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Abstract
We introduce and prove the consistency of a new set theoretic axiom we call the Invariant Ideal Axiom. The axiom
enables us to provide (consistently) a full topological classification of countable sequential groups, as well as fully
characterize the behavior of their finite products.

We also construct examples that demonstrate the optimality of the conditions in IIA and list a number of open
questions.
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Introduction

In this paper, we introduce a new set theoretic principle we call the Invariant Ideal Axiom (IIA for
short) and prove its consistency with the usual axioms of ZFC. As the main application of IIA we show
that it implies that all countable sequential groups are either metrizable or 𝑘𝜔 and, in particular, every
countable sequential group has a definable (in fact 𝐹𝜎𝛿) topology, thus concluding the project initiated
in the 1970s of determining the structural theory of countable Fréchet and sequential groups (see [6, 8,
23, 34, 42, 43, 46, 47, 49, 84] for some early papers on the subject). This line of research is considered
central in topological algebra (see [11, 21, 38, 62, 64, 65, 67, 79, 82, 81] and several others) with some
of the early questions answered only recently (see [19, 39, 66, 68]). For a more comprehensive overview
of the field, including the history, the fundamental results and the open problems, the reader may wish
to consult several excellent surveys available on the subject, as well as a number of books on topological
algebra: [9, 24, 40, 45, 61].
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The axiom is fully accessible to mathematicians working in topology or algebra and does not require
any knowledge of modern set theory. Aside from giving the ultimate structural result for countable
sequential groups, the axiom has a profound impact on product properties of sequential groups.

Our hope and expectation is that the axiom IIA provides both a canonical environment and a test
model for future study of convergence in topological algebra.

To better relate our results to the existing body of research, one may recall that arguments in analysis
and topology often depend on establishing the extent of various special classes of topological spaces.
Fusing algebraic and topological properties proved to be among the most fruitful techniques. Classical
examples of such results are the implication 𝑇1 ⇒ 𝑇3 1

2
in general topological groups (or even 𝑇3 ⇒ 𝑇3 1

2
in paratopological groups; see [10]) and the Birkhoff-Kakutani theorem (see [9] for these and other facts
about topological groups) on the metrizability of first countable 𝑇1 topological groups. Metrizability
theorems in particular drew a lot of attention, stimulating a search for the weakest set of conditions that
jointly imply that a given topology is generated by a metric.

In the class of topological groups, compactness and countable tightness together imply metrizability
(see [9]) so it is natural to look for a similar yet less restrictive set of conditions that may yield the same
result. Reasoning along these lines led V. Malykhin to ask about the existence of countable (equivalently,
separable) Fréchet non-metrizable groups (see [6]).

Malykhin’s problem generated a large body of research that illustrates another important qual-
ity shared by several results in this area. Namely, the effect of a particular set of restrictions is
greatly influenced by set theory. As a case in point, Malykhin’s problem has an affirmative answer
in a variety of set theoretic universes, including models of MA. The conclusive result, establishing
the independence of the answer to Malykhin’s problem of the axioms of ZFC was obtained by the
first author and U. A. Ramos-García in [39] using a forcing construction. The same paper also con-
tains a construction of a countable Fréchet non-metrizable group under a very weak set theoretic
assumption ♦(2 =).

Malykhin asked (see [58]) a related question about the class of countable sequential abelian groups
(see below for all the appropriate definitions). This question was fully solved in [58] by E. Zelenyuk
and V. Protasov, who established (in ZFC) the existence of countable sequential group topologies that
are not Fréchet on any infinite countable abelian group. The existence of such topology on nonabelian
countable groups (specifically, the free group) was well known (see [55]).

The investigation into the class of sequential groups prompted P. Niykos (see [46]) to look at their
sequential order, which can be roughly thought of as the ordinal measure of the complexity of the closure
operator in sequential spaces. The existence of sequential groups (of any size) of sequential order strictly
between 1 and 𝜔1 turned out to be independent of the axioms of ZFC, as well (see [65], [68] and [71]).

A thorough review of existing ZFC constructions of sequential non-Fréchet groups (see [40], [76],
[58], [21]) reveals a structure common to all such examples. Their topology is determined by a countable
family of (countably) compact subspaces (i.e., is 𝑘𝜔; see [32] and the definition below). Perhaps the
most widely known family of 𝑘𝜔 spaces is the class of countable CW-complexes (see [16]). Various
results in algebraic topology (such as the homotopy equivalence for filtered spaces theorem of J. Milnor;
see [15]) heavily depend on the 𝑘𝜔 property. The class of 𝑘𝜔 spaces is well behaved; in particular, it is
finitely productive, and every countable 𝑘𝜔 space is sequential and analytic (see below for the definitions
and further discussion).

In [69], answering a question of S. Todorčević and C. Uzcátegui, the second author showed that at least
in the definable case (more specifically, in the class of countable analytic groups), the only sequential
examples of countable groups are 𝑘𝜔 or metrizable. This naturally brought about the question (posed
in [68]) whether it is consistent with ZFC that all countable sequential groups are either metrizable or
𝑘𝜔 (equivalently, whether all countable sequential groups are analytic).

The main tool introduced in this paper, the Invariant Ideal Axiom, or IIA, is used to answer this
question in the affirmative. As important corollaries, we show that IIA generates a complete classification
of sequential group topologies on countable groups, as well as allows for a transparent description of
products of such groups.
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To support our claim of the optimal nature of IIA in the study of convergence in countable groups, we
show that its natural generalization fails to stay consistent. We also construct an example demonstrating
the differences between the case of countable sequential groups and their separable counterparts. We
conclude by listing a few open questions we believe will lead to greater insight about this field of research.

1. Preliminaries

All topological spaces and groups considered are 𝑇1 and completely regular. To see more about topo-
logical groups, consult [6, 9, 22, 23, 24, 61, 77].

Recall that a topological space X is Fréchet if for any 𝑥 ∈ 𝐴 ⊆ 𝑋 , there is a sequence 𝑆 ⊆ 𝐴 such
that 𝑆 → 𝑥. A space X is sequential if for every 𝐴 ⊆ 𝑋 that is not closed, there is a 𝐶 ⊆ 𝐴 such that
𝐶 → 𝑥 ∉ 𝐴. The term ‘Fréchet space’ appears to have been coined by Arkhangel’skii in [3], while the
term ‘sequential’ appears for the first time in Franklin’s [30], where the following notion is defined:

Given 𝐴 ⊆ 𝑋 , define the sequential closure of A as

[𝐴] ′ = { 𝑥 ∈ 𝑋 : 𝐶 → 𝑥 for some 𝐶 ⊆ 𝐴 }, and then recursively

[𝐴]0 = 𝐴 and [𝐴]𝛼 = ∪{ [[𝐴]𝛽]
′ : 𝛽 < 𝛼 } for 𝛼 ≤ 𝜔1.

Then X is sequential if and only if 𝐴 = [𝐴]𝜔1 for every 𝐴 ⊆ 𝑋 , and the sequential order of X is defined as

𝔰𝔬(𝑋) = min { 𝛼 ≤ 𝜔1 : [𝐴]𝛼 = 𝐴 for every 𝐴 ⊆ 𝑋 }.

Fréchet spaces are easily seen to be exactly those sequential spaces X for which 𝔰𝔬(𝑋) ≤ 1. The
following definition plays a central role in our investigation.

Definition 1. A topological space X is called a 𝑘𝜔-space (𝑐𝜔-space) if there exists a countable family K
of (countably) compact subspaces of X such that a 𝑈 ⊆ 𝑋 is open in X if and only if 𝑈 ∩ 𝐾 is relatively
open in K for every 𝐾 ∈ K.

Countable 𝑘𝜔 spaces are always sequential, and the class of 𝑘𝜔-spaces is productive. Such spaces
are definable objects and have 𝐹𝜎𝛿 topologies.

What follows is a short discussion of test spaces:

◦ Arens space ([2]): 𝑆2 = [𝜔] ≤2, where 𝑈 ⊆ 𝑆2 is open if and only if for every 𝑠 ∈ 𝑈 such that |𝑠 | < 2
the set {𝑠 ∪ {𝑛} ∈ 𝑆2 : 𝑠 ∪ {𝑛} ∉ 𝑈} is finite,

◦ sequential fan ([1]): the quotient 𝑆(𝜔) = 𝑆2/[𝜔]
≤1, and finally

◦ convergent sequence of discrete sets ([25]): 𝐷 (𝜔) = 𝜔 × 𝜔 ∪ {(𝜔, 𝜔)} ⊆ (𝜔 + 1)2 in the natural
product topology.

The sequential fan 𝑆(𝜔) and the convergent sequence of discrete sets 𝐷 (𝜔) are both Fréchet spaces;
𝐷 (𝜔) is metrizable while 𝑆(𝜔) has character 𝔡. The space 𝑆2 is sequential, and 𝔰𝔬(𝑆2) = 2. Both 𝑆(𝜔)
and 𝑆2 are 𝑘𝜔-spaces, while 𝐷 (𝜔) is not.

Proposition 2.

1. (Y. Tanaka [75]) A sequential space contains a copy of 𝑆(𝜔) if and only if it contains a closed copy
of 𝑆(𝜔).

2. (Y. Tanaka [75]) A countable sequential topological group is Fréchet if and only if it does not contain
a closed copy of 𝑆(𝜔).

3. (T. Banakh and L. Zdomskyı̆ [11]) If a topological group G contains closed copies of 𝑆(𝜔) and
𝐷 (𝜔), it also contains a subset D such that D is not closed in G and is almost disjoint from every
convergent sequence in G.
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Recall that the Cantor-Bendixson derivative 𝐴′ of a topological space A is defined by 𝐴′ = 𝐴 \

{𝑥 : 𝑥 is an isolated point of 𝐴}. The Cantor-Bendixson derivative can be iterated—recursively define
(𝐴)𝛼 for any ordinal 𝛼 by putting (𝐴)0 = 𝐴, (𝐴)𝛼+1 = (𝐴)′𝛼 and (𝐴)𝜆 =

⋂
𝛼<𝜆 (𝐴)𝛼 for 𝜆 limit.

The full Cantor-Bendixson derivative (also called the Cantor-Bendixson (or perfect) kernel) of a
space A is (𝐴)𝛼, where 𝛼 is an ordinal such that (𝐴)𝛼 = (𝐴)𝛽 for any 𝛽 ≥ 𝛼.

A topological space A is scattered if every subset of A contains an isolated (in the subset) point,
equivalently if its full Cantor-Bendixson derivative is empty. Every scattered space is thus naturally
stratified into levels, 𝑥 ∈ 𝐴 belonging to the 𝛼-th level (denoted by scl(𝑥, 𝐴) = 𝛼) if and only if 𝛼 is the
unique ordinal such that 𝑥 ∈ (𝐴)𝛼 \ (𝐴)𝛼+1. The height of A (scl(𝐴)) is the smallest ordinal 𝛼 such that
(𝐴)𝛼 = ∅.

Throughout the paper, csc(𝑋) denotes the ideal generated by closed scattered subsets of X, nwd(𝑋)
is the ideal of nowhere dense subsets of X and cpt(𝑋) stands for the ideal generated by all the compact
subsets of X.

2. The Invariant Ideal Axiom

2.1. Introducing IIA

Analyzing the proofs of

Theorem 3 ([39]). It is consistent that every countable Fréchet group is metrizable.

Theorem 4 ([68]). It is consistent that every separable sequential group is either metrizable or has
sequential order 𝜔1.

we have isolated the Invariant Ideal Axiom IIA which we shall present next.
First let us introduce the relevant notation. Recall that an ideal is a family I ⊆ P(G) closed under

taking subsets and finite unions, and it is invariant if both 𝑔 · 𝐼 = {𝑔 · ℎ : ℎ ∈ 𝐼} and 𝐼 ·𝑔 = {ℎ ·𝑔 : ℎ ∈ 𝐼},
as well as 𝐼−1 = {ℎ−1 : ℎ ∈ 𝐼} are in I for every 𝐼 ∈ I and 𝑔 ∈ G. We shall assume throughout the
paper that all ideals contain all finite subsets of G. Recall also that I+ = P(G) \ I. Given a point x in a
topological space (or a topological group), we denote by

I𝑥 = {𝐴 ⊆ 𝑋 : 𝑥 ∉ 𝐴}

the dual ideal to the filter of neighbourhoods of x. An ideal I on a set X is 𝜔-hitting if for every countable
family Y of infinite subsets of X, there is an 𝐼 ∈ I such that 𝑌 ∩ 𝐼 is infinite for every 𝑌 ∈ Y.

We call an ideal I tame if for every 𝑌 ∈ I+ every 𝑓 : 𝑌 → 𝜔 and every 𝜔-hitting ideal J on 𝜔, there
is a 𝐽 ∈ J such that 𝑓 −1 [𝐽] ∉ I: that is, if no ideal Katětov-below a restriction of I to a positive set
is 𝜔-hitting (see, e.g., [37] for more on Katětov order and 𝜔-hitting ideals). Finally, we call an ideal I
of subsets of a topological group G weakly closed if for every set 𝐴 ⊆ G and every sequence 𝐶 ⊆ G

convergent to 1G,
𝐴 ∈ I if and only if 𝐴 ∪ {𝑥 : 𝐶 · 𝑥 ⊆∗ 𝐴} ∈ I.

It is immediate from the definition that every ideal generated by (sequentially) closed subsets of G is
weakly closed, in particular the ideals csc(G), nwd(G) and cpt(G) are all invariant weakly closed ideals
in any topological group.

We call a subset Y of a topological space X entangled if I𝑥 � 𝑌 is 𝜔-hitting for every 𝑥 ∈ 𝑋 . We
shall call a topological space X groomed if it does not contain a dense entangled set.

The class of groomed spaces includes all non-discrete Fréchet and sequential spaces, as well as all
non-discrete subsequential spaces (i.e., subspaces of sequential spaces).

Lemma 5. Every non-discrete subsequential space is groomed.

Proof. Let X be a dense subspace of a sequential space Y. Let 𝐷 ⊆ 𝑋 be dense, and let 𝑥 ∈ 𝑋 be a point
that is not isolated. As Y is sequential, there are countably many disjoint infinite subsets {𝐶𝑛 : 𝑛 ∈ 𝜔}

of D such that
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1. Each 𝐶𝑛 converges to some point 𝑥𝑛 ∈ 𝑌 (not necessarily distinct), and
2. For every neighbourhood U of x there are infinitely many 𝑛 ∈ 𝜔 such that 𝑥𝑛 ∈ 𝑈.

This is easily proved by induction on the sequential order of x in D:
If there is a sequence 𝐶 ⊆ 𝐷 \ {𝑥} convergent to x let {𝐶𝑛 : 𝑛 ∈ 𝜔} be any collection of infinite

pairwise disjoint subsets of C.
For the inductive step, assume that 𝑥 ∈ 𝑌 is the limit of a convergent sequence {𝑥𝑛 : 𝑛 ∈ 𝜔} such that

for each 𝑥𝑛 (by the inductive hypothesis) exist pairwise disjoint sequences {𝐶𝑛
𝑚 : 𝑚 ∈ 𝜔} of elements

of D convergent each to a point 𝑥𝑛𝑚 such that every open set U containing 𝑥𝑛 contains infinitely many
of the 𝑥𝑛𝑚. Let {𝐷𝑛

𝑚 : 𝑛, 𝑚 ∈ 𝜔} be a disjoint refinement of {𝐶𝑛
𝑚 : 𝑛, 𝑚 ∈ 𝜔}. Then it is a collection

of pairwise disjoint sequences convergent in Y, and every neighbourhood U of x will contain all but
finitely many of the {𝑥𝑛 : 𝑛 ∈ 𝜔}, and, consequently, infinitely many of the {𝑥𝑛𝑚 : 𝑛, 𝑚 ∈ 𝜔}.

Then, however, D is not entangled, as 𝑥 ∈ 𝑍 for every Z such that |𝑍 ∩𝐶𝑛 | = 𝜔 for every 𝑛 ∈ 𝜔. �

Examples of spaces that are not groomed are discrete spaces, 𝜔∗ and 2𝔠 .
We are now ready to introduce the Invariant Ideal Axiom:

IIA: For every countable groomed topological groupG and every tame, weakly closed invariant ideal
I ⊆ 2G, one of the following holds:

1. there is a countable S ⊆ I such that for every infinite sequence C convergent in G, there is an 𝐼 ∈ S
such that 𝐶 ∩ 𝐼 is infinite,

2. there is a countable H ⊆ I+ such that for every non-empty open 𝑈 ⊆ G, there is an 𝐻 ∈ H such that
𝐻 \𝑈 ∈ I.

We refer to the S from the first alternative as a sequence capturing set, and the set H from the second
alternative as an almost 𝜋-network.

To see the relevance of the axiom, let us deduce the solution to the Malykhin problem from it. We
first recall the following simple lemma from the literature (we include the short proofs for the sake of
completeness):

Lemma 6. Let X be a countable Fréchet space without isolated points.

1. ([12]) If 𝑥 ∈ 𝑋 and X is a countable collection of nowhere dense subsets of X, then there is a 𝐶 ⊆ 𝑋
convergent to x such that 𝑋 ∩ 𝑁 is finite for every 𝑁 ∈ X.

2. ([39]) The ideal nwd(𝑋) of nowhere dense subsets of X is tame.

Proof. Ad (1): Enumerate X as 〈𝑀𝑛 : 𝑛 ∈ 𝜔〉. As X is Fréchet without isolated points, there is a one-to-
one sequence 〈𝑥𝑛 : 𝑛 ∈ 𝜔〉 ⊆ 𝑋 \ {𝑥} converging to x. For each 𝑛 ∈ 𝜔, the set 𝑋𝑛 = 𝑋 \ ({𝑥} ∪

⋃
𝑖<𝑛 𝑀𝑖)

is dense in X, so using the Fréchet property again, there is for each 𝑛 ∈ 𝜔 a sequence 〈𝑦𝑛𝑖 : 𝑖 ∈ 𝜔〉 ⊆ 𝑋𝑛

converging to 𝑥𝑛. Then 𝑥 ∈ {𝑦𝑛𝑖 : 𝑖, 𝑛 ∈ 𝜔}, hence there is a sequence 𝐶 ⊆ {𝑦𝑛𝑖 : 𝑖, 𝑛 ∈ 𝜔} converging to
x. Now, 𝐶 ∩ 𝑀𝑛 ⊆ {𝑦𝑚𝑖 : 𝑖 ∈ 𝜔, 𝑚 ≤ 𝑛}, and as each sequence 〈𝑦𝑛𝑖 : 𝑖 ∈ 𝜔〉 ⊆ 𝑋𝑛 converges to 𝑥𝑛 ≠ 𝑥,
𝐶 ∩ 𝑀𝑛 is finite for every 𝑛 ∈ 𝜔.

To see (2), let 𝑌 ∈ nwd+(𝑋), let 𝑓 : 𝑌 → 𝜔, and let an 𝜔-hitting ideal J on 𝜔 be given. Put
𝑍 = Int(𝑌 ) ∩ 𝑌 . Then either

(a) there is an 𝑛 ∈ 𝜔 such that 𝑓 −1(𝑛) ∈ nwd+(𝑋), or
(b) for every 𝑥 ∈ 𝑍 , there is a sequence 𝐶𝑥 ⊆ 𝑍 \ {𝑥} converging to x such that 𝑓 |𝐶𝑥 is finite-to-one.

If there is an 𝑛 ∈ 𝜔 such that 𝑓 −1(𝑛) ∈ nwd+(𝑋), let 𝐽 = {𝑛} ∈ J. If, on the other hand,
𝑓 −1(𝑛) ∈ nwd(𝑋) for all 𝑛 ∈ 𝜔, apply (1) to Z and every 𝑥 ∈ 𝑍 with X = { 𝑓 −1(𝑛) ∩ 𝑍 : 𝑛 ∈ 𝜔} to get
{𝐶𝑥 : 𝑥 ∈ 𝑍} as in (b). The family{ 𝑓 [𝐶𝑥] : 𝑥 ∈ 𝑍} is then a countable collection of infinite subsets of
𝜔, hence there is a 𝐽 ∈ J such that 𝐽 ∩ 𝑓 [𝐶𝑥] is infinite for every 𝑥 ∈ 𝑍 . Then 𝑓 −1 [𝐽] is dense in Z,
hence in either case J is an element of J such that 𝑓 −1 [𝐽] ∈ nwd+(𝑋). �

Theorem 7. Assuming IIA, every separable Fréchet group is metrizable.
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Proof. Let H be a separable Fréchet group, and let G ⊆ H be a dense countable subgroup. Apply IIA to
G and nwd(G). Alternative (1) fails by Lemma 6, so there is a countable family X of somewhere dense
subsets of G, hence also somewhere dense in H such that every open set contains mod nwd an element
of X. Then

{int(𝑋) : 𝑋 ∈ X},

where the interior and closure are taken in H, form a countable 𝜋-base, and as 𝜋-weight and weight
coincide in topological groups, the group H is second countable and hence metrizable. �

Corollary 8. Assuming IIA, 𝔭 = 𝜔1 and 𝔟 > 𝜔1.

Proof. It is well known that if either 𝔭 > 𝜔1 or 𝔟 = 𝜔1, then there is a separable non-metrizable Fréchet
group; see, for example, [46, 47, 56]. �

The next remark we would like to make is that the assumption that the group is groomed cannot be
dropped from the statement of IIA, as is shown in the proposition below.

Proposition 9. There is a countable topological group G and a tame, weakly closed, invariant ideal
I ⊆ P(𝜔) such that IIA fails for G and I.

Proof. Without loss of generality, we can assume IIA as its failure provides an example. So, in particular,
we can assume that 𝔟 > 𝜔1.

Let {𝐴𝛼, 𝐵𝛼 : 𝛼 < 𝜔1} ⊆ [𝜔]𝜔 be a Hausdorff gap: that is,

1. 𝐴𝛼 ⊆∗ 𝐴𝛽 ⊆∗ 𝐵𝛽 ⊆∗ 𝐵𝛼 for 𝛼 < 𝛽 < 𝜔1, and
2. there is no X such that 𝐴𝛼 ⊆∗ 𝑋 ⊆∗ 𝐵𝛼 for every 𝛼 < 𝜔1.

Topologize the groupG = [𝜔]<𝜔 by declaring the sets (in fact, subgroups) [𝐹]<𝜔 open neighbourhoods
of ∅, where F is such that there is an 𝛼 < 𝜔1 with 𝐵𝛼 ⊆∗ 𝐹, and let

I = {𝐴 ⊆ G : ∀𝛼 < 𝜔1
⋃

𝐴 ⊆∗ 𝐵𝛼}.

Now, the fact that I is tame follows easily by noting that no restriction of I to a positive set is tall,
and I is invariant as

⋃
𝑎�𝐼 =∗

⋃
𝐼 for every 𝐼 ∈ I and 𝑎 ∈ G. The fact that I is weakly closed follows

immediately from the fact that every set of the form [𝐶]<𝜔 is closed in the topology of G, and every
set in I is contained in en element of I of this form (𝐶 ∈ I if and only if [

⋃
𝐶]<𝜔 ∈ I ).

To see that the alternative (1) of IIA fails for I, note first that 𝐶 → 0 if and only if C is a point-
finite family of finite sets and 𝐶 ∈ I. The fact that there cannot be a countable family of elements of
I intersecting infinitely every convergent sequence follows directly from the fact that we started with
a Hausdorff gap (hence there cannot be a single such element of I ) and the fact that 𝔟 > 𝜔1, hence
{𝐵𝛼 : 𝛼 < 𝜔1} cannot form the upper half of an (𝜔, 𝜔1)-gap by the Theorem of Rothberger.

Alternative (2) fails as 𝑋 ∈ I+ iff
⋃

𝑋 \ 𝐵𝛼 is infinite for some 𝛼 < 𝜔1, and having countably
many such X, there is an 𝛼 that is a witness for all of them, hence none of them is mod I contained in
[𝐵𝛼]

<𝜔 . �

We shall return to further discussion of the consequences of IIA later on, but first we shall see that
the axiom is consistent.

2.2. Consistency of IIA

All the tools to prove the consistency of the Invariant Ideal Axiom have been presented in [39] and [19],
although the models constructed there are not models of IIA. We shall first recall all the relevant lemmata
from the above-mentioned papers. Those we can quote directly we do not prove. Those that require
some (very) minor changes we do prove, although in all cases, the changes are mere technicalities.
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Recall first that the Laver-Mathias-Prikry forcing LF associated to a filter F on 𝜔 is defined as the
set of those trees 𝑇 ⊆ 𝜔<𝜔 with stem 𝑠𝑇 such that for all 𝑠 ∈ 𝑇 extending 𝑠𝑇 , the set succ𝑇 (𝑠) = {𝑛 ∈

𝜔 : 𝑠⌢𝑛 ∈ 𝑇} belongs to F. The set LF is ordered by inclusion.
The forcing LF is 𝜎-centered and adds generically a dominating real �ℓF : 𝜔 → 𝜔 (The function �ℓF is

the unique branch through 𝜔<𝜔 that belongs to all trees in the generic filter, and it eventually dominates
all ground model reals). Its range �𝐴𝑔𝑒𝑛 = ran( �ℓF) separates the filter F (that is, the set �𝐴𝑔𝑒𝑛 is almost
contained in all members of F and has infinite intersection with every F-positive set).

Names for reals in forcings of the type LF can be analysed using ranks, as introduced by Baumgartner
and Dordal in [13] and further developed by Brendle [17, 18]. Given a formula 𝜑 in the forcing language
and 𝑠 ∈ 𝜔<𝜔 , we say that s favors 𝜑 if there is no condition 𝑇 ∈ LF with stem s such that 𝑇 � ‘¬𝜑’, or
equivalently, every condition 𝑇 ∈ LF with stem s has an extension 𝑇 ′ such that 𝑇 ′ � ‘𝜑’.

Recall also that a forcing notion P strongly preserves 𝜔-hitting if for every sequence 〈 �𝐴𝑛 : 𝑛 ∈ 𝜔〉 of
P-names for infinite subsets of 𝜔, there is a sequence 〈𝐵𝑛 : 𝑛 ∈ 𝜔〉 of infinite subsets of 𝜔 such that for
any 𝐵 ∈ [𝜔]𝜔 , if 𝐵 ∩ 𝐵𝑛 is infinite for all n, then �P ‘𝐵 ∩ �𝐴𝑛 is infinite for all 𝑛’.

In our terminology, one of the lemmas of [19] becomes:

Lemma 10 ([19]). Let I be an ideal on 𝜔, and let F = I∗ be the dual filter. Then the following are
equivalent:

1. I is tame,
2. LF strongly preserves 𝜔-hitting,
3. LF preserves 𝜔-hitting,

and the standard preservation under finite support iteration argument gives

Lemma 11 ([19]). Finite support iteration of ccc forcings strongly preserving 𝜔-hitting strongly pre-
serves 𝜔-hitting.

Recall also that given an ideal I, a forcing notion P and a P-name �𝐴 for a subset of 𝜔, we say that P
seals the ideal I via �𝐴 if �P ‘ �𝐴 ∈ I+ ∧ I � �𝐴 is 𝜔-hitting’.

Following [39], we say that an ideal I is 𝜔-hitting mod filter F if I ∩F = ∅ and for every countable
family H ⊂ F+, there is an 𝐼 ∈ I such that 𝐻 ∩ 𝐼 ∈ F+ for all 𝐻 ∈ H.

Lemma 12 ([39]). The forcing LF seals an ideal I via �𝐴𝑔𝑒𝑛 if and only if I is 𝜔-hitting mod F.

The following corollary is the main tool for the consistency of IIA.

Corollary 13 ([39]). Let G be a countable topological group and I ⊆ P(𝜔) be a tame invariant ideal
such that both alternatives of IIA fail. Then:

1. LI∗ forces G is not groomed, and
2. LI∗ strongly preserves 𝜔-hitting.

Proof. To see (1), one essentially only needs to translate from one language to another; to force that G
is not groomed—that is, contains a dense entangled set—means (in the language of sealing) adding a
dense subset �𝐴 of G such that LI∗ seals the ideal I𝑔 for every 𝑔 ∈ G. Now, by Lemma 12, it is enough
to show that the ideal I𝑔 is 𝜔-hitting mod I∗, and hence, LI∗ seals the ideal I𝑔 via �𝐴𝑔𝑒𝑛 for every
𝑔 ∈ G, which is simply the negation of the existence of a countable almost 𝜋-network of I-positive sets
(alternative (2) of IIA). The failure of capturing convergent sequences (alternative (1) of IIA) guarantees
that every element of I∗ is dense in G, hence also LI∗ forces �𝐴𝑔𝑒𝑛 to be dense in G.

(2) follows directly from Lemma 10. �

The last part of the forcing argument, which deals with the preservation of dense entangled sets,
really uses algebra.

Let (G, ·) be an abstract group, and let 𝐴 ⊆ G \ {1G}. A subset Y of G is called A-large if for every
𝑎 ∈ 𝐴 and 𝑏 ∈ G, either 𝑏 ∈ 𝑌 or 𝑎 · 𝑏−1 ∈ 𝑌 . By A-large, we will denote the collection of all subsets of
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G that are A-large. A family C of subsets of G is 𝜔-hitting with respect to A if given 〈𝑌𝑛 : 𝑛 ∈ 𝜔〉 ⊂ 𝐴-
large, there is a 𝐶 ∈ C such that 𝐶 ∩ 𝑌𝑛 is infinite for all n. Finally, We say that a relation 𝑅 ⊆ G × G is
large if for every 𝑎, 𝑏 ∈ G, either 〈𝑎, 𝑏〉 ∈ 𝑅 or 〈𝑎, 𝑎 · 𝑏−1〉 ∈ 𝑅.

Lemma 14 ([39]). Let G be a countable group, and let I be a weakly closed invariant ideal on G for
which (1) of the IIA fails, and let 〈𝑅𝑛 : 𝑛 ∈ 𝜔〉 be a sequence of large relations. Then there is a sequence
C convergent to 1G such that 𝑅−1

𝑛 [𝐶 \ 𝐹] ∈ I+ for every 𝑛 ∈ 𝜔 and 𝐹 ∈ [G]<𝜔 .

Proof. For every 𝑛 ∈ 𝜔, let 𝐵𝑛 = {𝑏 ∈ G : 𝑅−1
𝑛 (𝑏) ∈ I}, and put

S = {𝑅−1
𝑛 (𝑏) · 𝑏−1 : 𝑏 ∈ 𝐵𝑛, 𝑛 ∈ 𝜔} ∪ {𝐵𝑛 : 𝐵𝑛 ∈ I}.

As (1) of IIA fails, there is a sequence C converging to 1G such that 𝐶 ∩ 𝑆 is finite for every 𝑆 ∈ S.
We claim that 𝑅−1

𝑛 [𝐶 \ 𝐹] ∈ I+ for every 𝑛 ∈ 𝜔 and 𝐹 ∈ [G]<𝜔 . To see this, let 𝑛 ∈ 𝜔 and 𝐹 ∈ [G]<𝜔

be given. Consider two cases.
Case 1. 𝐵𝑛 ∈ I.
Then there is an 𝑏 ∈ 𝐶 \ 𝐹 such that 𝑅−1

𝑛 (𝑏) ∈ I+.
Case 2. 𝐵𝑛 ∈ I+.
Fix 𝑏 ∈ 𝐵𝑛. Then 𝑎 ∉ 𝑅−1

𝑛 (𝑏) · 𝑏−1 (or, equivalently, 𝑎 · 𝑏 ∉ 𝑅−1
𝑛 (𝑏)) for all but finitely many

𝑎 ∈ 𝐶. Since 𝑅𝑛 is a large relation, 〈𝑎 · 𝑏, 𝑎〉 ∈ 𝑅𝑛 for all but finitely many 𝑎 ∈ 𝐶. In particular,
{𝑎 · 𝑏 : 𝑎 ∈ 𝐶} ⊆∗ 𝑅−1

𝑛 [𝐶 \ 𝐹] and {𝑎 · 𝑏 : 𝑎 ∈ 𝐶} converges to b. Thus,

𝐵𝑛 ⊆ 𝑅−1
𝑛 [𝐶 \ 𝐹] ∪ {𝑏 ∈ G : 𝐶 · 𝑏 ⊆∗ 𝑅−1

𝑛 [𝐶 \ 𝐹]},

hence, as I is weakly closed, also 𝑅−1
𝑛 [𝐶 \ 𝐹] ∈ I+. �

Lemma 15 ([39]). Let G be a countable topological group and I an invariant ideal on G for which (1)
of the IIA fails. Then

�LI∗ ‘C is 𝜔-hitting with respect to �𝐴𝑔𝑒𝑛’,

where C = I⊥1G is the ideal consisting of sequences converging to 1G.

Proof. Aiming for a contradiction, assume that there are a sequence 〈 �𝐵𝑛 : 𝑛 ∈ 𝜔〉 of LI∗ -names and
a condition 𝑇∗ ∈ LI∗ such that 𝑇∗ � ‘∀𝑛 ∈ 𝜔 ( �𝐵𝑛 ∈ �𝐴𝑔𝑒𝑛-large)’, and for every 𝐶 ∈ C, there are a
condition 𝑇𝐶 ∈ LI∗ with 𝑇𝐶 � 𝑇∗, a natural number 𝑛𝐶 and a finite subset 𝐹𝐶 of G such that

𝑇𝐶 � ‘𝐶 ∩ �𝐵𝑛𝐶 ⊆ 𝐹𝐶 ’. (★)

For each 𝑠 ∈ 𝑇∗ with 𝑠 ⊇ 𝑠𝑇 ∗ and each natural number n, put

𝑅𝑠,𝑛 = {〈𝑎, 𝑏〉 : 𝑎 ∈ succ𝑇 ∗ (𝑠) ⇒ 𝑠⌢𝑎 favors 𝑏 ∈ �𝐵𝑛}.

Claim. The relation 𝑅𝑠,𝑛 is large.
Let a and b be two elements of G. Assume that 〈𝑎, 𝑏〉 ∉ 𝑅𝑠,𝑛. Assuming 𝑎 ∈ succ𝑇 ∗ (𝑠), we have to

show that 〈𝑎, 𝑎 · 𝑏−1〉 ∈ 𝑅𝑠,𝑛. There is a condition 𝑇 ′ ≤ 𝑇∗ with 𝑠𝑇 ′ = 𝑠⌢𝑎 such that 𝑇 ′ � ‘𝑏 ∉ �𝐵𝑛’.
Then 𝑇 ′ � ‘𝑎 ∈ �𝐴𝑔𝑒𝑛 and 𝑏 ∉ �𝐵𝑛’, but also 𝑇 ′ � ‘ �𝐵𝑛 ∈ �𝐴𝑔𝑒𝑛-large’ so 𝑇 ′ � ‘𝑎 · 𝑏−1 ∈ �𝐵𝑛’. This finishes
the proof of the claim.

By Lemma 14, there is a 𝐶 ∈ C such that 𝑅−1
𝑠,𝑛 [𝐶 \ 𝐹] ∈ I+ for every 𝑠 ∈ 𝑇∗ with 𝑠 ⊇ 𝑠𝑇 ∗ , 𝑛 ∈ 𝜔 and

𝐹 ∈ [G]<𝜔 . In particular, 𝑅−1
𝑠𝐶 ,𝑛𝐶 [𝐶 \𝐹𝐶 ] ∈ I+, where 𝑠𝐶 = 𝑠𝑇𝐶 . Pick an 𝑎 ∈ succ𝑇𝐶 (𝑠𝐶 ) ∩𝑅−1

𝑠𝐶 ,𝑛𝐶 [𝐶 \

𝐹𝐶 ]. Then there is a 𝑏 ∈ 𝐶 \ 𝐹𝐶 such that 𝑠⌢𝐶 𝑎 favors 𝑏 ∈ �𝐵𝑛𝐶 , and hence there is a condition 𝑇 � 𝑇𝐶
whose stem extends 𝑠⌢𝐶 𝑎 such that 𝑇 � ‘𝑏 ∈ �𝐵𝑛𝐶 ’, a contradiction to the initial assumption (★). �

We say that a forcing notion P strongly preserves 𝜔-hitting with respect to A if for every P-name �𝑌
for an A-large subset of a group G, there is a sequence 〈𝑌𝑛 : 𝑛 ∈ 𝜔〉 ⊂ 𝐴-large such that for any 𝐶 ⊆ G,
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if 𝐶 ∩ 𝑌𝑛 is infinite for all n, then �P ‘𝐶 ∩ �𝑌 is infinite’. Clearly, every forcing notion that strongly
preserves 𝜔-hitting with respect to A preserves 𝜔-hitting with respect to A.
Lemma 16 ([39]). Let P be a 𝜎-centered forcing notion. Then P strongly preserves 𝜔-hitting with
respect to A.
Lemma 17 ([39]). Finite support iteration of ccc forcings strongly preserving 𝜔-hitting with respect to
A strongly preserves 𝜔-hitting with respect to A.

Now we are in position to state and prove the main theorem of this section:
Theorem 18. The Invariant Ideal Axiom IIA together with the Martin’s Axiom MA(𝜎-centered strongly
𝜔-hitting preserving) is consistent with ZFC.
Proof. Assume that the ground model V satisfies CH, split the set 𝑆2

1—the stationary subset of 𝜔2
consisting of ordinals of cofinality 𝜔1—into two disjoint stationary sets 𝑆0 and 𝑆1 and suppose 〈𝐴𝛼 :
𝛼 ∈ 𝑆2

1〉 witnesses that both ♦(𝑆0) and ♦(𝑆1) hold.1
Construct a finite support iteration P𝜔2 = 〈P𝛼, �Q𝛼 : 𝛼 < 𝜔2〉 so that at a stage 𝛼 ∈ 𝑆0, if 𝐴𝛼 codes

a P𝛼-name for a 𝜎-centered forcing Q̂ that strongly preserves 𝜔-hitting families, then let Q𝛼 = Q̂;
otherwise, let �Q𝛼 be a P𝛼-name for Lnwd∗ (Q) , where Q are the rational numbers; at a stage 𝛼 ∈ 𝑆1, if
𝐴𝛼 codes a group operation ◦ on 𝜔, a P𝛼-name for a regular group topology 𝜏 with no isolated points
on (𝜔, ◦) and a ◦-invariant tame ideal such that neither (1) nor (2) of the IIA hold, we let �Q𝛼 be a P𝛼-
name for LI∗ . If 𝛼 is not of this form, let �Q𝛼 be again P𝛼-name for Lnwd∗ (Q) , where Q are the rational
numbers. Let 𝐺𝜔2 be a P𝜔2 -generic over V. A standard argument shows that MA for 𝜎-centered partial
orders strongly preserving 𝜔-hitting families holds in V[𝐺𝜔2].

We shall show that, in V[𝐺𝜔2], IIA holds.
Aiming toward a contradiction, assume that in V[𝐺𝜔2], there is a countable groomed group G with

a group topology 𝜏 and a tame invariant ideal I on G satisfying neither (1) nor (2) of IIA.
Now, by a standard closing off argument, there is a set 𝐸 ⊂ 𝑆2

1 that is a club relative to 𝑆2
1 such that

for all 𝛼 ∈ 𝐸 ,
1. V[𝐺𝛼] |= 𝜏𝛼 is groomed, where 𝜏𝛼 = 𝜏 ∩ V[𝐺𝛼],
2. V[𝐺𝛼] |= I𝛼 = I ∩ V[𝐺𝛼] is a G-invariant tame ideal satisfying neither (1) nor (2) of IIA, and
3. every sequence in V[𝐺𝛼] that is 𝜏𝛼-convergent is forced to be 𝜏-convergent in V[𝐺𝜔2].

Therefore, at some stage 𝛼 ∈ 𝑆1, we would have added a set 𝐴𝑔𝑒𝑛 such that V[𝐺𝛼+1] |= 𝐴𝑔𝑒𝑛 is a
dense entangled subset of G: that is, the ideal I𝑔 (𝜏𝛼) |𝐴𝑔𝑒𝑛 is 𝜔-hitting for every 𝑔 ∈ G (Proposition 13
(1)).

We claim that 𝐴𝑔𝑒𝑛 is also dense in V[𝐺𝜔2]: that is, 𝐴𝑔𝑒𝑛 ∈ I+𝑔 (𝜏) for every 𝑔 ∈ G. As G is a
group, it suffices to show this at 0G. If it were not true, in V[𝐺𝜔2], there is a 𝜏-open neighbourhood U
of 0 disjoint from 𝐴𝑔𝑒𝑛 such that 𝑈 ·𝑈 ∩ 𝐴𝑔𝑒𝑛 = ∅. Then 𝑌 = G \𝑈 is 𝐴𝑔𝑒𝑛-large. By Lemma 15, in
V[𝐺𝛼+1], the ideal I⊥0 (𝜏𝛼) = I⊥0 (𝜏) ∩V[𝐺𝛼] is 𝜔-hitting with respect to 𝐴𝑔𝑒𝑛, and by Lemmata 16 and
17, it follows that the ideal I⊥0 (𝜏𝛼) is also 𝜔-hitting with respect to 𝐴𝑔𝑒𝑛 in V[𝐺𝜔2]. In particular, there
is a 𝐶 ∈ I⊥0 (𝜏𝛼) such that 𝐶 ∩𝑌 is infinite: that is, 𝐶 ∈ V[𝐺𝛼] is a sequence 𝜏𝛼-converging to 0, which
intersects Y infinitely often. However, by the item 2, I⊥0 (𝜏𝛼) ⊂ I⊥0 (𝜏), therefore C is also 𝜏-converging
to 0. This however leads to a contradiction as both 𝑌 ∩𝑈 = ∅ and 𝐶 \𝑈 is finite.

By Proposition 13 (2) and Lemma 11, in V[𝐺𝜔2] the ideal I𝑔 (𝜏𝛼) |𝐴𝑔𝑒𝑛 is 𝜔-hitting for every 𝑔 ∈ G,
contradicting that G was groomed in V[𝐺𝜔2]. �

3. Countable sequential groups under IIA

In this section, we prove the main result of the paper, which confirms a conjecture of the second
author [68] by proving a common extension of Theorems 3 and 4 that provides the ultimate (consistent)
classification for the topologies of countable sequential topological groups, namely:

1Given a stationary subset S of 𝜔2, the principle ♦(𝑆) asserts the existence of a sequence 〈𝐴𝛼 : 𝛼 ∈ 𝑆〉 of subsets of 𝜔2 such
that for any 𝐴 ⊂ 𝜔2, the set {𝛼 ∈ 𝑆 : 𝐴𝛼 = 𝐴∩ 𝛼} is stationary.
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Theorem 19. Assuming IIA, every countable sequential group is either metrizable or 𝑘𝜔 .

Countable 𝑘𝜔 groups are completely classified by their compact scatteredness rank defined as the
supremum of the Cantor-Bendixson index of their compact subspaces by the theorem of Zelenyuk:

Theorem 20 (E. Zelenyuk [84]). Countable 𝑘𝜔 groups of the same compact scatteredness rank are
homeomorphic.

To give a more concrete feel for how strong Theorem 19 actually is, let us introduce the fol-
lowing notation: Given an indecomposable ordinal2 𝛼 < 𝜔1, let K𝛼 be a fixed countable family of
compact subsets of the rationals Q closed under translations, inverse and algebraic sums such that
𝛼 = sup{rank𝐶𝐵 (𝐾) : 𝐾 ∈ K𝛼}, and let

𝜏𝛼 = {𝑈 ⊆ Q : ∀𝐾 ∈ K𝛼 : 𝑈 ∩ 𝐾 is open in 𝐾}.

Then 𝜏𝛼 is a 𝑘𝜔 sequential group topology onQ, and we denoteQ𝛼 = (Q, 𝜏𝛼). Note, in particular, that if
𝛼 = 0, then 𝜏0 is the discrete topology on Q, and that the usual topology on Q is similarly determined by
taking into account all of its compact subsets, so it makes sense to denote it as Q𝜔1 . Hence Theorem 19
can be reformulated as:

Theorem 21. Assuming IIA, for every infinite countable sequential groupG, there is exactly one 𝛼 ≤ 𝜔1
such that G is homeomorphic to Q𝜔𝛼 .

Note that in the argument above, we may have started with an arbitrary countable topologizable (i.e.,
admitting a nondiscrete Hausdorff group topology) groupG instead ofQ by possibly choosing a coarser
first countable topology on G first. Thus every countable topologizable group admits every possible
𝑘𝜔 group topology, showing that in a model of IIA, the algebraic structure of the group has almost no
influence on the kind of sequential topology the group can admit. Indeed, in such models, the number
of nonisomorphic topologizable countable groups (𝔠) is greater than the number of nonhomeomorphic
sequential group topologies (𝜔1).

We shall prove Theorem 19 in a sequence of lemmata.

Lemma 22. Let G be a countable nondiscrete sequential group. Suppose P ⊆ csc(G) is a countable
family such that for every 𝑆 → 1G, there exists a 𝑃 ∈ P such that |𝑆 ∩ 𝑃 | = 𝜔. Let D ⊆ [G]𝜔 be a
countable family of closed discrete subsets of G. Then for every 𝑔 ∈ G, there exists an open 𝑈 � 𝑔 such
that 𝑈 ∩ 𝐷 is finite for every 𝐷 ∈ D.

Proof. Let D = { 𝐷𝑛 : 𝑛 ∈ 𝜔 } ⊆ 2G be a collection of closed discrete subsets of G. For brevity, call a
point 𝑔 ∈ G a vD-point of D if for every open 𝑈 � 𝑔 there is a 𝐷 ∈ D with the property |𝑈 ∩ 𝐷 | = 𝜔.
The statement of the lemma is equivalent to claiming that there are no vD-points of D. Suppose 𝑔 ∈ G

is a vD-point of D. By translating each 𝐷 ∈ D if necessary, we may assume that 𝑔 = 1G.
Let P = { 𝑃𝑛 : 𝑛 ∈ 𝜔 } be a collection of closed scattered subsets of G such that for any 𝑆 → 1G,

there is a 𝑃 ∈ P such that |𝑆 ∩ 𝑃 | = 𝜔. By requiring P to be closed under finite unions, we may assume
that 𝑆 ⊆∗ 𝑃.

Pick a family {𝑂𝑛 : 𝑛 ∈ 𝜔 } of open neighbourhoods of 1G such that 𝑂𝑛+1 ⊆ 𝑂𝑛 and
⋂

𝑛∈𝜔 𝑂𝑛 =
{1G}. Put 𝑃 =

⋃
𝑛∈𝜔 𝑃𝑛 ∩ 𝑂𝑛. One may verify that P is closed and scattered, and for any 𝑆 → 1G,

𝑆 ⊆∗ 𝑃. Changing P if necessary, we may further require that 𝛼𝑃 = scl(1G, 𝑃) is the smallest one among
all P with such properties.

Let 𝑃′ = { 𝑝 ∈ 𝑃 \ {1G} : scl(𝑝, 𝑃) ≥ 𝛼𝑃 }. Note that 1G ∉ 𝑃′, and we may therefore assume (by
taking an appropriate subset of P, if necessary) that scl(1G, 𝑃) = scl(𝑃) > scl(𝑝, 𝑃) for any 𝑝 ∈ 𝑃 such
that 𝑝 ≠ 1G. Now

2An ordinal number 𝛼 is indecomposable if it cannot be written as an ordinal sum of two strictly smaller ordinals, equivalently,
there is a 𝛽 ≤ 𝛼 such that 𝛼 = 𝜔𝛽 , where 𝜔𝛽 denotes ordinal exponentiation.
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(1) P is a closed scattered subset of G such that 𝑆 ⊆∗ 𝑃 for every 𝑆 → 1G; moreover, 𝛼𝑃 = scl(𝑃) =
scl(1G, 𝑃) > scl(𝑝, 𝑃) for any 𝑝 ∈ 𝑃 \ {1G}, and 𝛼𝑃 is the smallest possible.

Let 𝑔 ∈ G, and consider the family D𝑔 = { 𝐷𝑛 ∩ (𝑔 · 𝑃) : 𝑛 ∈ 𝜔 }. Suppose g is not a vD-point of D𝑔

for any 𝑔 ∈ G. For each 𝑔𝑖 ∈ G, pick an open neighbourhood 𝑈𝑖 � 𝑔𝑖 such that 𝑈𝑖 ∩ (𝑔𝑖 · 𝑃) ∩ 𝐷𝑛 = 𝐹𝑛
𝑖

is finite for every 𝑛 ∈ 𝜔. Put 𝐷 ′
𝑛 = 𝐷𝑛 \

⋃
𝑖≤𝑛 𝐹𝑛

𝑖 . Then 1G is a vD-point of D′ = { 𝐷 ′
𝑛 : 𝑛 ∈ 𝜔 }, and

therefore, 1G ∈
⋃D′.

Let 𝑆 ⊆
⋃D′ be an infinite sequence such that 𝑆 → 𝑔𝑖 for some 𝑔𝑖 ∈ G. Then by (1), 𝑆 ⊆∗ 𝑈𝑖∩(𝑔𝑖 ·𝑃).

Since every 𝐷 ∈ D′ is closed discrete, we may assume that 𝑆 = 〈𝑠𝑛 : 𝑛 ∈ 𝜔〉 is such that 𝑠𝑛 ∈ 𝐷 ′
𝑚(𝑛)

for
some 𝑚(𝑛) ≥ 𝑛. Let 𝑛 > 𝑖 be such that 𝑠𝑛 ∈ 𝑈𝑖 ∩ (𝑔𝑖 ·𝑃). Then 𝑠𝑛 ∈ 𝐹𝑚(𝑛)

𝑖 , 𝑖 < 𝑛 < 𝑚(𝑛), contradicting
𝑠𝑛 ∈ 𝐷 ′

𝑚(𝑛)
= 𝐷𝑚(𝑛) \

⋃
𝑖≤𝑚(𝑛) 𝐹

𝑚(𝑛)
𝑖 . Thus no such S exists, making

⋃D′ almost disjoint from every
convergent sequence in G, contradicting 1G ∈

⋃D′ and the sequentiality of G.
We may therefore assume that 𝐷 ⊆ 𝑃 for every 𝐷 ∈ D and some 𝑔 ∈ G is a vD-point of D. Note that

𝑔 ∈ 𝑃, since P is closed. Let 𝑝 ∈ 𝑃 be a vD-point of D such that scl(𝑝, 𝑃) is the smallest. By picking
a neighbourhood 𝑈 � 𝑝 relatively open in P such that scl(𝑥, 𝑃) < scl(𝑝, 𝑃) for any 𝑥 ∈ 𝑈 \ {𝑝} and
restricting D to U, if necessary, we may assume that p is the only vD-point of D. Using an argument
similar to the one in the previous paragraph, by possibly removing a finite subset from each 𝐷 ∈ D, we
may assume that D =

⋃D∪ {𝑝} is closed, p is the only nonisolated point of D and p is a vD-point of D.
Consider the translation D′′ = { 𝐷 · 𝑝−1 : 𝐷 ∈ D } of D. Suppose 1G ∈

⋃D′′ \ 𝑃. By the closedness
of D and property (1), the set

⋃D′′ \ 𝑃 contains no infinite converging sequence, contradicting the
sequentiality of G.

(2) There exists a countable family D of closed discrete subsets of G such that
⋃D ⊆ 𝑃, 1G is the only

nonisolated point of
⋃D ∪ {1G}, which is closed in G, and 1G is a vD-point of D.

Suppose there exists an 𝑆 → 1G such that (𝑆 · 𝑝) \ 𝑃 is infinite for every 𝑝 ∈ 𝑃 \ {1G}. We may then
pick an infinite sequence 𝑆′ ⊆ 𝑆 · 𝑆 so that 𝑆′ → 1G and 𝑆′ ⊆ G \ 𝑃, contradicting (1). Thus for every
sequence 𝑆 → 1G, there exists a 𝑝 ∈ 𝑃 \ {1G} such that (𝑆 · 𝑝) ⊆∗ 𝑃.

Suppose 𝐴 ⊆ G is such that for some ordinal 𝛽, scl(𝑎, 𝑃) ≤ 𝛽 < 𝛼𝑃 for every 𝑎 ∈ 𝐴 ∩ 𝑃. Then there
exists a sequence 𝑆 → 1G such that 𝑆 \

⋃
𝑎∈𝐹 (𝑃 · 𝑎−1) is infinite for every 𝐹 ∈ [𝐴]<𝜔 .

Indeed, suppose no such S exists, and let 𝐴 = { 𝑝𝑛 : 𝑛 ∈ 𝜔 } list all the points in A. For each 𝑛 ∈ 𝜔,
find a neighbourhood 𝑈𝑛 � 𝑝𝑛 relatively open in P so that scl(𝑈𝑛 ∩ 𝑃) ≤ 𝛽 if 𝑝𝑛 ∈ 𝑃, and put
𝑃′
𝑛 = (𝑈𝑛 ∩ 𝑃) · 𝑝−1

𝑛 . If 𝑝𝑛 ∉ 𝑃, put 𝑃′
𝑛 = ∅. Note that P′ = { 𝑃′

𝑛 : 𝑛 ∈ 𝜔. } is a collection of closed
scattered subsets of G with the property that scl(𝑃𝑛) ≤ 𝛽 for every 𝑛 ∈ 𝜔, and for every 𝑆 → 1G, there
exists an 𝐹 ∈ [𝜔]<𝜔 such that 𝑆 ⊆∗

⋃
𝑛∈𝐹 𝑃′

𝑛.
Repeating the construction used to build P out of 𝑃𝑛 at the beginning of this argument, we may

construct a closed scattered 𝑃′ ⊆ G such that scl(𝑃′) ≤ 𝛽 and 𝑆 ⊆∗ 𝑃′ for every 𝑆 → 1G, contradicting
the minimality of 𝛼𝑃 in (1).

Let 𝑃 \ {1G} = { 𝑝𝑛 : 𝑛 ∈ 𝜔 } list all the points in P other than 1G. For each 𝑛 ∈ 𝜔, pick an open
𝑂𝑛 � 1G such that 𝛽 = scl(𝑝𝑛, 𝑃) = scl(𝑂𝑛 · 𝑝𝑛 ∩ 𝑃) < 𝛼𝑃 , 𝑂𝑛+1 ⊆ 𝑂𝑛, and

⋂
𝑛∈𝜔 𝑂𝑛 = {1G}.

Restricting D to 𝑂0 if necessary, assume that
⋃D ⊆ 𝑂0. By induction, pick disjoint closed discrete

𝐷 ′
𝑛 ⊆ ∪D so that 𝐷 ′

𝑛 ⊆ 𝑂𝑛 and each 𝐷𝑛 is covered by finitely many 𝐷 ′
𝑛. To see that this is possible,

put 𝐷 ′
𝑛 = (𝐷𝑛 ∩ 𝑂𝑛) ∪ ((𝑂𝑛 \ 𝑂𝑛+1) ∩ (

⋃D \
⋃

𝑖<𝑛 𝐷 ′
𝑖)) and observe that the intersection inside the

second pair of parentheses is a closed and discrete subspace of G, since 1G is the only nonisolated point
of D. Put D′ = { 𝐷 ′

𝑛 : 𝑛 ∈ 𝜔 }. Note that 1G is a vD-point of D′. To simplify notation, we will assume
that 𝐷𝑛 ⊆ 𝑂𝑛 in what follows.

Let 𝑛 ∈ 𝜔. By the choice of 𝑂𝑛, 𝐷𝑛 ⊆ 𝑂𝑛 ⊆ 𝑂𝑖 , so 𝐷𝑛 · 𝑝𝑖 ⊆ 𝑂𝑖 · 𝑝𝑖 , whenever 𝑖 ≤ 𝑛. Thus there is
a 𝛽 < 𝛼𝑃 such that scl(𝑎, 𝑃) ≤ 𝛽 for every 𝑎 ∈ 𝐴𝑛 =

⋃
𝑖≤𝑛 𝐷𝑛 · 𝑝𝑖 . Find a sequence 𝑆𝑛 → 1G such that

𝑆𝑛 \
⋃

𝑎∈𝐹 (𝑃 · 𝑎−1) is infinite for every 𝐹 ∈ [𝐴𝑛]
<𝜔 . Let 𝐷𝑛 = { 𝑑𝑖 : 𝑖 ∈ 𝜔 } and 𝑆𝑛 = { 𝑠𝑖 : 𝑖 ∈ 𝜔 }

be 1-1 listings of 𝐷𝑛 and 𝑆𝑛. For each 𝑖 ∈ 𝜔, pick an 𝑚(𝑖) > 𝑛 so that 𝑚(𝑖) is strictly increasing,
𝑠𝑚(𝑖) · 𝑑𝑖 · 𝑝 𝑗 ∉ 𝑃 for every 𝑖 ∈ 𝜔 and 𝑗 ≤ 𝑛, and 𝑒𝑛𝑖 = 𝑠𝑚(𝑖) · 𝑑𝑖 ∈ 𝑂𝑛. Note that the latter is possible,
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since 𝑆 → 1G and 𝑑𝑖 ∈ 𝐷𝑛 ⊆ 𝑂𝑛. Put 𝐵𝑛 = { 𝑒𝑛𝑖 : 𝑖 ∈ 𝜔 } and 𝐵 =
⋃

𝑛∈𝜔 𝐵𝑛, and note that each 𝐵𝑛 is a
closed and discrete subspace of G.

Now, 1G ∈ 𝐵. Indeed, let 𝑈 � 1G be any open neighbourhood of 1G. Find an open 𝑉 � 1G such that
𝑉 · 𝑉 ⊆ 𝑈. Then 𝑉 ∩ 𝐷𝑛 is infinite for some 𝑛 ∈ 𝜔, since 1G is a vD-point of D. Also, 𝑆𝑛 ⊆∗ 𝑉 . Thus
for some large enough 𝑖 ∈ 𝜔, both 𝑑𝑖 ∈ 𝑉 and 𝑠𝑚(𝑖) ∈ 𝑉 , showing that 𝑒𝑛𝑖 ∈ 𝑈.

Let 𝐶 ⊆ 𝐵 be an infinite sequence such that 𝐶 → 𝑔 for some 𝑔 ∈ G. Since each 𝐵𝑛 is closed and
discrete, we may assume that 𝐶 = { 𝑒𝑛(𝑘)

𝑖 (𝑘)
: 𝑘 ∈ 𝜔 }, where 𝑛(𝑘) is strictly increasing. Since 𝑒𝑛𝑖 ∈ 𝑂𝑛,

𝐶 → 1G. Thus, there exists a 𝑗 ∈ 𝜔 such that 𝐶 · 𝑝 𝑗 ⊆
∗ 𝑃. Pick a 𝑘 ∈ 𝜔 large enough so that 𝑛(𝑘) > 𝑗

and 𝑒𝑛(𝑘)
𝑖 (𝑘)

· 𝑝 𝑗 ∈ 𝑃. At the same time, 𝑒𝑛(𝑘)
𝑖 (𝑘)

· 𝑝 𝑗 = 𝑠𝑚(𝑖 (𝑘)) · 𝑑𝑖 (𝑘) · 𝑝 𝑗 ∉ 𝑃 by the choice of 𝑠𝑚(𝑖) , a
contradiction. �

Lemma 23. Let G be a countable nondiscrete sequential group. Suppose P ⊆ nwd(G) is a countable
family such that for every 𝑆 → 1G, there exists a 𝑃 ∈ P such that |𝑆 ∩ 𝑃 | = 𝜔. Then G does not have a
countable 𝜋-network at 1G that consists of dense in themselves sets.

Proof. Note that G is not Fréchet by Lemma 6 and thus does not contain a closed subspace homeomor-
phic to D(𝜔) by Proposition 2.

Let D = { 𝐷𝑛 : 𝑛 ∈ 𝜔 } be a 𝜋-network at 1G such that each 𝐷 ∈ D is dense in itself. By translating
each element of D if necessary, we may assume that 1G ∈ 𝐷 for every 𝐷 ∈ D.

Fix open 𝑂𝑛 � 1G so that 𝑂𝑛+1 ⊆ 𝑂𝑛 and
⋂

𝑛∈𝜔 𝑂𝑛 = {1G}.
Let P = { 𝑃𝑛 : 𝑛 ∈ 𝜔 } ⊆ nwd(G) be such that for every 𝑆 → 1G, there exists a 𝑃 ∈ P such that

|𝑆 ∩ 𝑃 | = 𝜔. Just as in the proof of Lemma 22, we may construct a 𝑃 ∈ nwd(G) such that for every
𝑆 → 1G, 𝑆 ⊆∗ 𝑃. By taking the closure of P if necessary, we may assume that P is closed.

Let 𝑔 ∈ G. Define 𝑑 (𝑔) = 𝔰𝔬(𝑔,G \ 𝑃). Let 𝛼𝑃 = 𝑑 (1G). Note that 𝛼𝑃 > 1 by the choice of P. We
proceed to prove the following claim by induction on 𝛼.

(3) Let 𝑝 ∈ 𝑃 and 𝑑 (𝑝) = 𝛼 for some 𝛼 < 𝜔1. There exists a𝑇 ⊆ G\𝑃 and a neighbourhood assignment
𝑊 : 𝑇 → 𝜏(G) such that the following properties hold:

(a) 𝑝 ∈ [𝑇]𝛼, if 𝑝′ ∈ 𝑇 , then 𝑑 (𝑝′) = 𝔰𝔬(𝑝′, 𝑇);
(b) 𝑔 ∈ 𝑊 (𝑔) \ 𝑃 for every 𝑔 ∈ 𝑇 , the 𝑊 (𝑔) are disjoint; if 𝑠𝑖 ∈ 𝑊 (𝑔𝑖) \ 𝑃 is such that 𝑠𝑖 → 𝑔

for some 𝑔 ∈ G and all 𝑔𝑖 are distinct, then 𝑔𝑖 → 𝑔;

Let 𝑑 (𝑝) = 𝛼 for some 𝑝 ∈ 𝑃. If 𝛼 = 1, there exists an infinite sequence of 𝑔𝑖 ∈ G \ 𝑃 such that
𝑔𝑖 → 𝑝. Thinning out the sequence and reindexing, if necessary, pick disjoint open 𝑊 (𝑔𝑖) � 𝑔𝑖 so that
𝑊 (𝑔𝑖) ⊆ 𝑂𝑖 · 𝑝. Put 𝑇 = { 𝑔𝑖 : 𝑖 ∈ 𝜔 }. Properties (a) and (b) are easy to check.

Thus we can assume 𝛼 > 1. Let 𝑝𝑛 → 𝑝 and 𝛼𝑛 < 𝛼 be such that 𝑝𝑛 ∈ 𝑂𝑛 · 𝑝 and 𝑝𝑛 ∈ [G \ 𝑃]𝛼𝑛

for every 𝑛 ∈ 𝜔. Since 𝑑 (𝑝𝑛) ≤ 𝛼𝑛 < 𝛼, by the induction hypothesis there exist 𝑇𝑛 ⊆ G \ 𝑃 and
𝑊𝑛 : 𝑇𝑛 → 𝜏(G) that satisfy (3). Pick a sequence of open disjoint 𝑉𝑛 � 𝑝𝑛 such that 𝑉𝑛 ⊆ 𝑂𝑛 · 𝑝 after
thinning out and reindexing if necessary. By passing to subsets and reindexing again, if necessary, we
may assume that the 𝑇𝑛 are disjoint, 𝑇𝑛 ⊆ 𝑂𝑛 · 𝑝 ∩ 𝑉𝑛, and 𝑊𝑛 (𝑔) ⊆ 𝑂𝑛 · 𝑝 ∩ 𝑉𝑛 for every 𝑛 ∈ 𝜔 and
𝑔 ∈ 𝑇𝑛. Let 𝑇 =

⋃
𝑛∈𝜔 𝑇𝑛, and define 𝑊 : 𝑇 → 𝜏(G) by 𝑊 (𝑔) = 𝑊𝑛 (𝑔) whenever 𝑔 ∈ 𝑇𝑛.

By the choice of 𝑇𝑛 and 𝑂𝑛, 𝑇 = {𝑝} ∪
⋃

𝑛∈𝜔 𝑇𝑛. If 𝑝′ ∈ 𝑇𝑛, then 𝑑 (𝑝′) = 𝔰𝔬(𝑝′, 𝑇𝑛) = 𝔰𝔬(𝑝′, 𝑇)
by the inductive hypothesis and the choice of 𝑇𝑛. Since 𝑑 (𝑝) = (sup𝑛 𝛼𝑛) + 1 and 𝑑 (𝑝𝑛) ≤ 𝛼𝑛,
𝑑 (𝑝) = 𝔰𝔬(𝑝, 𝑇).

Let 𝑠𝑖 ∈ 𝑊 (𝑔𝑖) \ 𝑃 for some 𝑔𝑖 ∈ 𝑇 be such that 𝑠𝑖 → 𝑔. By thinning out and reindexing, we may
assume that either 𝑔𝑖 ∈ 𝑇𝑛 for some fixed 𝑛 ∈ 𝜔 or 𝑔𝑖 ∈ 𝑇𝑛(𝑖) ⊆ 𝑂𝑛(𝑖) · 𝑝 for some strictly increasing
𝑛(𝑖). In the first case, 𝑔𝑖 → 𝑔 ∈ 𝑃 by the choice of 𝑇𝑛. Otherwise, 𝑠𝑖 ∈ 𝑊𝑛(𝑖) (𝑔𝑖) ⊆ 𝑂𝑛(𝑖) · 𝑝, so 𝑠𝑖 → 𝑝
by the choice of 𝑂𝑛, contradicting 𝑠𝑖 ∈ G \ 𝑃 and 𝑑 (𝑝) = 𝛼 > 1.

Pick T and W that satisfy (3) for 𝑝 = 1G, and let 𝑇 = { 𝑡𝑛 : 𝑛 ∈ 𝜔 } be a 1-1 enumeration of the points
of T. Pick 𝑈𝑛 ⊆ (𝑊 (𝑡𝑛) \ 𝑃) · 𝑡−1

𝑛 so that 𝑈𝑛+1 ⊆ 𝑈𝑛,
⋂

𝑛∈𝜔𝑈𝑛 = {1G}, and 1G ∈ { 𝑡𝑘 : 𝑈𝑘 · 𝑡𝑘 ⊆ 𝑂𝑛 }

for every 𝑛 ∈ 𝜔. Note that each 𝑈𝑛 · 𝑡𝑛 ⊆ G \ 𝑃. Let 𝑘 ∈ 𝜔, and show that
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(4) there exists a closed discrete subset 𝐸𝑘 ⊆ 𝐷𝑘 such that 𝐸𝑘 = { 𝑒𝑘𝑛 : 𝑛 ∈ 𝜔 } and 𝑒𝑘𝑛 ∈ 𝑈𝑛 for every
𝑛 ∈ 𝜔.

If no such 𝐸𝑘 exists, then 𝑈𝑛 ∩ 𝐷𝑘 form a countable base of neighbourhoods of 1G in 𝐷𝑘 . Since
1G ∈ 𝐷𝑘 and each 𝐷𝑘 is dense in itself, this implies the existence of a closed copy of D(𝜔) in G,
contradicting the sequentiality of G as noted at the beginning of this proof.

Consider the set 𝐷𝑘 = { 𝑑𝑛 : 𝑑𝑛 = 𝑒𝑘𝑛 · 𝑡𝑛,𝑈𝑛 · 𝑡𝑛 ⊆ 𝑂𝑘 , 𝑛 ∈ 𝜔 }. Then 𝐷𝑘 ⊆ 𝑂𝑘 \ 𝑃 for every 𝑘 ∈ 𝜔
and 𝑑𝑛 ∈ 𝑊 (𝑡𝑛) for every 𝑛 ∈ 𝜔 by 𝑒𝑘𝑛 ∈ 𝑈𝑛 and the choice of 𝑈𝑛. Suppose 𝑑𝑛(𝑖) → 𝑑 for some 𝑑 ∈ G.
By (3b) 𝑡𝑛(𝑖) → 𝑑 so 𝑒𝑘

𝑛(𝑖)
= 𝑑𝑛(𝑖) · 𝑡−1

𝑛(𝑖)
→ 1G, contradicting the choice of 𝑒𝑘𝑛. Thus each 𝐷𝑘 ⊆ 𝑂𝑘 is

closed and discrete in G.
Suppose 𝑆 → 𝑔 for some 𝑔 ∈ G is an infinite sequence such that 𝑆 ⊆

⋃
𝑘∈𝜔 𝐷𝑘 . Since each 𝐷𝑘 is

closed discrete, we may assume that 𝑆 = { 𝑠𝑛 : 𝑛 ∈ 𝜔 }, where 𝑠𝑛 ∈ 𝐷𝑘 (𝑛) for some strictly increasing
𝑘 (𝑛). Then 𝑠𝑛 ∈ 𝑂𝑘 (𝑛) and 𝑆 → 1G, contradicting 𝑆 ⊆ G \ 𝑃 and the choice of P.

Let 𝑈 � 1G be open, and find an open 𝑉 � 1G such that 𝑉 · 𝑉 ⊆ 𝑈. Let 𝑘 ∈ 𝜔 be such that 𝐷𝑘 ⊆ 𝑉 ,
and let 𝑡𝑛 be such that 𝑈𝑛 · 𝑡𝑛 ⊆ 𝑂𝑘 and 𝑡𝑛 ∈ 𝑉 . Then 𝑑𝑛 = 𝑒𝑘𝑛 · 𝑡𝑛 ∈ 𝐷𝑘 ∩𝑉 · 𝑉 . Thus 1G ∈

⋃
𝑘∈𝜔 𝐷𝑘 ,

contradicting the sequentiality of G. �

Lemma 24. Let X be a sequential space, 𝑆 ⊆ 𝑋 and 𝑥 ∈ 𝑆 for some 𝑥 ∈ 𝑋 . Let I ⊆ 2𝑋 be a cover of
S. Then either there exists an 𝐼 ∈ I such that 𝑥 ∈ 𝑆 ∩ 𝐼 or there is a countable I∗ ⊆ [I]𝜔 such that
whenever I′ ⊆ I is such that I′ ∩ I′′ is infinite for every I′′ ∈ I∗, 𝑥 ∈ 𝑆 ∩

⋃ I′.

Proof. The proof proceeds by induction on 𝔰𝔬(𝑥, 𝑆). The case 𝔰𝔬(𝑥, 𝑆) = 0 is trivial, so assume
𝔰𝔬(𝑥, 𝑆) = 𝛼 + 1, and the lemma is proved for all successor 𝛽 ≤ 𝛼. Pick a sequence 𝑇 ⊆ 𝑋 such that
𝑇 → 𝑥 and 𝔰𝔬(𝑦, 𝑆) = 𝛽𝑦 ≤ 𝛼 for every 𝑦 ∈ 𝑇 , and consider the two alternatives that follow from the
inductive hypothesis.

First, suppose the set 𝑇 ′ = { 𝑦 : 𝑦 ∈ 𝐼𝑦 ∩ 𝑆 for some 𝐼𝑦 ∈ I } is infinite. If the family I′ =
{ 𝐼𝑦 : 𝑦 ∈ 𝑇 ′ } is finite, then there is an 𝐼 ∈ I′ such that 𝑥 ∈ 𝑆 ∩ 𝐼. Otherwise put I∗ = {I′}.

Alternatively, assume for every 𝑦 ∈ 𝑇 , there is a countable I∗𝑦 ⊆ [I]𝜔 such that 𝑦 ∈ 𝑆 ∩
⋃ I′ for any

I′ such that I′ ∩ I′′ is infinite for every I′′ ∈ I∗𝑦 . Put I∗ = ⋃
𝑦∈𝑇 I∗𝑦 . �

Lemma 25. Let X be a countable sequential space and I ⊆ 2𝑋 be an ideal with the following properties:
I contains all singletons, 𝐼 ∈ I for every 𝐼 ∈ I, and whenever 𝐴 ∈ I+, there is a 𝑌 ⊆ 𝐴, 𝑌 ∈ I+ such
that 𝑌 \ 𝐼 = 𝑌 for any 𝐼 ∈ I. Then I is tame.

Proof. Suppose I is not tame, and let 𝐴 ∈ I+, 𝑓 : 𝐴 → 𝜔 witness this. Using the property of I from the
statement of the lemma, find𝑌 ⊆ 𝐴,𝑌 ∈ I+ such that𝑌 \ 𝐼 = 𝑌 for any 𝐼 ∈ I. Let 𝑦 ∈ 𝑌 . Since I contains
{𝑦} and X is sequential, there exists a sequence 𝑇 ⊆ 𝑌 \ {𝑦} such that 𝑇 → 𝑦. Let 𝑇 = 〈𝑦𝑖 : 𝑖 ∈ 𝜔〉,
𝐼𝑖 = 𝑓 −1(𝑖) ∈ I, and for every 𝑖 ∈ 𝜔, pick a subset 𝑆𝑖 ⊆ 𝑌 \

⋃
𝑗<𝑖 𝐼 𝑗 such that 𝑦𝑖 ∈ 𝑆𝑖 ∌ 𝑦.

Note that I 𝑓 = { 𝐼𝑖 : 𝑖 ∈ 𝜔 } is a cover of 𝑆 =
⋃

𝑖∈𝜔 𝑆𝑖 and 𝑦 ∈ 𝑆. Since 𝐼𝑖 ∩ 𝑆 ⊆
⋃

𝑗≤𝑖 𝑆𝑖 and
𝑦 ∉

⋃
𝑗≤𝑖 𝑆𝑖 , the first alternative of Lemma 24 fails, so there exists a countable I∗𝑦 ⊆ [I 𝑓 ]

𝜔 such that
𝑦 ∈ 𝑆 ∩

⋃ I′ for any I′ ⊆ I with the property that I′ ∩ I′′ is infinite for every I′′ ∈ I∗𝑦 .
Let J = { 𝑓 [

⋃ I′′] : I′′ ∈ I∗𝑦 , 𝑦 ∈ 𝑌 } ⊆ 2𝜔 . Since 𝑓 [I|𝐴] is 𝜔-hitting, there exists a 𝐽 ∈ 𝑓 [I|𝐴]
such that 𝐽 ∩ 𝐽 ′ is infinite for every 𝐽 ′ ∈ J. Let I′ = { 𝑓 −1(𝑛) : 𝑛 ∈ 𝐽 }. Then I′ ∩ I′′ is infinite for
every I′′ ∈ I∗𝑦 , so 𝑦 ∈ 𝑓 −1 [𝐽] for every 𝑦 ∈ 𝑌 . Thus 𝑌 ⊆ 𝑓 −1 [𝐽] ∈ I, contradicting 𝑌 ∈ I+. �

Lemma 26. Let G be a countable nondiscrete sequential group. Then each of nwd(G), cpt(G) and
csc(G) is tame.

Proof. For cpt(G), the statement can be proved directly. For nwd(G) and csc(G), it is sufficient to
establish the properties listed in Lemma 25. In the case of nwd(G), one may pick 𝑌 = Int(𝐴) ∩ 𝐴,
while for csc(G), the choice of the full Cantor-Bendixson derivative of A as Y satisfies the conditions
of Lemma 25. �
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Lemma 27. Let G be a countable, sequential non-metrizable, non-𝑘𝜔 group. Then one of the nwd(G),
cpt(G) or csc(G) is a tame invariant ideal that satisfies neither 1 nor 2 of the IIA.

Proof. That each of the ideals is tame follows from Lemma 26. The invariance is trivial.
Since nwd(G) never satisfies 2 for a nonmetrizableG (see [39], Proposition 5.2), we may assume that

nwd(G) satisfies 1. Suppose csc(G) satisfies 2. Then there exists a countable D ⊆ csc+(G) such that
for any nonempty open 𝑈 ⊆ G, there exists a 𝐷 ∈ D with the property 𝐷 \𝑈 ∈ csc(G). By replacing
each D with a full Cantor-Bendixson derivative of itself, we may assume that each D is dense in itself.
Applying Lemma 23, we arrive at a contradiction. Thus csc(G) does not satisfy 2.

Suppose csc(G) satisfies 1. If cpt(G) satisfies 2, there exists a countable family D of closed,
noncompact subsets ofG such that for any open𝑈 ⊆ G, there exists a 𝐷 ∈ D such that 𝐷 \𝑈 is compact.
By picking an infinite closed discrete subset in each 𝐷 ∈ D and applying Lemma 22, we arrive at a
contradiction. Thus either csc(G) does not satisfy 1 or cpt(G) does not satisfy 2.

Since G is not 𝑘𝜔 , cpt(G) cannot satisfy 1. �

This concludes the proof of Theorem 19. The result has the following corollary, which illuminates
the behavior of sequential groups under taking products (part (1) is an obvious corollary of Theorem 7
and has been included for completeness):

Corollary 28. Assume IIA.

1. The product of at most countably many separable Fréchet groups is Fréchet, and
2. The product of finitely many countable sequential groups that are either discrete or not Fréchet is

sequential.

Proof. It suffices to note that

1. Q𝜔𝛼 × Q𝜔𝛽 � Q𝜔𝛽 if 𝛼 < 𝛽 < 𝜔1,
2. Q𝜔𝛼 × Q𝜔1 is not sequential if 0 < 𝛼 < 𝜔1,
3. Q0 × Q0 � Q0, and
4. Q0 × Q𝜔1 � Q𝜔1 × Q𝜔1 � Q𝜔1 . �

We do not know at the moment whether it is consistent that the product of two sequential groups that
are not Fréchet is sequential (independently of their cardinality).

4. Examples, concluding remarks and open questions

The example below can probably be constructed using the techniques of [76], but we chose to provide
a direct proof. An appeal to [76] would require a proof of the normality of finite powers of 𝛾N spaces,
as well as an adaptation of the free topological group arguments from [76] to the free boolean group
construction used here.

The nontrivial case of the proof below assumes t = 𝜔1; however, the statement of the example is
meant to emphasize the fact that one of the two ‘pathologies’ exists in every model of ZFC: either there
is a separable nonmetrizable Fréchet group or a (possibly uncountable) sequential group that is not
𝑘𝜔 . The authors do not know whether any separable locally compact first countable countably compact
non-compact space may be used in place of 𝛾N.

Example 29. If there is no separable nonmetrizable Fréchet group, then there exists a separable sequen-
tial 𝑐𝜔 group G that is not 𝑘𝜔 .

Proof. Since t > 𝜔1 implies the existence of a separable nonmetrizable Fréchet group (see, for example
[38]), we may assume that t = 𝜔1.

Let 𝑋 = 𝐷 ∪ 𝜔1 be a countably compact 𝛾N space (see [48], Example 2.2) where D is the
set of isolated points, disjoint from 𝜔1, which has the usual topology. Let 𝑋 ∪ {∞} be the one-point
compactification of X, which is also a subspace of some boolean group H that is (algebraically) generated
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by 𝑋 ∪ {∞}. We shall assume that 𝑋 ∪ {∞} is linearly independent over H (in particular, this means
0𝐻 ∉ 𝑋 ∪ {∞}). The free boolean group over 𝑋 ∪ {∞} (see [73]) would have all the desired properties
(in fact, it is not difficult to show that any group satisfying the properties above is naturally isomorphic
to the free boolean group over 𝑋 ∪ {∞}). Below we use the convention that the elements of such a group
are finite sets of elements of 𝑋 ∪ {∞} with the symmetric difference as the group operation.

Let G be the subgroup of H generated by X, and let 𝐴 ⊆ G be such that 0G ∈ 𝐴 \ 𝐴 (here the closure
is taken in the topology induced by H). We must show that there exists a sequence 𝑆 ⊆ 𝐴 such that
𝑆 → 𝑥 ∈ G \ 𝐴. Suppose no such sequence exists.

Let 𝑛 ∈ 𝜔 be the smallest number such that 0G ∈ 𝐴 ∩
∑𝑛 𝑋 . Note that such an n exists by the

definition of the topology on H. We will assume that 𝐴 ⊆
∑𝑛 𝑋 . By the minimality of n (truncating A if

necessary), we may assume that |𝑎 | = 𝑛 for every 𝑎 ∈ 𝐴. Write an arbitrary 𝑎 ∈ 𝐴 as 𝑎 = 𝑑 + 𝑤, where
𝑑 ∈ 〈𝐷〉 and 𝑤 ∈ 〈𝜔1〉, and put 𝛿(𝑎) = |𝑑 |. Note that for every 𝑘 ≤ 𝑛 the set 𝐴𝑘 = { 𝑎 ∈ 𝐴 : 𝛿(𝑎) ≤ 𝑘 }
is a sequentially closed subset of A.

Let 𝑘 ≤ 𝑛 be the smallest such that 0G ∈ 𝐴𝑘 . Replacing A with 𝐴𝑘 and using the minimality
of k, we may assume (again truncating A if necessary) that 𝛿(𝑎) = 𝑘 for every 𝑎 ∈ 𝐴. Let 𝐷𝐴 =⋃

{𝑡 ∈ 𝐷 : 𝑡 ∈ 𝑎 ∈ 𝐴}, and suppose 𝐷𝐴 is infinite. Note that
∑𝑛 𝑋 is sequentially compact. Using this

and the property of 𝐷𝐴, we may pick a convergent sequence 𝑆 ⊆ 𝐴 such that 𝑆 → 𝑥 for some 𝑥 ∈
∑𝑛 𝑋

and for each 𝑠 ∈ 𝑆, there is a 𝑡𝑠 ∈ 𝑠 ∩ 𝐷 such that { 𝑡𝑠 : 𝑠 ∈ 𝑆 } → 𝛼 ∈ 𝜔1. Then 𝛿(𝑥) < 𝑘 , so 𝑥 ∉ 𝐴.
Thus we may assume that 𝐷𝐴 is finite. Note that this implies that 𝐷𝐴 is empty (otherwise 0G ∉ 𝐴).

Therefore 𝐴 ∈
∑𝑛 𝜔1. Define 𝑙 ≤ 𝑛 to be the largest with the following property: for any 𝛼 < 𝜔1, there

exists an 𝑎 ∈ 𝐴 such that |𝑎 \ 𝛼 | ≥ 𝑙. Note that we may assume that 𝑙 ≥ 1; otherwise, A is countable
with a metrizable closure.

Suppose 𝑙 ≥ 2. Recursively pick a sequence 𝑎𝑖 ∈ 𝐴 such that for some distinct𝛼𝑖 , 𝛽𝑖 ∈ 𝑎𝑖 , 𝛼𝑖+1, 𝛽𝑖+1 >
max{𝛼𝑖 , 𝛽𝑖}. By passing to a subsequence if necessary, we may assume that 𝑎𝑖 → 𝑎 ∈

∑𝑛 𝜔1. Since
𝛼𝑖 , 𝛽𝑖 → 𝛾 for some 𝛾 ∈ 𝜔1, |𝑎 | < 𝑛, showing that 𝑎 ∉ 𝐴. We may thus assume that 𝑙 = 1.

This implies the existence of an 𝛼 ∈ 𝜔1 such that every 𝑎 ∈ 𝐴 can be written as 𝑎 = {𝛽𝑎} + 𝑏𝑎,
where 𝛽𝑎 > 𝛼 + 1 and 𝑏𝑎 ∈ [𝛼 + 1]𝑛−1. If 𝑛 > 1, the set 𝐴′ = { 𝑏𝑎 : 𝑎 ∈ 𝐴 } is a sequentially closed
(and therefore compact) subset of H such that 0G ∉ 𝐴′ (otherwise 𝐴∩𝜔1 ≠ ∅, contradicting the choice
of A and 𝑛 > 1). Now 𝑈 = 𝐻 \ (𝐴′ + ({ 𝛽 : 𝛽 > 𝛼 + 1 } ∪ {∞})) is an open neighbourhood of 0G such
that 𝑈 ∩ 𝐴 = ∅, contradicting the choice of A. Hence 𝑛 = 1, implying 0G ∉ 𝐴, a contradiction. �

The statement of IIA given at the beginning of this paper may appear somewhat technical in that
it lists several restrictions on both the space (groomed) as well as the ideal (tame, invariant, weakly
closed). This complexity may be significantly reduced in most applications, however. Most natural
ideals (including all used in this paper) in sequential spaces are generated by their (sequentially) closed
members, while tameness can be replaced by the topological condition defined in Lemma 25, namely
the existence of a ‘kernel’ in each positive set. One may prefer a weaker version of IIA that states that
for every invariant ideal generated by sequentially closed sets for which the conditions in Lemma 25 are
satisfied, one of the two alternatives in the statement of IIA holds.

Limiting the class of spaces may also make applications of IIA more transparent. Call the following
statement the Unrestricted Ideal Axiom or UIA:
UIA: For every space X in some class Pand every ideal I ⊆ 2𝑋 , one of the following holds for every
𝑥 ∈ 𝑋:

1. there is a countable S ⊆ I such that for every infinite sequence C convergent to x in X, there is an
𝐼 ∈ S such that 𝐶 ∩ 𝐼 is infinite,

2. there is a countable H ⊆ I+ such that for every non-empty open 𝑈 ⊆ 𝑋 , 𝑥 ∈ 𝑈, there is an 𝐻 ∈ H
such that 𝐻 \𝑈 ∈ I.

It is not difficult to see that any countable space that is either 𝑘𝜔 or first countable satisfies UIA.
Theorem 19 shows IIA implies UIA holds for the class of all countable sequential groups (note that there
are no restrictions on the ideal whatsoever, not even invariance). The authors do not know at the moment
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if UIA for all groomed groups is implied by IIA or even whether it is consistent. There are countable
Fréchet spaces for which UIA fails in ZFC with the ideal of the nowhere dense subsets as the witness
(see [27]).

To shed some light on the topology of groomed spaces, the following more detailed treatment of the
concept of a vD-point from Lemma 22 may be helpful.

Definition 30. Let X be a topological space. Let D be a countable family of infinite closed discrete
subspaces of X. We call D a (strict) vD-network at 𝑥 ∈ 𝑋 if for every open 𝑈 � 𝑥, there is a 𝐷 ∈ D such
that 𝐷 ∩𝑈 is infinite (𝐷 ⊆∗ 𝑈).

If D is a (strict) vD-network at x, we will refer to the space
⋃D ∪ {𝑥} as a (strict) vD-subspace of X

and the point x as a (strict) vD-point of D in X.
Now the lemma below offers a topological description of countable groomed spaces. We omit an

elementary proof.

Lemma 31. A countable topological space X is groomed if and only if for every dense 𝐷 ⊆ 𝑋 , there
exists a point 𝑥 ∈ 𝑋 such that there exists either an infinite sequence 𝑆 ⊆ 𝐷 such that 𝑆 → 𝑥 or a strict
vD-network D ⊆ 2𝐷 at x.

As indicated by Corollary 28, the classes of (countable) Fréchet and sequential non-Fréchet groups
are both finitely productive, assuming IIA holds. It appears the following question is open, including the
intriguing possibility of the negative answer in ZFC.

Question 1. Does there exist a (separable, or even countable) sequential non-Fréchet group with a
non-sequential square?

The answer to the next question is known to be independent of ZFC for separable groups, while the
non-separable case in ZFC remains open.

Question 2. Does there exist a Fréchet group with a non-Fréchet square?

Example 29 shows that the dichotomy of Theorem 19 does not hold for general sequential groups
even in the separable case. However, the more general question below appears to be open.

Question 3. Does there exist a separable sequential group that is neither 𝑐𝜔 nor metrizable?

Finally, while the class of 𝑘𝜔 spaces is finitely productive, it is not clear if the same is true about
sequential 𝑐𝜔 spaces.

Question 4. Are sequential 𝑐𝜔-spaces preserved by finite products?
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