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UNITS IN GROUP RINGS OF FREE PRODUCTS
OF PRIME CYCLIC GROUPS

MICHAEL A. DOKUCHAEV AND MARIA LUCIA SOBRAL SINGER

ABSTRACT. Let G be a free product of cyclic groups of prime order. The structure of
the unit group U(QG) of the rational group ringQG is given in terms of free products and
amalgamated free products of groups. As an application, all finite subgroups of U(QG),
up to conjugacy, are described and the Zassenhaus Conjecture for finite subgroups in
ZG is proved. A strong version of the Tits Alternative for U(QG) is obtained as a
corollary of the structural result.

1. Introduction. Let U(ZG) denote the unit group of the integral group ring ZG
of a group G and let U1(ZG) be the group of units of augmentation 1 in ZG. Similar
notation shall be used for the rational group algebraQG. The Conjecture of Zassenhaus,
denoted (ZC3) [14], states that if G is finite and H is a finite subgroup of U1(ZG) then
H is conjugate in U(QG) to a subgroup of G. A restricted version of this conjecture,
denoted (ZC1) [14], says that every torsion unit of U1(ZG) is conjugate in U(QG) to an
element of G. It is known that (ZC3) holds for finite nilpotent groups [16], [17], finite
split metacyclic groups [12], [15] and some particular groups. However, (ZC3) is false in
general and the counterexamples show that it does not hold for finite metabelian groups
[7] and [13]. The Zassenhaus Conjecture restricted to finite p-subgroups of U1(ZG)
has been established for finite nilpotent-by-nilpotent groups G [4], for finite solvable
groups G whose Sylow p-subgroups are either abelian or generalized quaternion [4] and
for Frobenius groups G which cannot be mapped homomorphically onto S5 [5]. More
information on the Zassenhaus Conjecture and its various versions can be found in [3],
[13], [14]. It is interesting to know which infinite groups satisfy (ZC3). In [11] an infinite
nilpotent group is constructed which does not satisfy (ZC1) (compare with [2]). Problem
39 of [14] asks whether (ZC1) holds for a free product of finite cyclic groups.

Torsion units in integral group rings ZG where G is a free product of abelian groups
were studied by A. I. Lichtman and S. K. Sehgal [10]. They proved that if u 2 U1(ZG)
has order m Ú 1 then one of the free factors of G contains an element h of order m.
Moreover, if G is a free product of a finite number of finite abelian groups then u is
conjugate to h in a large overing ofQG (Theorem 1 of [10]). In a particular case when G
is the infinite dihedral group the conjugating element can be taken even in Z[ 1

2 ]G, (see
[9]).
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In this paper we study the free product G = ŁGã (ã 2 I) of cyclic groups of prime
order jGãj = pã (the pã’s are not necessarily distinct and I may be infinite). In Section 2
by applying Gerasimov’s Theorem [6] we prove that

U(QG) = ŁU(Q)

�
(Aã Ł Bã) çU(QGã)

�
Ò

where ŁU(Q) denotes the amalgamated free product over the multiplicative group U(Q)
of Q and Aã, Bã are abelian groups isomorphic to the additive groups of some infinite
dimensional vector spaces over Q (Theorem 2.3). As a consequence we prove that every
nonabelian subgroup of U(QG) either contains a free noncyclic subgroup or is metabelian
(Corollary 2.4). In Section 3 we use Theorem 2.3 to prove that every finite subgroup of
U1(QG) is conjugate in U(QG) to a subgroup of U1(QGã) for someã 2 I (Theorem 3.4).
As a corollary the Zassenhaus Conjecture (ZC3) is proved for G (Corollary 3.5).

2. The structure of the rational unit group. Let K be an associative ring with
identity and G = ŁHGã(ã 2 I) be the free product of groups Gã with amalgamated
subgroup H. It is easy to verify that KG is isomorphic to the coproduct

`
KH KGã,

(ã 2 I) of rings KGã over KH. In particular, if G = ŁGã(ã 2 I) is the free product
of groups Gã, then KG ≤

`
K KGã(ã 2 I). Thus, Gerasimov’s Theorem on units in

coproducts of rings [6] can be used in the study of U(KG).
An element of KG of the form 1 + xóy where xÒ y 2 KGã, yx = 0, ó 2 KG is called

a KGã-transvection. Let �(KGã) be the subgroup of U(KG) generated by U(KGã)
and all the KGã-transvections of KG. A ring R with the identity element 1 is called 1-
commutative if xy = 1 implies yx = 1 (xÒ y 2 R). The following statement is an immediate
consequence of Gerasimov’s Theorem.

STATEMENT 2.1. Let G = ŁGã(ã 2 I) and K be a division ring. If each KGã is
1-commutative then

U(KG) ≤ ŁU(K)�(KGã)Ò (ã 2 I)Ò

where U(K) denotes the multiplicative group of K.
It is easy to see that the subgroup T(KGã) generated by all the KGã-transvections of

KG is normal in �(KGã).
Suppose now that K = Q and that each jGãj = pã is a prime (ã 2 I). The pã’s are

not necessarily distinct and I may be infinite. Let S be the disjoint union of the Gã n f1g,
(ã 2 I). We say that the product g = g1 Ð Ð Ð gn, (gi 2 S) is reduced if either n = 1 or n ½ 2
and no adjacent factors belong to the same Gã. In this case n is called the length of g and
shall be denoted by ‡(g).

Let å be a fixed index and Gå = hci. Take any ordering on each Gã n f1g, (ã 6= å).
Set c˚ Ú c¸ if and only if ˚ Ú ¸, (0 Ú ˚Ò ¸ � p � 1Ò p = på).

Now take an ordering on I such that å Ú ã for every ã 2 I, (ã 6= å) and assume that
the identity element 1 2 G has length 0. This determines an ordering in S.

Suppose now that every element of G is given as a reduced product and order them
first by their length and then lexicographically from left to right.
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For a ó 2 KG the leading term, lead(ó), of ó is the maximum of fg : g 2 supp(ó)g,
that is lead(ó) ½ g for every g of the support of ó.

Let Cå be theQ-subspace ofQG generated by all reduced products c˚g1 Ð Ð Ð gn, (g¸ 2 S,
n ½ 1, gn 62 Gå, 0 � ˚ � p � 2) and let Då be the Q-subspace of QG generated by all
reduced products g1 Ð Ð Ð gnc˚, (g¸ 2 S, n ½ 1, g1 62 Gå, 0 � ˚ � p� 2).

Set ĉ = 1 + c + Ð Ð Ð + cp�1 and consider the following maps: ß: Cå ! U(QG) and
†: Då ! U(QG) defined by ß(ó) = 1 + (1 � c)óĉ, and †(ó) = 1 + ĉó(1 � c). It is easily
seen that ß and † are homomorphisms from the additive groups Cå and Då respectively
into T(QGå).

LEMMA 2.2. Set Aå = Imß and Bå = Im†. Then T(QGå) = hAåÒBåi and ß: Cå !

Aå, †: Då ! Bå are isomorphisms.

PROOF. It is easily seen that if xy = 0 for some xÒ y 2 QGå then one of these elements
belongs to (1 � c)QGå and the other to Qĉ. Hence T(QGå) is generated by all elements
of the form 1 + (1 � c)óĉ, 1 + ĉó(1 � c), ó 2 QG. Then it follows from the equality

(1 � c)cp�1 = �(1 � c)(1 + c + Ð Ð Ð + cp�2)

that T(QGå) is generated by Imß and Im†. This proves the first statement. It remains
to be shown that Kerß = Ker† = f0g.

Let 0 6= ó 2 Cå and lead(ó) = c˚g1 Ð Ð Ð gn, (n ½ 1Ò 0 � ˚ � p � 2) be written as a
reduced product.

Let c¸h1 Ð Ð Ð hk 6= lead(ó) be a reduced product from the support of ó. Observe that since
å Ú ã for every ã 2 I, (ã 6= å), we have that k � n. (Note that this observation will be
used in (8)). Then either k Ú n or k = n and ¸ Ú ˚ or k = nÒ ¸ = ˚ and h1 Ð Ð Ð hn Ú g1 Ð Ð Ð gn.

It is easy to see that in all cases c˚+1g1 Ð Ð Ð gn Ù c¸+1h1 Ð Ð Ð hk and, consequently,

lead
�
(1 � c)ó

�
= c˚+1g1 Ð Ð Ð gnÒ

lead
�
ß(ó)

�
= c˚+1g1 Ð Ð Ð gncp�1 = c

�
lead(ó)

�
cp�1(1)

Thus, ß(ó) 6= 1 and Kerß = f0g.
Let 0 6= ó 2 Då and for a reduced product g = h1 Ð Ð Ð hkc¸ from the support of ó, set

°(g) = h1 Ð Ð Ð hk. Let
g1 Ð Ð Ð gn = maxf°(g) : g 2 supp(ó)g

and
g1 Ð Ð Ð gnc˚ = maxfg 2 supp(ó) : °(g) = g1 Ð Ð Ð gng

If h1 Ð Ð Ð hkc¸ is any other reduced product from supp(ó), then either h1 Ð Ð Ð hk Ú g1 Ð Ð Ð gn

or k = n, h1 Ð Ð Ð hk = g1 Ð Ð Ð gn and ¸ Ú ˚. In both cases we have that h1 Ð Ð Ð hkc¸+1 Ú

g1 Ð Ð Ð gnc˚+1, therefore,

lead
�
ó(1 � c)

�
= g1 Ð Ð Ð gnc˚+1Ò

lead
�
†(ó)

�
= lead

�
ĉó(1 � c)

�
= cp�1g1 Ð Ð Ð gnc˚+1(2)

Thus Ker† = f0g.

Now we shall prove the main result of this section.
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THEOREM 2.3. Let G = ŁGã, (ã 2 I) where jGãj = pã is a prime.Then

U(QG) = ŁU(Q)

�
(Aã Ł Bã) çU(QGã)

�
Ò (ã 2 I)

where Aã ŁBã = T(QGã) is the group generated by allQGã-transvections ofQG, Aã and
Bã are abelian groups isomorphic to the additive groups of some infinite dimensional
vector spaces over Q (see Lemma 2.2).

PROOF. Fix å 2 I. We shall use the notation and the ordering introduced above.
By Statement 2.1 and Lemma 2.2 it suffices to prove that T(QGå) \ U(QGå) = f1g
and T(QGå) = Aå Ł Bå. We shall do this by calculating the leading term of an arbitrary
element of T(QGå).

We shall say that two QGå-transvections t1 and t2 have the same type if t1Ò t2 2 Aå

or t1Ò t2 2 Bå. A product of QGå-transvections u = t1 Ð Ð Ð tn shall be called reduced if no
adjacent factors have the same type. It is easy to see that an arbitrary reduced product u
of transvections is a sum of the identity and elements of the form

0 6= w = [(1 � c)ó0ĉ]¢1 ĉó1(1 � c)2ó2ĉ Ð Ð Ð ĉó2n�1(1 � c)2ó2nĉ[ĉó2n+1(1 � c)]¢2 Ò(3)

where ó0Ò ó2Ò    Ò ó2n 2 Cå, ó1Ò ó3Ò    Ò ó2n+1 2 Då, and ¢1Ò ¢2 2 f0Ò 1g.
We shall proceed by finding the leading term of ói(1� c)2ój where i Ú j, i Ú 2n + 1, i

is odd and j is even. Write an arbitrary element g 2 G as g = g1°(g)g2 where g1Ò g2 2 hci
and °(g) does not begin or end in a nonidentity element of hci. Set tk = maxf°(g) : g 2
supp(ók)g, 0 � k � 2n + 1. If k is odd write ók = tkxk + rk, where xk 2 Qhci and for every
g 2 supp(rk), °(g) Ú tk. For an even k, 0 � k � 2n write

ók = x(1)
k t(1)

k +
mX

s=2
x(s)

k t(s)
k + r0kÒ(4)

where x(1)
k Ò    Ò x(m)

k 2 Qhci, t(1)
k = tk, ‡(t(s)

k ) = ‡(tk), (2 � s � m) and ‡
�
°(g)

�
Ú ‡(tk) for

every g 2 supp(r0k).
Fix an odd i, 1 � i Ú 2n + 1, and an even j, j � 2n such that i Ú j. Let

cl = max
²

g : g 2
m[

s=1
supp(xi(1 � c)2x(s)

j )
¦

and
fj = max

n
t(s)
j : cl 2 supp

�
xi(1 � c)2x(s)

j

�o
where t(s)

j is defined in (4). We claim that cl 6= 1 and that

lead[ói(1 � c)2ój] = tic
lfj(5)

In particular,
‡(lead[ói(1 � c)2ój]) = ‡(ti) + 1 + ‡(tj) ½ 3(6)
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Let ê be a primitive p = på-th root of unity and ô:Qhci ! Q(ê) be the map determined
by ô(c) = ê. It follows from the definitions of Cå and Då that cp�1 does not belong to the
supports of xi and x(s)

j , (1 � s � m), hence ô(xi)ô(x(s)
j ) 6= 0, (1 � s � m) and therefore

ô
�
xi(1 � c)2x(s)

j

�
6= 0 (1 � s � m). Consequently xi(1 � c)2x(s)

j 6= 0, (1 � s � m) and as

(1 � c)2 is not a unit in Qhci we see that xi(1 � c)2x(s)
j 62 Q. Thus supp

�
xi(1 � c)2x(s)

j

�
contains a nonidentity element of hci for every s, (1 � s � m). In particular, cl 6= 1.

Let g1cag2 be an arbitrary element from supp(ói(1 � c)2ój), where g1 = °(h1), g2 =
°(h2) for some h1 2 supp(ói) and h2 2 supp(ój). It follows from the definitions of ti and
fj that g1 � ti and ‡(g2) � ‡(fj).

If g1 Ú ti then clearly g1cag2 Ú ticlfj . So let g1 = ti. If ‡(g2) Ú ‡(fj) then

‡(g1cag2) � ‡(g1) + 1 + ‡(g2) Ú ‡(ti) + 1 + ‡(fj) = ‡(tic
lfj)

and therefore again
g1cag2 = tic

ag2 Ú tic
lfj

Thus we may suppose that ‡(g2) = ‡(fj). Then g2 = t(s)
j for some s, (1 � s � m) and

consequently ca 2 supp
�
xi(1 � c)2x(s)

j

�
. Thus cl ½ ca and since cl Ù ca implies

g1cag2 = tic
at(s)

j Ú tic
lfj

we may suppose that a = l. But then cl 2 supp
�
xi(1 � c)2x(s)

j

�
and by the definition of fj

we get that fj ½ g2. Finally, as g2 Ú fj implies

g1cag2 = tic
lg2 Ú tic

lfjÒ

we conclude that ticlfj is indeed the leading term of ói(1 � c)2ój, proving our claim.
Now we obtain from (3) that

lead(w) =
�
lead[(1 � c)ó0]

�¢1
h
cp�1 lead[ó1(1 � c)2ó2]cp�1

i
Ð Ð Ðh

cp�1 lead[ó2n�1(1 � c)2ó2n]cp�1
i�

lead[ó2n+1(1 � c)]
�¢2
(7)

Clearly this product is reduced if all the leading terms are given as reduced products. In
particular, lead(w) 62 Gå and consequently, T(QGå) \ U(QGå) = f1g.

Applying (1) and (2) to ói and ój respectively, and keeping in mind the observation
made in the proof of Lemma 2.2, we obtain

‡
�
lead[(1 � c)ój]

�
= 1 + ‡

�
°(lead ój)

�
= 1 + ‡(tj) ½ 2Ò

‡
�
lead[ói(1 � c)]

�
= 1 + ‡(ti) ½ 2(8)

Comparing (5) and (6) we see that

‡
�
lead[ói(1 � c)2ój]

�
½ max

n
‡
�
lead[(1 � c)ój]

�
Ò ‡
�
lead[ói(1 � c)]

�o
(9)
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Note that (8) holds for arbitrary even j, (0 � j � 2n) and for arbitrary odd i, (1 � i �
2n + 1). Observe that (7), (8) and (5) imply that

‡
�
lead(w)

�
½ 3(10)

for all w as in (3).
Now suppose that 1Ò 0 6= w0 is obtained from w by dropping some consecutive factors

ĉói(1� c)Ò (1� c)ój ĉ. Then we can write w = w1w2w3, w0 = w1w3 where w2 has the form
(3) with less ók’s involved. We shall prove that

‡
�
lead(w)

�
Ù ‡

�
lead(w0)

�
(11)

Suppose first that one of w1 or w3 is 1. It is enough to treat the case w1 = 1, since
the other one is similar. So let w1 = 1; then w = w2w3Òw0 = w3. If w2 ends in ĉ then w3

begins with ĉ and by (7)

‡
�
lead(w)

�
= ‡

�
lead(w2)

�
+ ‡

�
lead(w3)

�
� 1

It follows from (10) that ‡
�
lead(w2)

�
½ 3 and therefore ‡

�
lead(w)

�
Ù ‡

�
lead(w3)

�
. Let

w2 be ending in 1 � c. Then w3 begins with 1 � c and we can write w2 = w0
2ĉók(1 � c)

and w3 = (1 � c)ók+1ĉw0
3. Call

ïj =
(
‡
�
lead(w0

j)
�

if w0
j 6= 1,

1 otherwise.

It follows from (7) and (6) that

‡
�
lead(w)

�
= ï2 + ‡(tk) + ‡(tk+1) + 1 + ï3

By (7) and (8) we have
‡
�
lead(w0)

�
= ‡(tk+1) + 1 + ï3

Consequently, ‡
�
lead(w)

�
Ù ‡

�
lead(w0)

�
.

Now suppose that w1 6= 1 and w3 6= 1. If w2 begins with ĉ then w1 ends in ĉ, and
therefore w3 begins with ĉ and w2 ends in ĉ. By (7) we get

‡
�
lead(w)

�
= ‡

�
lead(w1)

�
� 1 + ‡

�
lead(w2)

�
� 1 + ‡

�
lead(w3)

�
‡
�
lead(w0)

�
= ‡

�
lead(w1)

�
+ ‡

�
lead(w3)

�
� 1Ò

hence
‡
�
lead(w)

�
Ù ‡

�
lead(w0)

�


If w2 begins with 1 � c then w1 ends in 1 � c, w3 begins with 1 � c and w2 ends in
1 � c. Write w1 = w0

1ĉók(1 � c), w2 = (1 � c)ók+1ĉw0
2ĉós(1 � c), w3 = (1 � c)ós+1ĉw0

3.
Applying (7) and (6) we obtain

‡
�
lead(w)

�
= ï1 + ‡(tk) + 1 + ‡(tk+1) + ï2 + ‡(ts) + 1 + ‡(ts+1) + ï3Ò

‡
�
lead(w0)

�
= ï1 + ‡(tk) + ‡(ts+1) + 1 + ï3Ò
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and clearly ‡
�
lead(w)

�
Ù ‡

�
lead(w0)

�
which completes the proof of (11).

Now let

u =
�
1 + (1 � c)ó0ĉ

�¢1
nY

i=1

h�
1 + ĉó2i�1(1 � c)

�
(1 + (1 � c)ó2iĉ)

i�
1 + ĉó2n+1(1 � c)

�¢2

be an arbitrary reduced product of transvections. Assume that ¢i, ói are as in (3). Then
u = w +

P
w02J w0 + 1 where each w0 2 J is obtained from w by dropping some factors

ĉói(1 � c), (1 � c)ójĉ.
Fix a w0 2 J. Then there exists a sequence of elements w0 = w0

1Ò    Òw
0
s = w such that

each w0
k, (1 � k � s � 1) is obtained from w0

k+1 by dropping some consecutive factors
ĉói(1 � c), (1 � c)ójĉ.

It follows from (11) that ‡
�
lead(w)

�
Ù ‡

�
lead(w0

s�1)
�
Ù Ð Ð Ð Ù ‡

�
lead(w0)

�
. Thus,

lead(u) = lead(w) and since ‡
�
lead(w)

�
½ 3, u 6= 1. We conclude that T(QGå) is the free

product of Aã and Bå and as å 2 I is arbitrary, the theorem is proved.

As a corollary we obtain a strong version of the Tits Alternative for U(QG).

COROLLARY 2.4. Let G be as in Theorem 2.3. Then every subgroup of U(QG) either
contains a free noncyclic subgroup or is solvable of derived length at most 2.

PROOF. Let H be a subgroup of U(QG) which does not contain a noncyclic free
subgroup. As

U(QG) = ŁU(Q)

�
T(QGã)ç U(QGã)

�
Ò (ã 2 I)

and U(Q) is central in U(QG), applying the Kurosh Subgroup Theorem [8, p. 17] to
the factor group U(QG)ÛU(Q) we conclude that, modulo U(Q), H is either infinite
cyclic, or a free product of two cyclic groups of order 2, or is conjugate to a subgroup
of T(QGã) ç U(QGã) for some ã. In the first case H is obviously abelian, and in
the second it is metabelian. In the third case we may suppose that H is a subgroup of
T(QGã) çU(QGã).

Now T(QGã) = Aã Ł Bã where Aã and Bã are torsion-free abelian groups. Since

H \ T(QGã) � Aã Ł Bã

applying again the Kurosh Subgroup Theorem we see that H \ T(QGã) is abelian. But
HÛ

�
H \ T(QGã)

�
is isomorphic to a subgroup of U(QGã) and therefore is abelian.

Hence H is either abelian or metabelian.

3. The Zassenhaus conjecture. Let G be a group, G(i) = fg 2 G : o(g) = ig, and
Cg be the conjugacy class of g 2 G. For u =

P
g2G u(g)g 2 QG set T(i)(u) =

P
g2G(i) u(g)

and ũ(g) =
P

h2Cg u(h). We recall a result on generalized traces T(i):

LEMMA 3.1 (SEE [1, LEMMA 2.4]). Let G be a group and p a prime. If u 2 U1(ZG)
is a torsion unit of order pn then T(pn)(u) � 1 (mod p) and T(pi)(u) � 0 (mod p) for all
i Ú n.
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LEMMA 3.2. Suppose that uÒw 2 QG and x�1ux = w where x 2 U(QG). Then
ũ(g) = w̃(g) for all g 2 G.

PROOF. Let [QGÒ QG] be the Q-submodule of QG, generated by all gh � hg (gÒ hÒ 2
G). Then y = x�1ux � u = x�1(ux) � (ux)x�1 2 [QGÒ QG], and therefore ỹ(g) = 0 for all
g 2 G. The result follows.

The next result is an adaptation of [14, Lemma 37.13] to the case of an infinite group
G.

LEMMA 3.3. Let G be a group, t = 1 + xóy where xÒ óÒ y 2 QG, yx = 0 and let tw�
w 2 U(QG)

�
be a torsion unit of order n such that

(1 + xQGy) \ hwi = f1g

If w commutes with x and y, then the element

z = 1 + t + ttw + ttwtw2
+ Ð Ð Ð + ttw Ð Ð Ð tw

n�2
Ò

where twi
= witw�i, is invertible in QG, and z�1twz = w.

PROOF. Since w commutes with x and y we see that twj
2 1+xQGy, for all j. Therefore

we get from (tw)n = 1 that
wn = ttwtw2

Ð Ð Ð tw
n�1

= 1(12)

We have that

z = 1 + (1 + xóy) + (1 + xóy)(1 + xówy) + Ð Ð Ð + (1 + xóy)(1 + xówy) Ð Ð Ð (1 + xówn�2
y)

= n + xó̄y

for some ó̄ 2 QG. Thus, z�1 = 1
n (1 � 1

n xó̄y) 2 QG.
Now by (12) we get

twz = tzww = t(1 + tw + twtw2
+ Ð Ð Ð + twtw2

Ð Ð Ð tw
n�1

)w

= (t + ttw + ttwtw2
+ Ð Ð Ð + ttw Ð Ð Ð tw

n�1
)w = zw

Hence, z�1twz = w as desired.

Let G be the free product G = ŁGã, (ã 2 I) of cyclic groups of prime order jGãj = pã
(the pã0s are not necessarily distinct and I may be infinite). For ã 2 I fix a generator
c = cã of Gã and set

wã =
(

2
p ĉ� c if p Ù 2
c otherwise,

where p = pã and ĉ = 1 + c + Ð Ð Ð + cp�1. It is easy to see that w2
ã = c2.

THEOREM 3.4. A finite subgroup of U1(QG) is conjugate in U(QG) to a subgroup
of hwãi for some ã 2 I.
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PROOF. Let H 6= f1g be a finite subgroup of U1(QG). By Theorem 2.3,

U(QG) = ŁU(Q)

�
T(QGã) çU(QGã)

�
Ò (ã 2 I)Ò

and T(QGã) = Aã Ł Bã where Aã and Bã are the torsion-free abelian groups defined in
Section 2.

Applying the Kurosh Subgroup Theorem to the factor group U(QG)ÛU(Q) [8] or a
subgroup theorem for amalgamated free products we get that H is conjugate in U(QG)
(and therefore in U1(QG)) to a subgroup of T(QGã) çU(QGã) for some ã 2 I). Thus,
replacing H by its conjugate we may assume that

H � T(QGã) çU(QGã)

Since every element of T(QGã) has augmentation 1, we really have

H � T(QGã) çU1(QGã)

Let u be a nonidentity element of H. Then u = tw where t 2 T(QGã) and w 2

U1(QGã). Moreover, since T(QGã) is torsion-free, w is a torsion unit of the same order
as u.

Take a p-th primitive root of unity ê and consider the isomorphismû:Qhci ! QýQ(ê)
defined by û(c) = (1Ò ê) and linearly extended. Since the torsion units of Q(ê) are of
the form: êk or �êk, we see that û(w) = (1Ò êk) or û(w) = (1Ò �êk). If p Ù 2 then
û�1(1Ò �ê) = 2

p ĉ � c = wã. Thus, in any case w 2 hwãi.
Let v 6= 1 be another element of H. Similarly we can write v = f w0 where f 2 T(QGã)

and 1 6= w0 2 hwãi. Replacing u or v by an appropriate power of it we may suppose that
v = f w�1. Then

uv = twf w�1 2 T(QGã) \ H

As T(QGã) is torsion-free T(QGã) \ H = f1g and hence v = u�1. It follows that H is
cyclic whose order divides 2p, and we may suppose that H = hui.

We shall now show that u is conjugate to w in U(QG) and this will complete the proof
of the theorem.

Using the fact that T(QGã) = AãŁBã, write t as a reduced product t1 Ð Ð Ð tn of elements
from Aã and Bã. Since the order of u = t1 Ð Ð Ð tnw divides 2p we have (t1 Ð Ð Ð tnw)2p = 1
which implies that

t1 Ð Ð Ð tn(wt1 Ð Ð Ð tnw�1)(w2t1 Ð Ð Ð tnw�2) Ð Ð Ð (w2p�1t1 Ð Ð Ð tnw�(2p�1)) = 1

Note that wAãw�1 � Aã and wBãw�1 � Bã, because w commutes with c. As the product
t1 Ð Ð Ð tn is reduced and T(QGã) = Aã Ł Bã, we have that n is odd and that

tnwt1w�1 = tn�2wt2w�1 = Ð Ð Ð = t n+1
2 +1wt n+1

2 �1w�1 = 1

Thus,
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u = (t1t2 Ð Ð Ð t n+1
2 �1)t n+1

2
w(t�1

n+1
2 �1 Ð Ð Ð t�1

2 t�1
1 )Ò

and u is conjugate by transvections to t(n+1)Û2w. Since T(QGã)\H = f1g it follows from
Lemma 3.3 that t(n+1)Û2w is conjugate in U(QG) to w.

The theorem implies the Zassenhaus Conjecture (ZC3) for G:

COROLLARY 3.5. Let G be as in Theorem 3.4. Then every nonidentity finite subgroup
of U1(ZG) is conjugate in U(QG) to one of the Gã, (ã 2 I).

PROOF. Let H 6= f1g be a finite subgroup of U1(QG). By Theorem 3.4 x�1Hx � hwãi,
for some x 2 U(QG) and some ã 2 I. Thus H is cyclic; its order divides 2pã if pã is odd
and is equal to 2 otherwise. Obviously, in the last case x�1Hx = Gã, so we may assume
that pã Ù 2.

Suppose that H contains an element u of order 2 and set w = x�1ux. It follows from
Lemma 3.1 that there exists an element g 2 G of order 2 such that ũ(g) 6= 0. Hence by
Lemma 3.2, w̃(g) 6= 0 which is impossible as w 2 QGã, where Gã has order pã Ù 2. We
conclude that the order of H is pã and that x�1Hx = Gã.
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