0, the equation

δk =
∑

0≤i≤(k−1)/2

(
k − 1 − i

i

)
a(k−1−2i)d+1yi t (34)

holds in Hkd+1(MPd ; �/2). �

Equation (34) may also be read off from [17, p. 252]. Only the parity of the binomial
coefficients is relevant, and by [39, Lemma 2.6]

(a
b

)
is odd precisely when the 1s in the

dyadic expansion of b form a subset of the 1s in the dyadic expansion of a. For example,
δ2 = ad+1 t and δ3 = a2d+1 t + ayt.
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REMARK 5.3. An immediate consequences of Proposition 5.2 is that

δk ≡ a(k−1)d+1 t mod (y)t

for all k > 0, and therefore that δk is non-zero.

These results may be used to understand the long exact cohomology sequence of
the lower cofiber sequence of (17), for which the commutative square

H∗(MPd ; �/2)
δ←−−−− H∗−1(RK∞; �/2)

id

�⏐⏐ �⏐⏐π∗
2

H∗(MPd ; �/2)
δ←−−−− H∗−1(�P∞; �/2)

is crucial. The composition δ ◦ π∗
2 is monic, because π∗

2 : �/2[z] → �/2[a, z] is the
natural inclusion and δk is never 0. The lower δ is therefore also monic, and Nakaoka’s
short exact sequence [33, p 668]

0 ←− H∗(SP2; �/2)
b∗

Δ←− H∗(MPd ; �/2)
δ←− H∗−1(�P∞; �/2) ←− 0 (35)

emerges immediately. Of course, (35) splits as vector spaces over �/2.

THEOREM 5.4. There is an isomorphism

H∗(SP2; �/2) ∼= tG∗[t]/(t2 + mt, δk : k > 0),

where t and m have dimension d, and δk has dimension kd + 1.

Proof. It follows from (35) that there is an isomorphism

H∗(SP2; �/2) ∼= H∗(MPd ; �/2)/δ(H∗−1(�P∞; �/2))

of rings, so it suffices to note that H∗(�P∞; �/2) is generated by the zk. �
REMARKS 5.5. Since δkt = 0 in H∗(MPd ; �/2) for every k > 0, the summand �〈δk〉

coincides with the ideal (δk). Only monomials of the form miyj t multiply non-trivially
in H∗(SP2; �/2), subject to the relation t2 = mt.

The isomorphism of Theorem 5.4 may be clarified by importing the values of δk

from Proposition 5.2. For example, δ3 = 0 gives a5 t = ayt in the complex case and
a9 t = ayt in the quaternionic case, in dimensions 7 and 13, respectively.

6. Integral cohomology. In this section, the commutative ladder (17) is exploited
to compute the integral cohomology rings H∗(MPd ) and H∗(SP2). Input is provided
by the geometric and mod 2 cohomology results of Sections 3–5. As in earlier sections,
integral cohomology classes and their mod 2 reductions may be written identically
when the context is sufficient to distinguish between them.

The integral version of (28) is the long exact sequence

. . .
δ←− H∗(RK∞

+ )
i∗←− H∗(B+)

b∗←− H∗(MPd )
δ←− . . . . (36)

The bundle θ has no integral Euler class, because w1(θ ) = a by (24); so (29) has
no analogue over �. Nevertheless, almost all the required information can be deduced
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directly from (36), by separating the cohomology groups into even and odd dimensional
summands.

By Theorem 4.3 and Remarks 4.4, Hod (B) and Hod (RK∞) are zero. So (36) reduces
to a collection of exact sequences of length 4, which together imply that b∗ and δ induce
isomorphisms

Hev(MPd ) ∼= Ker i∗ and Hod (MPd ) ∼= Cok i∗ (37)

respectively. The relative cup product invests H∗(MPd ) with a natural module structure
over Z∗, and the first isomorphism is of Z∗-algebras; it interacts with δ as in Lemma
5.1. The second isomorphism is of graded abelian groups, and shifts dimension by 1.

LEMMA 6.1. The kernel of i∗ is the principal ideal (m2 − 4y) in Z∗.

Proof. Lemma 4.6 implies that i∗(m2 − 4y) = 0, so (m2 − 4y) ⊆ Ker i∗.
On the other hand, let f (m, y) + g(c, y) denote an arbitrary element

k∑
i=0

fi m2(k−i)yi +
k−1∑
j=0

gj c(k−j)dyj (38)

of Z2kd , and suppose that it is annihilated by i∗; then

f (2z, (cd/2 + z)z) + g(c, (cd/2 + z)z) = 0

in �[c, z]/(2c). Equating coefficients of ckd , c(k−1/2)dz, . . . , c(k−(k−1)/2)dzk−1 shows that
g0, g1, . . . , gk−1 ≡ 0 mod 2, and hence that g(c, y) = 0. Equating coefficients of z2k

shows that f + := ∑k
i=0 22(k−i)fi = 0, and hence that

f (m, y)|m2=4y = f +yn = 0.

Thus, m2 − 4y divides f (m, y). Similar arguments apply to elements of Z2(kd+q) for
1 ≤ q < d, and confirm that Ker i∗ ⊆ (m2 − 4y) in Z∗. �

REMARK 6.2. To describe the image of i∗, it therefore suffices to work modulo
(m2 − 4y); moreover, every element of the ideal takes the form f (m, y)(m2 − 4y) for
some polynomial f in �[m, y], because c(m2 − 4y) = 0 in Z2d+2.

LEMMA 6.3. The cokernel of i∗ is isomorphic to the �/2-module on basis elements
cizj for 0 ≤ i < jd/2.

Proof. First observe that i∗(2yk) = 2z2k and i∗(myk) = 2z2k+1 in H∗(RK∞
+ ), for

every k > 0. So Cok i∗ is a �/2-module, spanned by those elements cizj for which i ≥ 0
and j > 0. There are relations amongst them because

i∗(yj) = (cd/2 + z)jzj = 0 (39)

in Cok i∗, and (39) may also be multiplied by any ci. The resulting expression

cjd/2zj =
∑

0<i≤j

(
j
i

)
c(j−i)d/2zj+i (40)
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describes cjd/2zj as a homogeneous linear combination of monomials cazb for which 0 ≤
a < bd/2. By iteration, a similar description arises for any cizj; this iteration terminates,
because every step reduces the powers of c that occur.

Linear independence of the cazb follows by assuming that

∑
0<i≤k

εi c(k−i)d/2zk+i = f (2z, (cd/2 + z)z) + g(c, (cd/2 + z)z)

in H2kd (RK∞), with εi = 0 or 1 for i < k. Adapting the proof of Lemma 6.1 shows
that g0, g1, . . . , gk−1, fk ≡ 0 mod 2, so εi = 0 for i < k and εk ≡ 0 mod 2, as required.
Similar arguments apply in dimensions 2(kd + q), for 1 ≤ q < d. �

To illustrate the iteration, note that (40) gives c3d/2z3 = cdz4 + cd/2z5 + z6 for j = 3;
so c5d/2z3 = c2dz4 + c3d/2z5 + cdz6. Importing c2dz4 = z8 yields

c5d/2z3 = c3d/2z5 + cdz6 + z8,

which is of the required format.

REMARK 6.4. Lemma 6.3 shows that the coefficient homomorphism 2: � → �

induces the zero homomorphism on Hod (MPd ), and the associated long exact
cohomology sequence proves that mod 2 reduction is monic.

THEOREM 6.5. As a Z∗-module, H∗(MPd ) is generated by a 2d-dimensional element
s of infinite order, and the jd + 1-dimensional elements δj of order 2, for j > 0. The module
structure is determined by cs = mδj = 0,

cjd/2δj =
∑

0<i≤j

(
j
i

)
c(j−i)d/2δj+i, and yδj = cd/2δj+1 + δj+2;

the algebra structure is determined by

s2 = (m2 − 4y)s and δiδj = sδi = 0,

for every i > 0.

Proof. Define s by b∗(s) = m2 − 4y, and δj by (31). The abelian group structure then
follows from Lemmas 6.1 and 6.3, and Remark 6.2. The relation cs = 0 holds because
b∗(cs) = c(m2 − 4y) = 0 by Theorem 4.3, and b∗ is monic; also, mδj = δ(2zj+1) = 0 for
any j, by Lemma 5.1. The formula for cjd/2δj arises by applying δ to (40), and the
formula for yδj is the integral analogue of (32).

The relation s2 = (m2 − 4y)s holds because b∗ is monic, and δiδj = 0 because
Hev(MPd ) is torsion free. Finally, the mod 2 reduction ρ(sδi) = ρ(s)δi is zero by
Remarks 5.5, so sδi = 0, by Remark 6.4. �

COROLLARY 6.6. There is an isomorphism

Hod (MPd ) ∼= �/2〈ciδj : 0 ≤ i < jd/2〉

of graded abelian groups.
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By analogy with the mod 2 case, Theorem 6.5 may now be applied to study the
lower row of the cohomology ladder

. . .
δ←−−−− H∗(RK∞

+ )
i∗←−−−− H∗(B+)

b∗←−−−− H∗(MPd )
δ←−−−− . . .�⏐⏐π∗

2

�⏐⏐π∗
�⏐⏐id

. . .
δ←−−−− H∗(�P∞

+ )
i∗Δ←−−−− H∗(SP2

+)
b∗

Δ←−−−− H∗(MPd )
δ←−−−− . . .

associated to (17).

REMARKS 6.7. Since π∗
2 : �[z] → �[c, z]/(2c) is the canonical inclusion, Theorem

6.5 shows that the lower δ acts by δ(zj) = δj in Hkd+1(MPd ) for every j > 0. Since
2δj = 0, the kernel of δ is the principal ideal (2z), and is additively generated by 2zj in
each dimension jd.

These observations lead to additive descriptions of Hod (SP2) and Hev(SP2).

PROPOSITION 6.8. There is an isomorphism

Hod (SP2) ∼= �/2〈ui,j : 0 < i < jd/2〉
of graded abelian groups, where ui,j has dimension 2i + jd + 1; in particular, Hod (SP2) =
0 only in dimensions 1, 3, and 5, together with 9 when � = �.

Proof. Remarks 6.7 imply that b∗
Δ(δj) = 0 in Hjd+1(SP2), and that

ui,j := b∗
Δ(ciδj) (41)

is non-zero and has order 2 in H2i+jd+1(SP2), for every 0 < i < jd/2. By Corollary
6.6, these elements exhaust the image of b∗

Δ, which is epic in odd dimensions because
Hod (�P∞) is zero. �

Note that ujd/2,j = ∑
0<i≤j

(j
i

)
u(j−i)d/2,j+i in H2jd+1(SP2), for any j > 0.

REMARK 6.9. Proposition 6.8 shows that mod 2 reduction is monic on Hod (SP2),
by analogy with Remark 6.4.

Remarks 6.7 confirm the existence of elements np in Hpd (SP2) such that i∗Δ(np) =
2zp, for every p > 0; they are well-defined up to the image of b∗

Δ.

PROPOSITION 6.10. The graded abelian group Hev(SP2) is torsion-free, and admits a
canonical choice of generator np in each dimension pd.

Proof. By Lemma 6.1, b∗ injects Hev(MPd ) into Hev(B) as the ideal (m2 − 4y). Thus,
b∗

Δ injects Hev(MPd ) as a subring Q∗ of Hev(SP2), and π∗ maps Q∗ isomorphically to
(m2 − 4y). So there is a split short exact sequence

0 ←−− �〈2zp〉 i∗Δ←−− �〈np〉 ⊕ Qpd b∗
Δ←−− �〈mqyrs〉 ←−− 0 (42)

for each p ≥ 1, where q and r range over q, r ≥ 0 such that q + 2r + 2 = p. As p varies,
(42) confirms that Hev(SP2) is torsion free.

Since π∗ is a �[1/2] isomorphism, it is monic on Hev(SP2). In dimension 2kd,
therefore, n2k may be specified uniquely by π∗(n2k) = 2yk. For, if no such element
exists, then π∗(n2k) − 2yk = α for some nonzero α in (m2 − 4y); hence π∗(α′) = α for
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some α′ in Q2kd , and π∗(n2k − α′) = 2yk, which is a contradiction. The same argument
works in dimension (2k − 1)d, after replacing 2yk by myk−1. In either dimension np is
an additive generator. �

Henceforth, np is assumed to be chosen in this way, for any p. The cases

g := n1 and h := n2 (43)

in Hd (SP2) and H2d (SP2) are sufficiently important to merit special notation.

THEOREM 6.11. There is an isomorphism

H∗(SP2
+) ∼= � [hp/2p−1, gqhr/2r, ui,j] / I,

where p, q ≥ 1, r ≥ 0 and 0 < i < jd/2, and I denotes the ideal

(2ui,j, ui,juk,l, ui,jhp/2p−1, ui,jgqhr/2r) ;

the classes g, h, and ui,j are those of (43) and (41) respectively.

Proof. Since π∗ embeds Hev(SP2) in Hev(B; �[1/2]), the canonical additive
generators g and h may be identified with their images m and 2y, respectively; similarly,
the generators n2k−1 and n2k may be identified with myk−1 and 2yk, and therefore with
ghk−1/2k−1 and hk/2k−1. In particular, b∗

Δ(s) = g2 − 2h.
From this viewpoint, the short exact sequence (42) prescribes additive bases

hk/2k−1, hk−1(g2 −2h)/2k−1, . . . , g2k−2r−2hr(g2 −2h)/2r, . . . , g2k−2(g2 −2h)

in dimensions 2kd, and

ghk/2k, ghk−1(g2 −2h)/2k−1, . . . , g2k−2r−1hr(g2 −2h)/2r, . . . , g2k−1(g2 −2h)

in dimensions (2k + 1)d, where 0 ≤ r < k. These are equivalent to bases

hk/2k−1, . . . , g2k−2rhr/2r, . . . , g2k and ghk/2k, . . . , g2k−2r+1hr/2r, . . . , g2k+1,

respectively, which exhibit the stated multiplicative structure on Hev(SP2).
For the products in I , note that ui,juk,l = 0 because Hev(SP2) is torsion free, by

Proposition 6.10. Furthermore, ρ(ui,j) = b∗
Δ(a2iδj) in H2i+jd+1(SP2; �/2), so ρ(ui,jnp) =

ρ(ui,jgqhr/2r) = 0 by Remarks 5.5. Finally, Remark 6.9 shows that ui,jnp = ui,jgqhr/2r =
0, as required. �

7. Mod 2 truncation. In the final two sections, it remains to describe how the
cohomology rings of Γn, Bn, and SP2

n are obtained from the calculations above, using
the restriction homomorphisms induced by inclusion. All the resulting truncations are
valid for any n ≥ 1, although the case n = 1 is degenerate. For notational simplicity,
cohomology classes and their restrictions are written identically in both sections.

This section focuses mainly on mod 2 cohomology.
The first space to consider is Γn. As described in Definition 2.7, it is the total

space �P(χn) of the projectivisation of the restriction to Grn+1,2 of the universal
Spin(d + 1) bundle over BO�(2). By Corollary 3.4, it is also homotopy equivalent
to the configuration space C2(�Pn), whose one-point compactification is the Thom
space Th(θn).
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The cohomology ring of the Grassmannian is given by the truncation

H∗((Grn+1,2)+; R) ∼= R[l1, l2]/(σn, σn+1)

of H∗(BO�(2); R), where R = � or �/2 and the σk satisfy

σk+2 = −l1σk+1 − l2σk with σ0 = 1, σ1 = −l1 (44)

in R[l1, l2]. Thus, (44) fits into the framework of (33), and leads to

σk =
∑

0≤i≤k/2

(−1)k−i
(

k − i
i

)
lk−2i
1 li

2 (45)

in dimension kd, for k ≥ 1; this agrees with Yasui [41, (4.7)]. Proceeding as for (25),
H∗((Γn)+; �/2) may then be identified with the �/2-algebra

G∗
n := �/2[a, m, y]/(am, νn, νn+1),

where νk = σk(ad +m, y) in Hkd (Γ ; �/2), for k ≥ 1.
The analogues of (29) and (30) confirm the existence of an isomorphism

H∗(Th(θn); �/2) ∼= tG∗
n[t]/(t2 + mt), (46)

where t is pulled back from the universal Thom class in Hd (MPd ; �/2). The associated
Euler class is m, as before.

REMARK 7.1. Care is required to work with the restriction homomorphism on
H∗(MPd ; �/2). Its kernel is the ideal (νn, νn+1)t, so (46) may be rewritten as

H∗(Th(θn); �/2) ∼= H∗(MPd ; �/2)/(νn, νn+1)t,

for any n ≥ 1. For example, ν3 = x3 in G3d
2 , so a2x3 t lies in (ν3)t and is 0 in

H4d+2(Th(θ3); �/2); however, a2x3 t does not lie in the ideal (ν3 t).

In order to complete the calculation of H∗(SP2
n; �/2), it suffices to apply restriction

to (35), and consider the resulting exact sequence

. . .←−H∗(SP2
n; �/2)

b∗
Δ←−H∗(Th(θn); �/2)

δ←−H∗−1(�Pn; �/2)←− . . . . (47)

Of course, Nakaoka’s results show that (47) is also short exact. In the current context,
this follows from the fact that restriction truncates H∗(�P∞; �/2) and H∗(MPd ; �/2)
by the ideals (zn+1) and (νn, νn+1)t, respectively. So restriction is an isomorphism on
H∗(MPd ; �/2) in dimensions ≤ (n + 1)d − 1, and maps δk to its non-zero namesake in
Hkd+1(Th(θn); �/2) for each 1 ≤ k ≤ n. Hence δ in (47) is monic, as required.

THEOREM 7.2. For any n ≥ 1, there are isomorphisms

H∗(SP2
n; �/2) ∼= tG∗

n[t]/(t2 + mt, δk : 0 < k ≤ n)
∼= H∗(SP2; �/2)

/
(νn, νn+1)t/(aνn+l t : l ≥ 0)

of graded �/2-algebras.

Proof. The first isomorphism arises by adapting the proof of Theorem 5.4 to
the short exact sequence (47). In particular, restriction induces an epimorphism onto
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H∗(SP2
n; �/2), with kernel b∗

Δ((νn, νn+1)t). Comparing (34) with (45) and using the
relation ax = ad+1 from (24), gives δr+1 = aνr t in H(r+1)d+1(MPd ; �/2) for any r ≥ 1;
so b∗

Δ has kernel (aνn+l t : l ≥ 0), and the second isomorphism holds. �
For example, the classes ν2 t = (a2d + m2 + y)t and ν3 t = (a3d + m3)t are non-

zero in (ν2, ν3)t/(aν2+l t : l ≥ 0). In general, (aνn+l t : l ≥ 0) is simply a copy of �/2 <

(νn, νn+1)t in each dimension (n + l + 1)d + 1.

8. Integral truncation. Our final section completes the calculations, by focusing
on the integral cohomology rings of Γn, Bn, and SP2

n. An important intermediate step
is the study of H∗(Th(θn)), whose global structure is best described in the spirit of
[11], using local coefficients. That approach will, however, be pursued elsewhere, and
attention will be restricted here to the applications.

As in the mod 2 case, the first space to consider is the configuration space Γn �
C2(�Pn), whose integral cohomology follows from the Leray–Serre spectral sequence
for the fibration �Pd → Γn → Grn+1,2, by restricting the cohomology of the base in
the proof of Theorem 4.3.

THEOREM 8.1. For any n ≥ 1, there are isomorphisms

H∗((Γn)+) ∼= �[c, m, y]/(2c, cm, νn, νn+1) ∼= H∗(Γ+)/(νn, νn+1)

of graded rings, where νk = σk(cd/2 +m, y) in Hkd (Γ ) for every k ≥ 1.

Our next task is to study H∗(Th(θn)). The crucial geometric input is the
commutative diagram (15) (whose upper row no longer arises from a 3-sphere bundle
for any finite n). Applying H∗(−) gives the commutative ladder

. . .
δ←−−−− H∗(RKn

+)
i∗n←−−−− H∗((Bn)+)

b∗
n←−−−− H∗(Th(θn))

δ←−−−− . . .

π∗
2

�⏐⏐ �⏐⏐π∗
�⏐⏐id

. . .
δ←−−−− H∗(�Pn

+)
i∗Δ←−−−− H∗((SP2

n)+)
b∗

Δ←−−−− H∗(Th(θn))
δ←−−−− . . .

(48)

for any n ≥ 1. Elements c, x, m, and y are defined in H∗(Bn) via Remarks 4.4, such
that H∗(RKn

+) is the truncation �[c, z]/(2c, zn+1) and Hod (RKn) = 0. To describe H∗(Bn)
more precisely, a brief diversion is required.

For any k ≥ 0, consider the power sum polynomial

rk(e1, e2) = zk
1 + zk

2 , (49)

where e1 = z1 + z2 and e2 = z1z2. The rk lie in �[e1, e2], and satisfy

rk+2 = e1rk+1 − e2rk with r0 = 2, r1 = e1. (50)

They fit into the framework of (33), and are given by

rk =
∑

0≤i≤k/2

(−1)i
(

2
(

k − i
i

)
−

(
k − i − 1

i

))
ek−2i

1 ei
2 . (51)
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REMARKS 8.2. Iterating (50) shows that rk+t lies in the ideal (rk, rk+1) for any t ≥ 0,
and that rk ≡ (−1)k/22ek/2

2 mod (e1) for every even k. The expression

ej
2rk =

∑
0≤i≤j

(−1)i
(

j
i

)
ej−i

1 rk+j+i (52)

holds for any j, k ≥ 0, by rewriting e2 as z1(e1 − z1) = z2(e1 − z2).

The polynomials rk help to extend unpublished work of Roush [37] on H∗(B).

THEOREM 8.3. The integral cohomology ring H∗((Bn)+) is isomorphic to

Z∗
n := �[c, m, y]/(2c, cm, rn+1, rn+2, yn+1) ∼= H∗(B+)/(rn+1, rn+2, yn+1)

where rk = rk(m, y) has dimension kd for every k ≥ 0.

Proof. Consider the Leray–Serre spectral sequence

Ep,q
2 := Hp(�P∞

+ ;Hq((�Pn × �Pn)+) =⇒ Hp+q((Bn)+)

of the Borel bundle for Bn, where H∗( ) denotes cohomology twisted by the involution
ι. Since ι∗ acts on �[z1, z2]/(zn+1

1 , zn+1
2 ) by interchanging z1 and z2, the ring of

invariants is isomorphic to �[e1, e2]/ Ker μ, where μ is the projection of �[e1, e2]
into �[z1, z2]/(zn+1

1 , zn+1
2 ). It follows from (50) that Ker μ is the ideal generated by en+1

2 ,
rn+1, and rn+2, and hence that

E0,∗
2 = �[e1, e2]/(en+1

2 , rn+1, rn+2).

Moreover, there is an isomorphism E∗,0
2

∼= H∗(�P∞
+ ). So the standard cochain

complex (as constructed in [12, Chapter XII Section 7], for example) leads to a
multiplicative isomorphism

E∗,∗
2

∼= (�[c]/(2c)) ⊗� E0,∗
2

/
(c ⊗ e1), (53)

where c ⊗ e1 = 0 holds because E2,d
2 = 0. This, in turn, is a consequence of the equation

e1 = z1 + ι∗(z1) in �〈e1〉/ Im(1 + ι∗) ∼= E2,d
2 .

Every differential is zero for dimensional reasons, so (53) actually describes the
E∞ term. Furthermore, m and y in H∗(Bn) represent e1 and e2 in E0,∗

∞ respectively, and
c in H2(Bn) represents c in E2,0

∞ . Thus, cif (m, y) in H2i+jd (Bn) represents ci ⊗ f (e1, e2)
in E2i,jd

∞ for any homogeneous polynomial f (m, y); all extension problems are therefore
trivial and (53) is additively isomorphic to H∗(Bn). Since cm represents c ⊗ e1 and both
are zero, the isomorphism is also multiplicative, and the result follows. �

COROLLARY 8.4. For any n ≥ 1, the monomials miyj form a basis for a maximal
torsion-free summand of Hev(Bn), where 1 ≤ i + j ≤ n; also, Hod (Bn) = 0.

Proof. It suffices to work with e1 and e2 in E0,∗
2 , which is zero when ∗ is odd.

When ∗ ≤ nd is even, the monomials ei
1ej

2 already form a basis. In dimension
(n + 1)d and higher, the relations take effect; for example, en+1

1 is divisible by e2 modulo
Ker μ. Similarly, by repeated appeal to (52), en+1−s

1 es
2 is divisible by es+1

2 modulo Ker μ

in each dimension (n + 1 + s)d for which 0 ≤ s ≤ n, and en+1
2 = 0. These relations,

together with their multiples by powers of e1, show that E0,td
2 is spanned by those ei

1ej
2
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for which i + 2j = t and i + j ≤ n, where n < t ≤ 2n; they form a basis because their
projections are linearly independent under μ. All monomials of higher dimension lie
in Ker μ. �

REMARK 8.5. The highest dimensional non-torsion elements are in H2nd (Bn), where
the monomial yn generates a single summand �.

By analogy with (37), the upper row of (48) induces isomorphisms

Hev(Th(θd
n )) ∼= Ker i∗n and Hod (Th(θd

n )) ∼= Cok i∗n, (54)

where the first is of algebras over the ring Z∗
n of Theorem 8.3. These isomorphisms are

best discussed in the context of the commutative ladder

. . .
δ←−−−− H∗(RKn

+)
i∗n←−−−− H∗((Bn)+)

b∗
n←−−−− H∗(Th(θn))

δ←−−−− . . .�⏐⏐ �⏐⏐ �⏐⏐
. . .

δ←−−−− H∗(RK∞
+ )

i∗←−−−− H∗(B+)
b∗←−−−− H∗(MPd )

δ←−−−− . . .

(55)

which arises by restriction to Bn.

PROPOSITION 8.6. For n ≥ 2, the kernel of i∗n is the principal ideal (m2 − 4y), and for
n = 1, it is (2y); in dimensions > nd the monomials miyj and 2yk form an additive basis,
where i ≥ 1, i + j ≤ n < i + 2j and n/2 < k ≤ n.

Proof. Truncation has no effect in dimensions ≤ nd, so Lemma 6.1 continues to
hold; furthermore, (55) confirms that i∗n(m2 − 4y) = 0 for any n ≥ 1.

Now let α be such that i∗n(α) = 0 in H(n+s)d (RKn), for some s ≥ 1. Restriction is
epic, so α lifts to an element α′ in H(n+s)d (B) whose expansion (38) has fi = gj = 0
for i, j > n. Since i∗(α′) ≡ 0 mod (zn+1) in H(n+s)d (RK∞), the proof of Lemma 6.1 may
then be modified to show that i∗(α′) = 2λzn+s for some integer λ. Moreover, i∗(λrn+s) =
2λzn+s by (49), so α′ − λrn+s lies in Ker i∗, and therefore in (m2 − 4y) by Lemma 6.1.
Restriction then confirms that α lies in (m2 − 4y), as required. This argument also
works for n = 1 because r2 = m2 − 2y, so the relation r2 = 0 gives m2 = 2y in H2d (B1).

In terms of Corollary 8.4, the monomials that lie in dimensions between (n + 1)d
and 2nd clearly satisfy i∗n(miyj) = 0 whenever i ≥ 1; on the other hand, i∗n(yk) ≡ ckd/2zk

mod (czk+1) is of order 2, but non-zero. It follows that Ker i∗n has the stated basis in
this range. �

REMARKS 8.7. By Remarks 8.2, the polynomials rk(m, y) are ≡ (−1)k/22yk/2 or
0 mod (m) in Hkd (B), for even or odd k respectively. So by Theorem 6.11, they lie
in the image of π∗, and may therefore be rewritten as rk(g, h) in Hkd (SP2) without
ambiguity. In this context, (52) confirms that every element gahjrk/2j belongs to the
ideal Rev

k+j−1 := (r�(g, h) : � > k + j − 1) of Hev(SP2). Examples are (1) hjrk/2j when
a = 0, k > 1, (2) ga+1hj/2j when k = 1, and (3) hj/2j−1 when a = k = 0.

COROLLARY 8.8. The cohomology groups Hev(SP2
n) are torsion free; in dimensions

> nd the monomials gqhs/2s and hp/2p−1 form an additive basis, where q ≥ 1, q + s ≤ n <

q + 2s and n/2 < p ≤ n.

Proof. Combine Proposition 8.6 with (43), (54), and the fact that b∗
Δ is an

isomorphism for dimensions > nd in diagram (48). �
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To conclude the calculations, consider the commutative square

H∗(B) −−−−→ H∗(Bn)

π∗
�⏐⏐ �⏐⏐π∗

H∗(SP2) −−−−→ H∗(SP2
n)

induced by restriction, for any n ≥ 1. The homomorphisms π∗ are monic in even
dimensions, because they induce isomorphisms over �[1/2]. The upper restriction is
epic by Theorem 8.3, and the lower by Corollary 8.8; it is convenient to denote their
kernels by K∗

n and L∗
n, respectively.

THEOREM 8.9. For any n ≥ 1, there are isomorphisms

H∗((SP2
n)+) ∼= � [hp/2p−1, gqhs/2s, ui,j] / Jn

∼= H∗(SP2
+)/(rt, ui,t : t > n)

of graded rings, where p, q ≥ 1, s ≥ 0 and 0 < i < jd/2; the ideal Jn is given by

(2ui,j, ui,juk,l, ui,jhp/2p−1, ui,jgqhs/2s, rt, ui,t : t > n) ,

and the polynomials rt(g, h) by (51).

Proof. In odd dimensions, Proposition 6.8 leads to an isomorphism

Hod (SP2
n) ∼= �/2〈ui,j : 0 < i < jd/2, j ≤ n〉,

by truncating H∗(�P∞). It therefore remains to check that Lev
n and Rev

n (as introduced
in Remarks 8.7) coincide in Hev(SP2).

By Theorem 8.3 and Remark 8.2, rt lies in Kev
n for every t > n. So by Remarks

8.7, rt(g, h) lies in Lev
n , and Rev

n ⊆ Lev
n . For the reverse inclusion, consider r in Lkd

n for
any k ≥ 1; then π∗(r) lies in both Kkd

n and Im π∗. Since K∗
n = (rn+1, rn+2, yn+1), an

expression of the form

π∗(r) = v1rn+1 + v2rn+2 + v3yn+1

must hold for some polynomials vj = vj(m, y) in Z∗, where j = 1, 2, or 3. But v1rn+1 +
v2rn+2 lies in π∗(Rkd

n ) by Remarks 8.7, so v3yn+1 lies in Im π∗ as well. Thus, v3yn+1 ≡
2λykd/2 or 0 mod (m) for even or odd k, respectively, and therefore lies in π∗(Rkd

n ), by
Remarks 8.7(2) and (3). So π∗(r) lies in π∗(Rkd

n ), and r lies in Rkd
n ; hence Lev

n ⊆ Rev
n , as

sought. �
Combining (51) and Remarks 8.7 gives r2k(g, h) ≡ (−1)khk/2k−1 mod (g) and

r2k+1(g, h) ≡ (−1)k(2k+1)ghk/2k mod (g2), for k ≥ 0. Corollary 8.8 identifies H∗(SP2
n)

as �〈hn/2n−1〉 in dimension 2nd, and 0 above. The rest of Remarks 1.2 follow similarly.

ACKNOWLEDGEMENTS. The work of the first author was supported by EPSRC
grant EP/P505631/1.

Appendix A. These tables use the notation of (41) and (43), as in Appendix B
below. The additive generators exhibit the multiplicative structure in each dimension,
and monomials in g and h have infinite order; all others have order 2.
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EXAMPLE A.1. By Theorem 8.9, H∗(SP2(�P2)) is given by

0 2 4 6 7 8

1 g g2, h gh/2 u1,2 h2/2

and H∗(SP2(�P2)) is given by

0 4 7 8 11 12 13 15 16

1 g u1,1 g2, h u1,2 gh/2 u2,2 u3,2 h2/2
,

with relations g3 = 3gh/2 and g2h/2 = h2/2 in both cases.
Similarly, H∗(SP2(�P3)) is given by

0 2 4 6 7 8 9 10 11 12

1 g g2, h g3, gh/2 u1,2 g2h/2, h2/2 u1,3 gh2/4 u2,3 h3/4

and H∗(SP2(�P3)) is given by

0 4 7 8 11 12 13 15 16 17

1 g u1,1 g2, h u1,2 g3, gh/2 u2,2 u3,2, u1,3 g2h/2, h2/2 u2,3

19 20 21 23 24

u3,3 gh2/4 u4,3 u5,3 h3/4
,

with relations g4 = 4g2h/2 − h2/2 and g3h/2 = 3gh2/4 in both cases.

Appendix B. This table records the first occurrence of key notation:

Symbol ζ θ λ τ χ ξ ω a c d g h m

Page 707 708 709 708 707 707 707 713 713 707 721 721 714

x y z ui,j rk Fd Pd RKn Γ Pin ‡(d)
713 713 713 720 723 708 707 711 709 708

.

For any ring R, the free module on basis elements y1,. . . ,yn is denoted by
R〈y1, . . . , yn〉, as first occurs on page 716.
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