UNITS IN GROUP RINGS OF FREE PRODUCTS OF PRIME CYCLIC GROUPS

MICHAEL A. DOKUCHAEV AND MARIA LUCIA SOBRAL SINGER

ABSTRACT. Let *G* be a free product of cyclic groups of prime order. The structure of the unit group $U(\mathbb{Q}G)$ of the rational group ring $\mathbb{Q}G$ is given in terms of free products and amalgamated free products of groups. As an application, all finite subgroups of $U(\mathbb{Q}G)$, up to conjugacy, are described and the Zassenhaus Conjecture for finite subgroups in $\mathbb{Z}G$ is proved. A strong version of the Tits Alternative for $U(\mathbb{Q}G)$ is obtained as a corollary of the structural result.

1. Introduction. Let $U(\mathbb{Z}G)$ denote the unit group of the integral group ring $\mathbb{Z}G$ of a group G and let $U_1(\mathbb{Z}G)$ be the group of units of augmentation 1 in $\mathbb{Z}G$. Similar notation shall be used for the rational group algebra $\mathbb{Q}G$. The Conjecture of Zassenhaus, denoted (ZC3) [14], states that if G is finite and H is a finite subgroup of $U_1(\mathbb{Z}G)$ then H is conjugate in $U(\mathbb{Q}G)$ to a subgroup of G. A restricted version of this conjecture, denoted (ZC1) [14], says that every torsion unit of $U_1(\mathbb{Z}G)$ is conjugate in $U(\mathbb{Q}G)$ to an element of G. It is known that (ZC3) holds for finite nilpotent groups [16], [17], finite split metacyclic groups [12], [15] and some particular groups. However, (ZC3) is false in general and the counterexamples show that it does not hold for finite metabelian groups [7] and [13]. The Zassenhaus Conjecture restricted to finite p-subgroups of $U_1(\mathbb{Z}G)$ has been established for finite nilpotent-by-nilpotent groups G [4], for finite solvable groups G whose Sylow p-subgroups are either abelian or generalized quaternion [4] and for Frobenius groups G which cannot be mapped homomorphically onto S_5 [5]. More information on the Zassenhaus Conjecture and its various versions can be found in [3], [13], [14]. It is interesting to know which infinite groups satisfy (ZC3). In [11] an infinite nilpotent group is constructed which does not satisfy (ZC1) (compare with [2]). Problem 39 of [14] asks whether (ZC1) holds for a free product of finite cyclic groups.

Torsion units in integral group rings $\mathbb{Z}G$ where *G* is a free product of abelian groups were studied by A. I. Lichtman and S. K. Sehgal [10]. They proved that if $u \in U_1(\mathbb{Z}G)$ has order $m < \infty$ then one of the free factors of *G* contains an element *h* of order *m*. Moreover, if *G* is a free product of a finite number of finite abelian groups then *u* is conjugate to *h* in a large overing of $\mathbb{Q}G$ (Theorem 1 of [10]). In a particular case when *G* is the infinite dihedral group the conjugating element can be taken even in $\mathbb{Z}[\frac{1}{2}]G$, (see [9]).

[©]Canadian Mathematical Society 1998.

Received by the editors December 9, 1996.

At the beginning of this work the first author was supported by FAPESP; the rest of his work was partially supported by CNPq.

AMS subject classification: Primary: 20C07, 16S34, 16U60; secondary: 20E06.

Key words and phrases: Free Products, Units in group rings, Zassenhaus Conjecture.

In this paper we study the free product $G = *G_{\alpha}$ ($\alpha \in I$) of cyclic groups of prime order $|G_{\alpha}| = p_{\alpha}$ (the p_{α} 's are not necessarily distinct and *I* may be infinite). In Section 2 by applying Gerasimov's Theorem [6] we prove that

$$U(\mathbb{Q}G) = *_{U(\mathbb{Q})} ((A_{\alpha} * B_{\alpha}) \rtimes U(\mathbb{Q}G_{\alpha})),$$

where $*_{U(\mathbb{Q})}$ denotes the amalgamated free product over the multiplicative group $U(\mathbb{Q})$ of \mathbb{Q} and A_{α} , B_{α} are abelian groups isomorphic to the additive groups of some infinite dimensional vector spaces over \mathbb{Q} (Theorem 2.3). As a consequence we prove that every nonabelian subgroup of $U(\mathbb{Q}G)$ either contains a free noncyclic subgroup or is metabelian (Corollary 2.4). In Section 3 we use Theorem 2.3 to prove that every finite subgroup of $U_1(\mathbb{Q}G)$ is conjugate in $U(\mathbb{Q}G)$ to a subgroup of $U_1(\mathbb{Q}G_{\alpha})$ for some $\alpha \in I$ (Theorem 3.4). As a corollary the Zassenhaus Conjecture (ZC3) is proved for G (Corollary 3.5).

2. The structure of the rational unit group. Let *K* be an associative ring with identity and $G = *_H G_{\alpha}(\alpha \in I)$ be the free product of groups G_{α} with amalgamated subgroup *H*. It is easy to verify that *KG* is isomorphic to the coproduct $\coprod_{KH} KG_{\alpha}$, $(\alpha \in I)$ of rings KG_{α} over *KH*. In particular, if $G = *G_{\alpha}(\alpha \in I)$ is the free product of groups G_{α} , then $KG \cong \coprod_K KG_{\alpha}(\alpha \in I)$. Thus, Gerasimov's Theorem on units in coproducts of rings [6] can be used in the study of U(KG).

An element of *KG* of the form $1 + x\nu y$ where $x, y \in KG_{\alpha}$, $yx = 0, \nu \in KG$ is called a KG_{α} -transvection. Let $\Gamma(KG_{\alpha})$ be the subgroup of U(KG) generated by $U(KG_{\alpha})$ and all the KG_{α} -transvections of *KG*. A ring *R* with the identity element 1 is called 1*commutative* if xy = 1 implies yx = 1 ($x, y \in R$). The following statement is an immediate consequence of Gerasimov's Theorem.

STATEMENT 2.1. Let $G = *G_{\alpha}(\alpha \in I)$ and K be a division ring. If each KG_{α} is 1-commutative then

$$U(KG) \cong *_{U(K)} \Gamma(KG_{\alpha}), \quad (\alpha \in I).$$

where U(K) denotes the multiplicative group of *K*.

It is easy to see that the subgroup $T(KG_{\alpha})$ generated by all the KG_{α} -transvections of KG is normal in $\Gamma(KG_{\alpha})$.

Suppose now that $K = \mathbb{Q}$ and that each $|G_{\alpha}| = p_{\alpha}$ is a prime $(\alpha \in I)$. The p_{α} 's are not necessarily distinct and *I* may be infinite. Let *S* be the disjoint union of the $G_{\alpha} \setminus \{1\}$, $(\alpha \in I)$. We say that the product $g = g_1 \cdots g_n$, $(g_i \in S)$ is *reduced* if either n = 1 or $n \ge 2$ and no adjacent factors belong to the same G_{α} . In this case *n* is called the *length* of *g* and shall be denoted by $\ell(g)$.

Let β be a fixed index and $G_{\beta} = \langle c \rangle$. Take any ordering on each $G_{\alpha} \setminus \{1\}$, $(\alpha \neq \beta)$. Set $c^{i} < c^{j}$ if and only if i < j, $(0 < i, j \le p - 1, p = p_{\beta})$.

Now take an ordering on *I* such that $\beta < \alpha$ for every $\alpha \in I$, $(\alpha \neq \beta)$ and assume that the identity element $1 \in G$ has length 0. This determines an ordering in *S*.

Suppose now that every element of G is given as a reduced product and order them first by their length and then lexicographically from left to right.

For a $\nu \in KG$ the leading term, lead(ν), of ν is the maximum of $\{g : g \in \text{supp}(\nu)\}$, that is lead(ν) $\geq g$ for every g of the support of ν .

Let C_{β} be the Q-subspace of QG generated by all reduced products $c^{i}g_{1} \cdots g_{n}$, $(g_{j} \in S, n \ge 1, g_{n} \notin G_{\beta}, 0 \le i \le p-2)$ and let D_{β} be the Q-subspace of QG generated by all reduced products $g_{1} \cdots g_{n}c^{i}$, $(g_{j} \in S, n \ge 1, g_{1} \notin G_{\beta}, 0 \le i \le p-2)$.

Set $\hat{c} = 1 + c + \cdots + c^{p-1}$ and consider the following maps: $\varphi: C_{\beta} \to U(\mathbb{Q}G)$ and $\psi: D_{\beta} \to U(\mathbb{Q}G)$ defined by $\varphi(\nu) = 1 + (1 - c)\nu\hat{c}$, and $\psi(\nu) = 1 + \hat{c}\nu(1 - c)$. It is easily seen that φ and ψ are homomorphisms from the additive groups C_{β} and D_{β} respectively into $T(\mathbb{Q}G_{\beta})$.

LEMMA 2.2. Set $A_{\beta} = \operatorname{Im} \varphi$ and $B_{\beta} = \operatorname{Im} \psi$. Then $T(\mathbb{Q}G_{\beta}) = \langle A_{\beta}, B_{\beta} \rangle$ and $\varphi: C_{\beta} \to A_{\beta}, \psi: D_{\beta} \to B_{\beta}$ are isomorphisms.

PROOF. It is easily seen that if xy = 0 for some $x, y \in \mathbb{Q}G_{\beta}$ then one of these elements belongs to $(1 - c)\mathbb{Q}G_{\beta}$ and the other to $\mathbb{Q}\hat{c}$. Hence $T(\mathbb{Q}G_{\beta})$ is generated by all elements of the form $1 + (1 - c)\nu\hat{c}$, $1 + \hat{c}\nu(1 - c)$, $\nu \in \mathbb{Q}G$. Then it follows from the equality

$$(1-c)c^{p-1} = -(1-c)(1+c+\cdots+c^{p-2})$$

that $T(\mathbb{Q}G_{\beta})$ is generated by Im φ and Im ψ . This proves the first statement. It remains to be shown that Ker $\varphi = \text{Ker } \psi = \{0\}.$

Let $0 \neq \nu \in C_{\beta}$ and lead(ν) = $c^{i}g_{1} \cdots g_{n}$, $(n \geq 1, 0 \leq i \leq p-2)$ be written as a reduced product.

Let $c^{j}h_{1} \cdots h_{k} \neq \text{lead}(\nu)$ be a reduced product from the support of ν . Observe that since $\beta < \alpha$ for every $\alpha \in I$, $(\alpha \neq \beta)$, we have that $k \leq n$. (Note that this observation will be used in (8)). Then either k < n or k = n and j < i or k = n, j = i and $h_{1} \cdots h_{n} < g_{1} \cdots g_{n}$.

It is easy to see that in all cases $c^{i+1}g_1 \cdots g_n > c^{j+1}h_1 \cdots h_k$ and, consequently,

(1)
$$\operatorname{lead}((1-c)\nu) = c^{i+1}g_1\cdots g_n,$$
$$\operatorname{lead}(\varphi(\nu)) = c^{i+1}g_1\cdots g_n c^{p-1} = c(\operatorname{lead}(\nu))c^{p-1}.$$

Thus, $\varphi(\nu) \neq 1$ and Ker $\varphi = \{0\}$.

Let $0 \neq \nu \in D_{\beta}$ and for a reduced product $g = h_1 \cdots h_k c^j$ from the support of ν , set $\omega(g) = h_1 \cdots h_k$. Let

$$g_1 \cdots g_n = \max\{\omega(g) : g \in \operatorname{supp}(\nu)\}$$

and

$$g_1 \cdots g_n c^i = \max\{g \in \operatorname{supp}(\nu) : \omega(g) = g_1 \cdots g_n\}$$

If $h_1 \cdots h_k c^j$ is any other reduced product from $\operatorname{supp}(\nu)$, then either $h_1 \cdots h_k < g_1 \cdots g_n$ or $k = n, h_1 \cdots h_k = g_1 \cdots g_n$ and j < i. In both cases we have that $h_1 \cdots h_k c^{j+1} < g_1 \cdots g_n c^{i+1}$, therefore,

(2)
$$\operatorname{lead}(\nu(1-c)) = g_1 \cdots g_n c^{i+1},$$
$$\operatorname{lead}(\psi(\nu)) = \operatorname{lead}(\hat{c}\nu(1-c)) = c^{p-1}g_1 \cdots g_n c^{i+1}.$$

Thus Ker $\psi = \{0\}$.

Now we shall prove the main result of this section.

THEOREM 2.3. Let $G = *G_{\alpha}$, $(\alpha \in I)$ where $|G_{\alpha}| = p_{\alpha}$ is a prime. Then

$$U(\mathbb{Q}G) = *_{U(\mathbb{Q})} ((A_{\alpha} * B_{\alpha}) \rtimes U(\mathbb{Q}G_{\alpha})), \quad (\alpha \in I)$$

where $A_{\alpha} * B_{\alpha} = T(\mathbb{Q}G_{\alpha})$ is the group generated by all $\mathbb{Q}G_{\alpha}$ -transvections of $\mathbb{Q}G$, A_{α} and B_{α} are abelian groups isomorphic to the additive groups of some infinite dimensional vector spaces over \mathbb{Q} (see Lemma 2.2).

PROOF. Fix $\beta \in I$. We shall use the notation and the ordering introduced above. By Statement 2.1 and Lemma 2.2 it suffices to prove that $T(\mathbb{Q}G_{\beta}) \cap U(\mathbb{Q}G_{\beta}) = \{1\}$ and $T(\mathbb{Q}G_{\beta}) = A_{\beta} * B_{\beta}$. We shall do this by calculating the leading term of an arbitrary element of $T(\mathbb{Q}G_{\beta})$.

We shall say that two $\mathbb{Q}G_{\beta}$ -transvections t_1 and t_2 have the same type if $t_1, t_2 \in A_{\beta}$ or $t_1, t_2 \in B_{\beta}$. A product of $\mathbb{Q}G_{\beta}$ -transvections $u = t_1 \cdots t_n$ shall be called *reduced* if no adjacent factors have the same type. It is easy to see that an arbitrary reduced product uof transvections is a sum of the identity and elements of the form

(3)
$$0 \neq w = [(1-c)\nu_0 \hat{c}]^{\varepsilon_1} \hat{c} \nu_1 (1-c)^2 \nu_2 \hat{c} \cdots \hat{c} \nu_{2n-1} (1-c)^2 \nu_{2n} \hat{c} [\hat{c} \nu_{2n+1} (1-c)]^{\varepsilon_2},$$

where $\nu_0, \nu_2, ..., \nu_{2n} \in C_{\beta}, \nu_1, \nu_3, ..., \nu_{2n+1} \in D_{\beta}$, and $\varepsilon_1, \varepsilon_2 \in \{0, 1\}$.

We shall proceed by finding the leading term of $\nu_i(1-c)^2\nu_j$ where i < j, i < 2n+1, iis odd and *j* is even. Write an arbitrary element $g \in G$ as $g = g_1\omega(g)g_2$ where $g_1, g_2 \in \langle c \rangle$ and $\omega(g)$ does not begin or end in a nonidentity element of $\langle c \rangle$. Set $t_k = \max\{\omega(g) : g \in$ $\supp(\nu_k)\}, 0 \le k \le 2n+1$. If *k* is odd write $\nu_k = t_k x_k + r_k$, where $x_k \in \mathbb{Q}\langle c \rangle$ and for every $g \in \supp(r_k), \omega(g) < t_k$. For an even $k, 0 \le k \le 2n$ write

(4)
$$\nu_k = x_k^{(1)} t_k^{(1)} + \sum_{s=2}^m x_k^{(s)} t_k^{(s)} + r'_k,$$

where $x_k^{(1)}, \ldots, x_k^{(m)} \in \mathbb{Q}\langle c \rangle$, $t_k^{(1)} = t_k$, $\ell(t_k^{(s)}) = \ell(t_k)$, $(2 \le s \le m)$ and $\ell(\omega(g)) < \ell(t_k)$ for every $g \in \operatorname{supp}(r'_k)$.

Fix an odd i, $1 \le i < 2n + 1$, and an even j, $j \le 2n$ such that i < j. Let

$$c^{l} = \max\left\{g: g \in \bigcup_{s=1}^{m} \operatorname{supp}(x_{i}(1-c)^{2}x_{j}^{(s)})\right\}$$

and

$$f_j = \max\{t_j^{(s)} : c^l \in \sup\{x_i(1-c)^2 x_j^{(s)}\}\}$$

where $t_i^{(s)}$ is defined in (4). We claim that $c^l \neq 1$ and that

(5)
$$\operatorname{lead}[\nu_i(1-c)^2\nu_j] = t_i c^l f_j$$

In particular,

(6)
$$\ell(\operatorname{lead}[\nu_i(1-c)^2\nu_j]) = \ell(t_i) + 1 + \ell(t_j) \ge 3.$$

Let ζ be a primitive $p = p_{\beta}$ -th root of unity and $\pi: \mathbb{Q}\langle c \rangle \to \mathbb{Q}(\zeta)$ be the map determined by $\pi(c) = \zeta$. It follows from the definitions of C_{β} and D_{β} that c^{p-1} does not belong to the supports of x_i and $x_j^{(s)}$, $(1 \le s \le m)$, hence $\pi(x_i)\pi(x_j^{(s)}) \ne 0$, $(1 \le s \le m)$ and therefore $\pi(x_i(1-c)^2 x_j^{(s)}) \ne 0$ ($1 \le s \le m$). Consequently $x_i(1-c)^2 x_j^{(s)} \ne 0$, $(1 \le s \le m)$ and as $(1-c)^2$ is not a unit in $\mathbb{Q}\langle c \rangle$ we see that $x_i(1-c)^2 x_j^{(s)} \ne \mathbb{Q}$. Thus $\operatorname{supp}(x_i(1-c)^2 x_j^{(s)})$ contains a nonidentity element of $\langle c \rangle$ for every s, $(1 \le s \le m)$. In particular, $c^l \ne 1$.

Let $g_1 c^a g_2$ be an arbitrary element from $\operatorname{supp}(\nu_i(1-c)^2 \nu_j)$, where $g_1 = \omega(h_1)$, $g_2 = \omega(h_2)$ for some $h_1 \in \operatorname{supp}(\nu_i)$ and $h_2 \in \operatorname{supp}(\nu_j)$. It follows from the definitions of t_i and f_j that $g_1 \leq t_i$ and $\ell(g_2) \leq \ell(f_j)$.

If $g_1 < t_i$ then clearly $g_1 c^a g_2 < t_i c^l f_j$. So let $g_1 = t_i$. If $\ell(g_2) < \ell(f_j)$ then

$$\ell(g_1 c^a g_2) \le \ell(g_1) + 1 + \ell(g_2) < \ell(t_i) + 1 + \ell(f_i) = \ell(t_i c^l f_i)$$

and therefore again

$$g_1 c^a g_2 = t_i c^a g_2 < t_i c^l f_j.$$

Thus we may suppose that $\ell(g_2) = \ell(f_j)$. Then $g_2 = t_j^{(s)}$ for some s, $(1 \le s \le m)$ and consequently $c^a \in \text{supp}(x_i(1-c)^2 x_i^{(s)})$. Thus $c^l \ge c^a$ and since $c^l > c^a$ implies

$$g_1 c^a g_2 = t_i c^a t_i^{(s)} < t_i c^l f_j$$

we may suppose that a = l. But then $c^l \in \text{supp}(x_i(1-c)^2 x_j^{(s)})$ and by the definition of f_j we get that $f_j \ge g_2$. Finally, as $g_2 < f_j$ implies

$$g_1 c^a g_2 = t_i c^l g_2 < t_i c^l f_j$$

we conclude that $t_i c^l f_i$ is indeed the leading term of $\nu_i (1-c)^2 \nu_i$, proving our claim.

Now we obtain from (3) that

(7)
$$[ead(w) = (lead[(1-c)\nu_0])^{\varepsilon_1} [c^{p-1} lead[\nu_1(1-c)^2\nu_2]c^{p-1}] \cdots \\ [c^{p-1} lead[\nu_{2n-1}(1-c)^2\nu_{2n}]c^{p-1}] (lead[\nu_{2n+1}(1-c)])^{\varepsilon_2}.$$

Clearly this product is reduced if all the leading terms are given as reduced products. In particular, $\text{lead}(w) \notin G_{\beta}$ and consequently, $T(\mathbb{Q}G_{\beta}) \cap U(\mathbb{Q}G_{\beta}) = \{1\}$.

Applying (1) and (2) to ν_i and ν_j respectively, and keeping in mind the observation made in the proof of Lemma 2.2, we obtain

(8)
$$\ell\left(\operatorname{lead}[(1-c)\nu_j]\right) = 1 + \ell\left(\omega(\operatorname{lead}\nu_j)\right) = 1 + \ell(t_j) \ge 2$$
$$\ell\left(\operatorname{lead}[\nu_i(1-c)]\right) = 1 + \ell(t_i) \ge 2.$$

Comparing (5) and (6) we see that

(9)
$$\ell\left(\operatorname{lead}[\nu_i(1-c)^2\nu_j]\right) \geq \max\left\{\ell\left(\operatorname{lead}[(1-c)\nu_j]\right), \ell\left(\operatorname{lead}[\nu_i(1-c)]\right)\right\}.$$

316

Note that (8) holds for arbitrary even j, $(0 \le j \le 2n)$ and for arbitrary odd i, $(1 \le i \le 2n + 1)$. Observe that (7), (8) and (5) imply that

(10)
$$\ell(\operatorname{lead}(w)) \ge 3$$

for all w as in (3).

Now suppose that $1, 0 \neq w'$ is obtained from w by dropping some consecutive factors $\hat{c}\nu_i(1-c), (1-c)\nu_j\hat{c}$. Then we can write $w = w_1w_2w_3, w' = w_1w_3$ where w_2 has the form (3) with less ν_k 's involved. We shall prove that

(11)
$$\ell(\operatorname{lead}(w)) > \ell(\operatorname{lead}(w')).$$

Suppose first that one of w_1 or w_3 is 1. It is enough to treat the case $w_1 = 1$, since the other one is similar. So let $w_1 = 1$; then $w = w_2w_3$, $w' = w_3$. If w_2 ends in \hat{c} then w_3 begins with \hat{c} and by (7)

$$\ell(\operatorname{lead}(w)) = \ell(\operatorname{lead}(w_2)) + \ell(\operatorname{lead}(w_3)) - 1.$$

It follows from (10) that $\ell(\operatorname{lead}(w_2)) \ge 3$ and therefore $\ell(\operatorname{lead}(w)) > \ell(\operatorname{lead}(w_3))$. Let w_2 be ending in 1 - c. Then w_3 begins with 1 - c and we can write $w_2 = w'_2 \hat{c} \nu_k (1 - c)$ and $w_3 = (1 - c)\nu_{k+1} \hat{c} w'_3$. Call

$$\lambda_j = \begin{cases} \ell \left(\text{lead}(w'_j) \right) & \text{if } w'_j \neq 1, \\ 1 & \text{otherwise} \end{cases}$$

It follows from (7) and (6) that

$$\ell(\operatorname{lead}(w)) = \lambda_2 + \ell(t_k) + \ell(t_{k+1}) + 1 + \lambda_3.$$

By (7) and (8) we have

$$\ell\left(\operatorname{lead}(w')\right) = \ell(t_{k+1}) + 1 + \lambda_3$$

Consequently, $\ell(\operatorname{lead}(w)) > \ell(\operatorname{lead}(w'))$.

Now suppose that $w_1 \neq 1$ and $w_3 \neq 1$. If w_2 begins with \hat{c} then w_1 ends in \hat{c} , and therefore w_3 begins with \hat{c} and w_2 ends in \hat{c} . By (7) we get

$$\ell(\operatorname{lead}(w)) = \ell(\operatorname{lead}(w_1)) - 1 + \ell(\operatorname{lead}(w_2)) - 1 + \ell(\operatorname{lead}(w_3))$$
$$\ell(\operatorname{lead}(w')) = \ell(\operatorname{lead}(w_1)) + \ell(\operatorname{lead}(w_3)) - 1,$$

hence

$$\ell(\operatorname{lead}(w)) > \ell(\operatorname{lead}(w')).$$

If w_2 begins with 1 - c then w_1 ends in 1 - c, w_3 begins with 1 - c and w_2 ends in 1 - c. Write $w_1 = w'_1 \hat{c} \nu_k (1 - c)$, $w_2 = (1 - c) \nu_{k+1} \hat{c} w'_2 \hat{c} \nu_s (1 - c)$, $w_3 = (1 - c) \nu_{s+1} \hat{c} w'_3$. Applying (7) and (6) we obtain

$$\ell(\operatorname{lead}(w)) = \lambda_1 + \ell(t_k) + 1 + \ell(t_{k+1}) + \lambda_2 + \ell(t_s) + 1 + \ell(t_{s+1}) + \lambda_3, \\ \ell(\operatorname{lead}(w')) = \lambda_1 + \ell(t_k) + \ell(t_{s+1}) + 1 + \lambda_3,$$

and clearly $\ell(\operatorname{lead}(w)) > \ell(\operatorname{lead}(w'))$ which completes the proof of (11). Now let

$$u = \left(1 + (1-c)\nu_0 \hat{c}\right)^{\varepsilon_1} \prod_{i=1}^n \left[\left(1 + \hat{c}\nu_{2i-1}(1-c)\right) (1 + (1-c)\nu_{2i}\hat{c}) \right] \left(1 + \hat{c}\nu_{2n+1}(1-c)\right)^{\varepsilon_2}$$

be an arbitrary reduced product of transvections. Assume that ε_i , ν_i are as in (3). Then $u = w + \sum_{w' \in J} w' + 1$ where each $w' \in J$ is obtained from w by dropping some factors $\hat{c}\nu_i(1-c), (1-c)\nu_i\hat{c}$.

Fix a $w' \in J$. Then there exists a sequence of elements $w' = w'_1, \ldots, w'_s = w$ such that each w'_k , $(1 \le k \le s - 1)$ is obtained from w'_{k+1} by dropping some consecutive factors $\hat{c}\nu_i(1-c), (1-c)\nu_j\hat{c}$.

It follows from (11) that $\ell(\operatorname{lead}(w)) > \ell(\operatorname{lead}(w'_{s-1})) > \cdots > \ell(\operatorname{lead}(w'))$. Thus, lead(*u*) = lead(*w*) and since $\ell(\operatorname{lead}(w)) \ge 3$, $u \ne 1$. We conclude that $T(\mathbb{Q}G_{\beta})$ is the free product of A_{α} and B_{β} and as $\beta \in I$ is arbitrary, the theorem is proved.

As a corollary we obtain a strong version of the Tits Alternative for $U(\mathbb{Q}G)$.

COROLLARY 2.4. Let G be as in Theorem 2.3. Then every subgroup of $U(\mathbb{Q}G)$ either contains a free noncyclic subgroup or is solvable of derived length at most 2.

PROOF. Let *H* be a subgroup of $U(\mathbb{Q}G)$ which does not contain a noncyclic free subgroup. As

$$U(\mathbb{Q}G) = *_{U(\mathbb{Q})} (T(\mathbb{Q}G_{\alpha}) \rtimes U(\mathbb{Q}G_{\alpha})), \quad (\alpha \in I)$$

and $U(\mathbb{Q})$ is central in $U(\mathbb{Q}G)$, applying the Kurosh Subgroup Theorem [8, p. 17] to the factor group $U(\mathbb{Q}G)/U(\mathbb{Q})$ we conclude that, modulo $U(\mathbb{Q})$, H is either infinite cyclic, or a free product of two cyclic groups of order 2, or is conjugate to a subgroup of $T(\mathbb{Q}G_{\alpha}) \rtimes U(\mathbb{Q}G_{\alpha})$ for some α . In the first case H is obviously abelian, and in the second it is metabelian. In the third case we may suppose that H is a subgroup of $T(\mathbb{Q}G_{\alpha}) \rtimes U(\mathbb{Q}G_{\alpha})$.

Now $T(\mathbb{Q}G_{\alpha}) = A_{\alpha} * B_{\alpha}$ where A_{α} and B_{α} are torsion-free abelian groups. Since

$$H \cap T(\mathbb{Q}G_{\alpha}) \subseteq A_{\alpha} * B_{\alpha}$$

applying again the Kurosh Subgroup Theorem we see that $H \cap T(\mathbb{Q}G_{\alpha})$ is abelian. But $H/(H \cap T(\mathbb{Q}G_{\alpha}))$ is isomorphic to a subgroup of $U(\mathbb{Q}G_{\alpha})$ and therefore is abelian. Hence *H* is either abelian or metabelian.

3. The Zassenhaus conjecture. Let *G* be a group, $G(i) = \{g \in G : o(g) = i\}$, and C_g be the conjugacy class of $g \in G$. For $u = \sum_{g \in G} u(g)g \in \mathbb{Q}G$ set $T^{(i)}(u) = \sum_{g \in G(i)} u(g)$ and $\tilde{u}(g) = \sum_{h \in C_g} u(h)$. We recall a result on generalized traces $T^{(i)}$:

LEMMA 3.1 (SEE [1, LEMMA 2.4]). Let G be a group and p a prime. If $u \in U_1(\mathbb{Z}G)$ is a torsion unit of order p^n then $T^{(p^n)}(u) \equiv 1 \pmod{p}$ and $T^{(p^i)}(u) \equiv 0 \pmod{p}$ for all i < n.

318

LEMMA 3.2. Suppose that $u, w \in \mathbb{Q}G$ and $x^{-1}ux = w$ where $x \in U(\mathbb{Q}G)$. Then $\tilde{u}(g) = \tilde{w}(g)$ for all $g \in G$.

PROOF. Let $[\mathbb{Q}G, \mathbb{Q}G]$ be the Q-submodule of $\mathbb{Q}G$, generated by all gh - hg $(g, h, \in G)$. Then $y = x^{-1}ux - u = x^{-1}(ux) - (ux)x^{-1} \in [\mathbb{Q}G, \mathbb{Q}G]$, and therefore $\tilde{y}(g) = 0$ for all $g \in G$. The result follows.

The next result is an adaptation of [14, Lemma 37.13] to the case of an infinite group G.

LEMMA 3.3. Let G be a group, $t = 1 + x\nu y$ where $x, \nu, y \in \mathbb{Q}G$, yx = 0 and let tw $(w \in U(\mathbb{Q}G))$ be a torsion unit of order n such that

$$(1 + x \mathbb{Q}Gy) \cap \langle w \rangle = \{1\}.$$

If w commutes with x and y, then the element

$$z = 1 + t + tt^{w} + tt^{w}t^{w^{2}} + \dots + tt^{w} \dots t^{w^{n-2}},$$

where $t^{w^i} = w^i t w^{-i}$, is invertible in $\mathbb{Q}G$, and $z^{-1} t w z = w$.

PROOF. Since *w* commutes with *x* and *y* we see that $t^{w^j} \in 1+x\mathbb{Q}Gy$, for all *j*. Therefore we get from $(tw)^n = 1$ that

(12)
$$w^{n} = tt^{w}t^{w^{2}}\cdots t^{w^{n-1}} = 1.$$

We have that

$$z = 1 + (1 + x\nu y) + (1 + x\nu y)(1 + x\nu^{w}y) + \dots + (1 + x\nu y)(1 + x\nu^{w}y) \dots (1 + x\nu^{w^{n-2}}y)$$

= $n + x\overline{\nu}y$

for some $\bar{\nu} \in \mathbb{Q}G$. Thus, $z^{-1} = \frac{1}{n}(1 - \frac{1}{n}x\bar{\nu}y) \in \mathbb{Q}G$.

Now by (12) we get

$$twz = tz^{w}w = t(1 + t^{w} + t^{w}t^{w^{2}} + \dots + t^{w}t^{w^{2}} + \dots + t^{w}t^{w^{n-1}})w$$

= $(t + tt^{w} + tt^{w}t^{w^{2}} + \dots + tt^{w} + tt^{w-1})w = zw.$

Hence, $z^{-1}twz = w$ as desired.

Let *G* be the free product $G = *G_{\alpha}$, $(\alpha \in I)$ of cyclic groups of prime order $|G_{\alpha}| = p_{\alpha}$ (the p_{α} 's are not necessarily distinct and *I* may be infinite). For $\alpha \in I$ fix a generator $c = c_{\alpha}$ of G_{α} and set

$$w_{\alpha} = \begin{cases} \frac{2}{p}\hat{c} - c & \text{if } p > 2\\ c & \text{otherwise} \end{cases}$$

where $p = p_{\alpha}$ and $\hat{c} = 1 + c + \cdots + c^{p-1}$. It is easy to see that $w_{\alpha}^2 = c^2$.

THEOREM 3.4. A finite subgroup of $U_1(\mathbb{Q}G)$ is conjugate in $U(\mathbb{Q}G)$ to a subgroup of $\langle w_{\alpha} \rangle$ for some $\alpha \in I$.

PROOF. Let $H \neq \{1\}$ be a finite subgroup of $U_1(\mathbb{Q}G)$. By Theorem 2.3,

$$U(\mathbb{Q}G) = *_{U(\mathbb{Q})} (T(\mathbb{Q}G_{\alpha}) \rtimes U(\mathbb{Q}G_{\alpha})), \quad (\alpha \in I)$$

and $T(\mathbb{Q}G_{\alpha}) = A_{\alpha} * B_{\alpha}$ where A_{α} and B_{α} are the torsion-free abelian groups defined in Section 2.

Applying the Kurosh Subgroup Theorem to the factor group $U(\mathbb{Q}G)/U(\mathbb{Q})$ [8] or a subgroup theorem for amalgamated free products we get that *H* is conjugate in $U(\mathbb{Q}G)$ (and therefore in $U_1(\mathbb{Q}G)$) to a subgroup of $T(\mathbb{Q}G_{\alpha}) \rtimes U(\mathbb{Q}G_{\alpha})$ for some $\alpha \in I$). Thus, replacing *H* by its conjugate we may assume that

$$H \subseteq T(\mathbb{Q}G_{\alpha}) \rtimes U(\mathbb{Q}G_{\alpha}).$$

Since every element of $T(\mathbb{Q}G_{\alpha})$ has augmentation 1, we really have

$$H \subseteq T(\mathbb{Q}G_{\alpha}) \rtimes U_1(\mathbb{Q}G_{\alpha}).$$

Let *u* be a nonidentity element of *H*. Then u = tw where $t \in T(\mathbb{Q}G_{\alpha})$ and $w \in U_1(\mathbb{Q}G_{\alpha})$. Moreover, since $T(\mathbb{Q}G_{\alpha})$ is torsion-free, *w* is a torsion unit of the same order as *u*.

Take a *p*-th primitive root of unity ζ and consider the isomorphism $\phi: \mathbb{Q}\langle c \rangle \to \mathbb{Q} \oplus \mathbb{Q}(\zeta)$ defined by $\phi(c) = (1, \zeta)$ and linearly extended. Since the torsion units of $\mathbb{Q}(\zeta)$ are of the form: ζ^k or $-\zeta^k$, we see that $\phi(w) = (1, \zeta^k)$ or $\phi(w) = (1, -\zeta^k)$. If p > 2 then $\phi^{-1}(1, -\zeta) = \frac{2}{n}\hat{c} - c = w_{\alpha}$. Thus, in any case $w \in \langle w_{\alpha} \rangle$.

Let $v \neq 1$ be another element of *H*. Similarly we can write v = fw' where $f \in T(\mathbb{Q}G_{\alpha})$ and $1 \neq w' \in \langle w_{\alpha} \rangle$. Replacing *u* or *v* by an appropriate power of it we may suppose that $v = fw^{-1}$. Then

$$uv = twfw^{-1} \in T(\mathbb{Q}G_{\alpha}) \cap H.$$

As $T(\mathbb{Q}G_{\alpha})$ is torsion-free $T(\mathbb{Q}G_{\alpha}) \cap H = \{1\}$ and hence $v = u^{-1}$. It follows that *H* is cyclic whose order divides 2p, and we may suppose that $H = \langle u \rangle$.

We shall now show that u is conjugate to w in $U(\mathbb{Q}G)$ and this will complete the proof of the theorem.

Using the fact that $T(\mathbb{Q}G_{\alpha}) = A_{\alpha} * B_{\alpha}$, write *t* as a reduced product $t_1 \cdots t_n$ of elements from A_{α} and B_{α} . Since the order of $u = t_1 \cdots t_n w$ divides 2p we have $(t_1 \cdots t_n w)^{2p} = 1$ which implies that

$$t_1 \cdots t_n (wt_1 \cdots t_n w^{-1}) (w^2 t_1 \cdots t_n w^{-2}) \cdots (w^{2p-1} t_1 \cdots t_n w^{-(2p-1)}) = 1$$

Note that $wA_{\alpha}w^{-1} \subseteq A_{\alpha}$ and $wB_{\alpha}w^{-1} \subseteq B_{\alpha}$, because *w* commutes with *c*. As the product $t_1 \cdots t_n$ is reduced and $T(\mathbb{Q}G_{\alpha}) = A_{\alpha} * B_{\alpha}$, we have that *n* is odd and that

$$t_n w t_1 w^{-1} = t_{n-2} w t_2 w^{-1} = \dots = t_{\frac{n+1}{2}+1} w t_{\frac{n+1}{2}-1} w^{-1} = 1.$$

Thus,

320

$$u = (t_1 t_2 \cdots t_{\frac{n+1}{2}-1}) t_{\frac{n+1}{2}} w(t_{\frac{n+1}{2}-1}^{-1} \cdots t_2^{-1} t_1^{-1}),$$

and *u* is conjugate by transvections to $t_{(n+1)/2}w$. Since $T(\mathbb{Q}G_{\alpha}) \cap H = \{1\}$ it follows from Lemma 3.3 that $t_{(n+1)/2}w$ is conjugate in $U(\mathbb{Q}G)$ to *w*.

The theorem implies the Zassenhaus Conjecture (ZC3) for G:

COROLLARY 3.5. Let G be as in Theorem 3.4. Then every nonidentity finite subgroup of $U_1(\mathbb{Z}G)$ is conjugate in $U(\mathbb{Q}G)$ to one of the G_{α} , $(\alpha \in I)$.

PROOF. Let $H \neq \{1\}$ be a finite subgroup of $U_1(\mathbb{Q}G)$. By Theorem 3.4 $x^{-1}Hx \subseteq \langle w_\alpha \rangle$, for some $x \in U(\mathbb{Q}G)$ and some $\alpha \in I$. Thus H is cyclic; its order divides $2p_\alpha$ if p_α is odd and is equal to 2 otherwise. Obviously, in the last case $x^{-1}Hx = G_\alpha$, so we may assume that $p_\alpha > 2$.

Suppose that *H* contains an element *u* of order 2 and set $w = x^{-1}ux$. It follows from Lemma 3.1 that there exists an element $g \in G$ of order 2 such that $\tilde{u}(g) \neq 0$. Hence by Lemma 3.2, $\tilde{w}(g) \neq 0$ which is impossible as $w \in \mathbb{Q}G_{\alpha}$, where G_{α} has order $p_{\alpha} > 2$. We conclude that the order of *H* is p_{α} and that $x^{-1}Hx = G_{\alpha}$.

4. Acknowledgements. We express our appreciation to Professor Mazi Shirvani for useful comments and for his lectures on coproducts of rings at the Universidade de São Paulo.

REFERENCES

- 1. A. A. Bovdi, *The Multiplicative Group of an Integral Group Ring*. Uzhgorod, Dep. UkrNIINTI, 24.09.87, 2712-Uk87, 1987.
- A. A. Bovdi, Z. Marciniak and S. K. Sehgal, *Torsion Units in Infinite Group Rings*. J. Number Theory 47(1994), 284–299.
- M. A. Dokuchaev, Finite Subgroups of Units in Integral group Rings. Resenbas IME-USP (3) 2(1996), 293–302.
- M. A. Dokuchaev and S. O. Juriaans, *Finite Subgroups in Integral Group Rings*. Canad. J. Math. (6) 48(1996), 1170–1179.
- 5. M. A. Dokuchaev, S. O. Juriaans and C. Polcino Milies, *Integral Group Rings of Frobenius Groups and the Conjectures of H. J. Zassenhaus*. Comm. Algebra (7) **25**(1997), 2311–2325.
- 6. V. N. Gerasimov, *The group of units of a free product of rings*. Math. USSR-Sb. (1) 62(1989), 41–63.
- 7. L. Klinger, *Construction of a counterexample to a conjecture of Zassenhaus*. Comm. Algebra **19**(1993), 2303–2330.
- 8. A. G. Kurosh, The theory of groups, II. Chelsea Publ. Co., New York, 1956.
- F. Levin and S. K. Sehgal, Zassenhaus conjecture for the infinite dihedral group. Proc Amer. Math. Soc., Special Session, Series in Algebra 1, World Scientific, Singapore, 1993, 57–68.
- A. I. Lichtman and S. K. Sehgal, *The elements of finite order in the group of units of group rings of free products of groups*. Comm. Algebra 17(1989), 2223–2253.
- Z. S. Marciniak and S. K. Sehgal, Zassenhaus Conjecture and Infinite Nilpotent Groups. J. Algebra 184(1996), 207–212.
- C. Polcino Milies, J. Ritter and S. K. Sehgal, On a conjecture of Zassenhaus on torsion units in integral group rings II. Proc. Amer. Math. Soc. (2) 97(1986), 206–210.
- 13. K. W. Roggenkamp and M. J. Taylor, Group Rings and Class Groups. Birkhäuser Verlag, Basel, 1992.
- 14. S. K. Sehgal, Units of Integral Group Rings. Longman's, Essex, 1993.
- 15. A. Valenti, Torsion Units in Integral Group Rings. Proc. Amer. Math. Soc. (1) 120(1994), 1-4.

M. A. DOKUCHAEV AND M. L. S. SINGER

16. A. Weiss, Rigidity of p-adic torsion. Ann. Math. 127(1988), 317–332.

17. _____, Torsion units in integral group rings. J. Reine Angew. Math. 415(1991), 175–187.

Departamento de Matemática Universidade de São Paulo Caixa Postal 66281 São Paulo, SP 05315-970—Brazil e-mail: dokucha@ime.usp.br e-mail: mlucia@ime.usp.br