UNITS IN GROUP RINGS OF FREE PRODUCTS OF PRIME CYCLIC GROUPS

MICHAEL A. DOKUCHAEV AND MARIA LUCIA SOBRAL SINGER

Abstract

Let G be a free product of cyclic groups of prime order. The structure of the unit group $\mathcal{U}(\mathbb{Q} G)$ of the rational group ring $\mathbb{Q} G$ is given in terms of free products and amalgamated free products of groups. As an application, all finite subgroups of $\mathcal{U l}(\mathbb{Q} G)$, up to conjugacy, are described and the Zassenhaus Conjecture for finite subgroups in $\mathbb{Z} G$ is proved. A strong version of the Tits Alternative for $\mathcal{U}(\mathbb{Q} G)$ is obtained as a corollary of the structural result.

1. Introduction. Let $\mathcal{U}(\mathbb{Z} G)$ denote the unit group of the integral group ring $\mathbb{Z} G$ of a group G and let $\mathcal{U}_{1}(\mathbb{Z} G)$ be the group of units of augmentation 1 in $\mathbb{Z} G$. Similar notation shall be used for the rational group algebra $\mathbb{Q} G$. The Conjecture of Zassenhaus, denoted (ZC3) [14], states that if G is finite and H is a finite subgroup of $\mathcal{U}_{1}(\mathbb{Z} G)$ then H is conjugate in $\mathcal{U}(\mathbb{Q} G)$ to a subgroup of G. A restricted version of this conjecture, denoted (ZC1) [14], says that every torsion unit of $\mathcal{U}_{1}(\mathbb{Z} G)$ is conjugate in $\mathcal{U}(\mathbb{Q} G)$ to an element of G. It is known that (ZC3) holds for finite nilpotent groups [16], [17], finite split metacyclic groups [12], [15] and some particular groups. However, (ZC3) is false in general and the counterexamples show that it does not hold for finite metabelian groups [7] and [13]. The Zassenhaus Conjecture restricted to finite p-subgroups of $\mathcal{U}_{1}(\mathbb{Z} G)$ has been established for finite nilpotent-by-nilpotent groups G [4], for finite solvable groups G whose Sylow p-subgroups are either abelian or generalized quaternion [4] and for Frobenius groups G which cannot be mapped homomorphically onto S_{5} [5]. More information on the Zassenhaus Conjecture and its various versions can be found in [3], [13], [14]. It is interesting to know which infinite groups satisfy (ZC3). In [11] an infinite nilpotent group is constructed which does not satisfy (ZC1) (compare with [2]). Problem 39 of [14] asks whether (ZC1) holds for a free product of finite cyclic groups.

Torsion units in integral group rings $\mathbb{Z} G$ where G is a free product of abelian groups were studied by A. I. Lichtman and S. K. Sehgal [10]. They proved that if $u \in \mathcal{U}_{1}(\mathbb{Z} G)$ has order $m<\infty$ then one of the free factors of G contains an element h of order m. Moreover, if G is a free product of a finite number of finite abelian groups then u is conjugate to h in a large overing of $\mathbb{Q} G$ (Theorem 1 of [10]). In a particular case when G is the infinite dihedral group the conjugating element can be taken even in $\mathbb{Z}\left[\frac{1}{2}\right] G$, (see [9]).

[^0]In this paper we study the free product $G=* G_{\alpha}(\alpha \in I)$ of cyclic groups of prime order $\left|G_{\alpha}\right|=p_{\alpha}$ (the p_{α} 's are not necessarily distinct and I may be infinite). In Section 2 by applying Gerasimov's Theorem [6] we prove that

$$
\mathcal{U l}(\mathbb{Q} G)=* \mathcal{U}(\mathbb{Q})\left(\left(A_{\alpha} * B_{\alpha}\right) \rtimes \mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)\right)
$$

where $* \mathcal{U}_{(\mathbb{Q})}$ denotes the amalgamated free product over the multiplicative group $\mathcal{U}(\mathbb{Q})$ of \mathbb{Q} and A_{α}, B_{α} are abelian groups isomorphic to the additive groups of some infinite dimensional vector spaces over \mathbb{Q} (Theorem 2.3). As a consequence we prove that every nonabelian subgroup of $\mathcal{U}(\mathbb{Q} G)$ either contains a free noncyclic subgroup or is metabelian (Corollary 2.4). In Section 3 we use Theorem 2.3 to prove that every finite subgroup of $\mathcal{U}_{1}(\mathbb{Q} G)$ is conjugate in $\mathcal{U}(\mathbb{Q} G)$ to a subgroup of $\mathcal{U}_{1}\left(\mathbb{Q} G_{\alpha}\right)$ for some $\alpha \in I$ (Theorem 3.4). As a corollary the Zassenhaus Conjecture (ZC3) is proved for G (Corollary 3.5).
2. The structure of the rational unit group. Let K be an associative ring with identity and $G=*_{H} G_{\alpha}(\alpha \in I)$ be the free product of groups G_{α} with amalgamated subgroup H. It is easy to verify that $K G$ is isomorphic to the coproduct $\amalg_{K H} K G_{\alpha}$, ($\alpha \in I$) of rings $K G_{\alpha}$ over $K H$. In particular, if $G=* G_{\alpha}(\alpha \in I)$ is the free product of groups G_{α}, then $K G \cong \amalg_{K} K G_{\alpha}(\alpha \in I)$. Thus, Gerasimov's Theorem on units in coproducts of rings [6] can be used in the study of $\mathcal{U}(K G)$.

An element of $K G$ of the form $1+x \nu y$ where $x, y \in K G_{\alpha}, y x=0, \nu \in K G$ is called a $K G_{\alpha}$-transvection. Let $\boldsymbol{\Gamma}\left(K G_{\alpha}\right)$ be the subgroup of $\mathcal{U}(K G)$ generated by $\mathcal{U}\left(K G_{\alpha}\right)$ and all the $K G_{\alpha}$-transvections of $K G$. A ring R with the identity element 1 is called 1commutative if $x y=1$ implies $y x=1(x, y \in R)$. The following statement is an immediate consequence of Gerasimov's Theorem.

Statement 2.1. Let $G=* G_{\alpha}(\alpha \in I)$ and K be a division ring. If each $K G_{\alpha}$ is 1-commutative then

$$
\mathcal{U}(K G) \cong *_{\mathcal{U}_{(K)}} \boldsymbol{\Gamma}\left(K G_{\alpha}\right), \quad(\alpha \in I)
$$

where $\mathcal{U}(K)$ denotes the multiplicative group of K.
It is easy to see that the subgroup $T\left(K G_{\alpha}\right)$ generated by all the $K G_{\alpha}$-transvections of $K G$ is normal in $\boldsymbol{\Gamma}\left(K G_{\alpha}\right)$.

Suppose now that $K=\mathbb{Q}$ and that each $\left|G_{\alpha}\right|=p_{\alpha}$ is a prime $(\alpha \in I)$. The p_{α} 's are not necessarily distinct and I may be infinite. Let S be the disjoint union of the $G_{\alpha} \backslash\{1\}$, $(\alpha \in I)$. We say that the product $g=g_{1} \cdots g_{n},\left(g_{i} \in S\right)$ is reduced if either $n=1$ or $n \geq 2$ and no adjacent factors belong to the same G_{α}. In this case n is called the length of g and shall be denoted by $\ell(g)$.

Let β be a fixed index and $G_{\beta}=\langle c\rangle$. Take any ordering on each $G_{\alpha} \backslash\{1\},(\alpha \neq \beta)$. Set $c^{\imath}<c^{\jmath}$ if and only if $\imath<\jmath,\left(0<\imath, \jmath \leq p-1, p=p_{\beta}\right)$.

Now take an ordering on I such that $\beta<\alpha$ for every $\alpha \in I,(\alpha \neq \beta)$ and assume that the identity element $1 \in G$ has length 0 . This determines an ordering in S.

Suppose now that every element of G is given as a reduced product and order them first by their length and then lexicographically from left to right.

For a $\nu \in K G$ the leading term, lead (ν), of ν is the maximum of $\{g: g \in \operatorname{supp}(\nu)\}$, that is lead $(\nu) \geq g$ for every g of the support of ν.

Let C_{β} be the \mathbb{Q}-subspace of $\mathbb{Q} G$ generated by all reduced products $c^{\imath} g_{1} \cdots g_{n},\left(g_{\jmath} \in S\right.$, $\left.n \geq 1, g_{n} \notin G_{\beta}, 0 \leq \imath \leq p-2\right)$ and let D_{β} be the \mathbb{Q}-subspace of $\mathbb{Q} G$ generated by all reduced products $g_{1} \cdots g_{n} c^{\imath},\left(g_{\jmath} \in S, n \geq 1, g_{1} \notin G_{\beta}, 0 \leq i \leq p-2\right)$.

Set $\hat{c}=1+c+\cdots+c^{p-1}$ and consider the following maps: $\varphi: C_{\beta} \rightarrow \mathcal{U}(\mathbb{Q} G)$ and $\psi: D_{\beta} \rightarrow \mathcal{U}(\mathbb{Q} G)$ defined by $\varphi(\nu)=1+(1-c) \nu \hat{c}$, and $\psi(\nu)=1+\hat{c} \nu(1-c)$. It is easily seen that φ and ψ are homomorphisms from the additive groups C_{β} and D_{β} respectively into $T\left(\mathbb{Q} G_{\beta}\right)$.

LEMMA 2.2. Set $A_{\beta}=\operatorname{Im} \varphi$ and $B_{\beta}=\operatorname{Im} \psi$. Then $T\left(\mathbb{Q} G_{\beta}\right)=\left\langle A_{\beta}, B_{\beta}\right\rangle$ and $\varphi: C_{\beta} \rightarrow$ $A_{\beta}, \psi: D_{\beta} \rightarrow B_{\beta}$ are isomorphisms.

Proof. It is easily seen that if $x y=0$ for some $x, y \in \mathbb{Q} G_{\beta}$ then one of these elements belongs to $(1-c) \mathbb{Q} G_{\beta}$ and the other to $\mathbb{Q} \hat{c}$. Hence $T\left(\mathbb{Q} G_{\beta}\right)$ is generated by all elements of the form $1+(1-c) \nu \hat{c}, 1+\hat{c} \nu(1-c), \nu \in \mathbb{Q} G$. Then it follows from the equality

$$
(1-c) c^{p-1}=-(1-c)\left(1+c+\cdots+c^{p-2}\right)
$$

that $T\left(\mathbb{Q} G_{\beta}\right)$ is generated by $\operatorname{Im} \varphi$ and $\operatorname{Im} \psi$. This proves the first statement. It remains to be shown that $\operatorname{Ker} \varphi=\operatorname{Ker} \psi=\{0\}$.

Let $0 \neq \nu \in C_{\beta}$ and lead $(\nu)=c^{\imath} g_{1} \cdots g_{n},(n \geq 1,0 \leq \imath \leq p-2)$ be written as a reduced product.

Let $c h_{1} \cdots h_{k} \neq \operatorname{lead}(\nu)$ be a reduced product from the support of ν. Observe that since $\beta<\alpha$ for every $\alpha \in I,(\alpha \neq \beta)$, we have that $k \leq n$. (Note that this observation will be used in (8)). Then either $k<n$ or $k=n$ and $\jmath<\imath$ or $k=n, \jmath=\imath$ and $h_{1} \cdots h_{n}<g_{1} \cdots g_{n}$.

It is easy to see that in all cases $c^{\imath+1} g_{1} \cdots g_{n}>c^{\jmath+1} h_{1} \cdots h_{k}$ and, consequently,

$$
\begin{gather*}
\operatorname{lead}((1-c) \nu)=c^{\imath+1} g_{1} \cdots g_{n} \\
\operatorname{lead}(\varphi(\nu))=c^{\imath+1} g_{1} \cdots g_{n} c^{p-1}=c(\operatorname{lead}(\nu)) c^{p-1} \tag{1}
\end{gather*}
$$

Thus, $\varphi(\nu) \neq 1$ and $\operatorname{Ker} \varphi=\{0\}$.
Let $0 \neq \nu \in D_{\beta}$ and for a reduced product $g=h_{1} \cdots h_{k} c^{\jmath}$ from the support of ν, set $\omega(g)=h_{1} \cdots h_{k}$. Let

$$
g_{1} \cdots g_{n}=\max \{\omega(g): g \in \operatorname{supp}(\nu)\}
$$

and

$$
g_{1} \cdots g_{n} c^{\imath}=\max \left\{g \in \operatorname{supp}(\nu): \omega(g)=g_{1} \cdots g_{n}\right\}
$$

If $h_{1} \cdots h_{k} c^{\jmath}$ is any other reduced product from $\operatorname{supp}(\nu)$, then either $h_{1} \cdots h_{k}<g_{1} \cdots g_{n}$ or $k=n, h_{1} \cdots h_{k}=g_{1} \cdots g_{n}$ and $\jmath<\imath$. In both cases we have that $h_{1} \cdots h_{k} c^{\jmath+1}<$ $g_{1} \cdots g_{n} c^{c+1}$, therefore,

$$
\begin{gather*}
\operatorname{lead}(\nu(1-c))=g_{1} \cdots g_{n} c^{\imath+1} \\
\operatorname{lead}(\psi(\nu))=\operatorname{lead}(\hat{c} \nu(1-c))=c^{p-1} g_{1} \cdots g_{n} c^{\imath+1} \tag{2}
\end{gather*}
$$

Thus $\operatorname{Ker} \psi=\{0\}$.
Now we shall prove the main result of this section.

THEOREM 2.3. Let $G=* G_{\alpha},(\alpha \in I)$ where $\left|G_{\alpha}\right|=p_{\alpha}$ is a prime.Then

$$
\mathcal{U}(\mathbb{Q} G)=* \mathcal{U}(\mathbb{Q})\left(\left(A_{\alpha} * B_{\alpha}\right) \rtimes \mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)\right), \quad(\alpha \in I)
$$

where $A_{\alpha} * B_{\alpha}=T\left(\mathbb{Q} G_{\alpha}\right)$ is the group generated by all $\mathbb{Q} G_{\alpha}$-transvections of $\mathbb{Q} G, A_{\alpha}$ and B_{α} are abelian groups isomorphic to the additive groups of some infinite dimensional vector spaces over \mathbb{Q} (see Lemma 2.2).

Proof. Fix $\beta \in I$. We shall use the notation and the ordering introduced above. By Statement 2.1 and Lemma 2.2 it suffices to prove that $T\left(\mathbb{Q} G_{\beta}\right) \cap \mathcal{U}\left(\mathbb{Q} G_{\beta}\right)=\{1\}$ and $T\left(\mathbb{Q} G_{\beta}\right)=A_{\beta} * B_{\beta}$. We shall do this by calculating the leading term of an arbitrary element of $T\left(\mathbb{Q} G_{\beta}\right)$.

We shall say that two $\mathbb{Q} G_{\beta}$-transvections t_{1} and t_{2} have the same type if $t_{1}, t_{2} \in A_{\beta}$ or $t_{1}, t_{2} \in B_{\beta}$. A product of $\mathbb{Q} G_{\beta}$-transvections $u=t_{1} \cdots t_{n}$ shall be called reduced if no adjacent factors have the same type. It is easy to see that an arbitrary reduced product u of transvections is a sum of the identity and elements of the form
(3) $0 \neq w=\left[(1-c) \nu_{0} \hat{c}\right]^{\varepsilon_{1}} \hat{c} \nu_{1}(1-c)^{2} \nu_{2} \hat{c} \cdots \hat{c} \nu_{2 n-1}(1-c)^{2} \nu_{2 n} \hat{c}\left[\hat{c} \nu_{2 n+1}(1-c)\right]^{\varepsilon_{2}}$,
where $\nu_{0}, \nu_{2}, \ldots, \nu_{2 n} \in C_{\beta}, \nu_{1}, \nu_{3}, \ldots, \nu_{2 n+1} \in D_{\beta}$, and $\varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$.
We shall proceed by finding the leading term of $\nu_{i}(1-c)^{2} \nu_{j}$ where $i<j, i<2 n+1$, i is odd and j is even. Write an arbitrary element $g \in G$ as $g=g_{1} \omega(g) g_{2}$ where $g_{1}, g_{2} \in\langle c\rangle$ and $\omega(g)$ does not begin or end in a nonidentity element of $\langle c\rangle$. Set $t_{k}=\max \{\omega(g): g \in$ $\left.\operatorname{supp}\left(\nu_{k}\right)\right\}, 0 \leq k \leq 2 n+1$. If k is odd write $\nu_{k}=t_{k} x_{k}+r_{k}$, where $x_{k} \in \mathbb{Q}\langle c\rangle$ and for every $g \in \operatorname{supp}\left(r_{k}\right), \omega(g)<t_{k}$. For an even $k, 0 \leq k \leq 2 n$ write

$$
\begin{equation*}
\nu_{k}=x_{k}^{(1)} t_{k}^{(1)}+\sum_{s=2}^{m} x_{k}^{(s)} t_{k}^{(s)}+r_{k}^{\prime} \tag{4}
\end{equation*}
$$

where $x_{k}^{(1)}, \ldots, x_{k}^{(m)} \in \mathbb{Q}\langle c\rangle, t_{k}^{(1)}=t_{k}, \ell\left(t_{k}^{(s)}\right)=\ell\left(t_{k}\right),(2 \leq s \leq m)$ and $\ell(\omega(g))<\ell\left(t_{k}\right)$ for every $g \in \operatorname{supp}\left(r_{k}^{\prime}\right)$.

Fix an odd $i, 1 \leq i<2 n+1$, and an even $j, j \leq 2 n$ such that $i<j$. Let

$$
c^{l}=\max \left\{g: g \in \bigcup_{s=1}^{m} \operatorname{supp}\left(x_{i}(1-c)^{2} x_{j}^{(s)}\right)\right\}
$$

and

$$
f_{j}=\max \left\{t_{j}^{(s)}: c^{l} \in \operatorname{supp}\left(x_{i}(1-c)^{2} x_{j}^{(s)}\right)\right\}
$$

where $t_{j}^{(s)}$ is defined in (4). We claim that $c^{l} \neq 1$ and that

$$
\begin{equation*}
\operatorname{lead}\left[\nu_{i}(1-c)^{2} \nu_{j}\right]=t_{i} c^{l} f_{j} \tag{5}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\ell\left(\operatorname{lead}\left[\nu_{i}(1-c)^{2} \nu_{j}\right]\right)=\ell\left(t_{i}\right)+1+\ell\left(t_{j}\right) \geq 3 \tag{6}
\end{equation*}
$$

Let ζ be a primitive $p=p_{\beta}$-th root of unity and $\pi: \mathbb{Q}\langle c\rangle \rightarrow \mathbb{Q}(\zeta)$ be the map determined by $\pi(c)=\zeta$. It follows from the definitions of C_{β} and D_{β} that c^{p-1} does not belong to the supports of x_{i} and $x_{j}^{(s)},(1 \leq s \leq m)$, hence $\pi\left(x_{i}\right) \pi\left(x_{j}^{(s)}\right) \neq 0,(1 \leq s \leq m)$ and therefore $\pi\left(x_{i}(1-c)^{2} x_{j}^{(s)}\right) \neq 0(1 \leq s \leq m)$. Consequently $x_{i}(1-c)^{2} x_{j}^{(s)} \neq 0,(1 \leq s \leq m)$ and as $(1-c)^{2}$ is not a unit in $\mathbb{Q}\langle c\rangle$ we see that $x_{i}(1-c)^{2} x_{j}^{(s)} \notin \mathbb{Q}$. Thus $\operatorname{supp}\left(x_{i}(1-c)^{2} x_{j}^{(s)}\right)$ contains a nonidentity element of $\langle c\rangle$ for every $s,(1 \leq s \leq m)$. In particular, $c^{l} \neq 1$.

Let $g_{1} c^{a} g_{2}$ be an arbitrary element from $\operatorname{supp}\left(\nu_{i}(1-c)^{2} \nu_{j}\right)$, where $g_{1}=\omega\left(h_{1}\right), g_{2}=$ $\omega\left(h_{2}\right)$ for some $h_{1} \in \operatorname{supp}\left(\nu_{i}\right)$ and $h_{2} \in \operatorname{supp}\left(\nu_{j}\right)$. It follows from the definitions of t_{i} and f_{j} that $g_{1} \leq t_{i}$ and $\ell\left(g_{2}\right) \leq \ell\left(f_{j}\right)$.

If $g_{1}<t_{i}$ then clearly $g_{1} c^{a} g_{2}<t_{i} c^{l} f_{j}$. So let $g_{1}=t_{i}$. If $\ell\left(g_{2}\right)<\ell\left(f_{j}\right)$ then

$$
\ell\left(g_{1} c^{a} g_{2}\right) \leq \ell\left(g_{1}\right)+1+\ell\left(g_{2}\right)<\ell\left(t_{i}\right)+1+\ell\left(f_{j}\right)=\ell\left(t_{i} c^{l} f_{j}\right)
$$

and therefore again

$$
g_{1} c^{a} g_{2}=t_{i} c^{a} g_{2}<t_{i} c^{l} f_{j}
$$

Thus we may suppose that $\ell\left(g_{2}\right)=\ell\left(f_{j}\right)$. Then $g_{2}=t_{j}^{(s)}$ for some $s,(1 \leq s \leq m)$ and consequently $c^{a} \in \operatorname{supp}\left(x_{i}(1-c)^{2} x_{j}^{(s)}\right)$. Thus $c^{l} \geq c^{a}$ and since $c^{l}>c^{a}$ implies

$$
g_{1} c^{a} g_{2}=t_{i} c^{a} t_{j}^{(s)}<t_{i} c^{l} f_{j}
$$

we may suppose that $a=l$. But then $c^{l} \in \operatorname{supp}\left(x_{i}(1-c)^{2} x_{j}^{(s)}\right)$ and by the definition of f_{j} we get that $f_{j} \geq g_{2}$. Finally, as $g_{2}<f_{j}$ implies

$$
g_{1} c^{a} g_{2}=t_{i} c^{l} g_{2}<t_{i} c^{l} f_{j}
$$

we conclude that $t_{i} c^{l} f_{j}$ is indeed the leading term of $\nu_{i}(1-c)^{2} \nu_{j}$, proving our claim.
Now we obtain from (3) that

$$
\begin{align*}
\operatorname{lead}(w)= & \left(\operatorname{lead}\left[(1-c) \nu_{0}\right]\right)^{\varepsilon_{1}}\left[c^{p-1} \operatorname{lead}\left[\nu_{1}(1-c)^{2} \nu_{2}\right] c^{p-1}\right] \cdots \\
& {\left[c^{p-1} \operatorname{lead}\left[\nu_{2 n-1}(1-c)^{2} \nu_{2 n}\right] c^{p-1}\right]\left(\operatorname{lead}\left[\nu_{2 n+1}(1-c)\right]\right)^{\varepsilon_{2}} } \tag{7}
\end{align*}
$$

Clearly this product is reduced if all the leading terms are given as reduced products. In particular, lead $(w) \notin G_{\beta}$ and consequently, $T\left(\mathbb{Q} G_{\beta}\right) \cap \mathcal{U}\left(\mathbb{Q} G_{\beta}\right)=\{1\}$.

Applying (1) and (2) to ν_{i} and ν_{j} respectively, and keeping in mind the observation made in the proof of Lemma 2.2, we obtain

$$
\begin{gather*}
\ell\left(\operatorname{lead}\left[(1-c) \nu_{j}\right]\right)=1+\ell\left(\omega\left(\operatorname{lead} \nu_{j}\right)\right)=1+\ell\left(t_{j}\right) \geq 2 \\
\ell\left(\operatorname{lead}\left[\nu_{i}(1-c)\right]\right)=1+\ell\left(t_{i}\right) \geq 2 \tag{8}
\end{gather*}
$$

Comparing (5) and (6) we see that

$$
\begin{equation*}
\ell\left(\operatorname{lead}\left[\nu_{i}(1-c)^{2} \nu_{j}\right]\right) \geq \max \left\{\ell\left(\operatorname{lead}\left[(1-c) \nu_{j}\right]\right), \ell\left(\operatorname{lead}\left[\nu_{i}(1-c)\right]\right)\right\} \tag{9}
\end{equation*}
$$

Note that (8) holds for arbitrary even $j,(0 \leq j \leq 2 n)$ and for arbitrary odd $i,(1 \leq i \leq$ $2 n+1$). Observe that (7), (8) and (5) imply that

$$
\begin{equation*}
\ell(\operatorname{lead}(w)) \geq 3 \tag{10}
\end{equation*}
$$

for all w as in (3).
Now suppose that $1,0 \neq w^{\prime}$ is obtained from w by dropping some consecutive factors $\hat{c} \nu_{i}(1-c),(1-c) \nu_{j} \hat{c}$. Then we can write $w=w_{1} w_{2} w_{3}, w^{\prime}=w_{1} w_{3}$ where w_{2} has the form (3) with less ν_{k} 's involved. We shall prove that

$$
\begin{equation*}
\ell(\operatorname{lead}(w))>\ell\left(\operatorname{lead}\left(w^{\prime}\right)\right) \tag{11}
\end{equation*}
$$

Suppose first that one of w_{1} or w_{3} is 1 . It is enough to treat the case $w_{1}=1$, since the other one is similar. So let $w_{1}=1$; then $w=w_{2} w_{3}, w^{\prime}=w_{3}$. If w_{2} ends in \hat{c} then w_{3} begins with \hat{c} and by (7)

$$
\ell(\operatorname{lead}(w))=\ell\left(\operatorname{lead}\left(w_{2}\right)\right)+\ell\left(\operatorname{lead}\left(w_{3}\right)\right)-1
$$

It follows from (10) that $\ell\left(\operatorname{lead}\left(w_{2}\right)\right) \geq 3$ and therefore $\ell(\operatorname{lead}(w))>\ell\left(\operatorname{lead}\left(w_{3}\right)\right)$. Let w_{2} be ending in $1-c$. Then w_{3} begins with $1-c$ and we can write $w_{2}=w_{2}^{\prime} \hat{c} \nu_{k}(1-c)$ and $w_{3}=(1-c) \nu_{k+1} \hat{c} w_{3}^{\prime}$. Call

$$
\lambda_{j}= \begin{cases}\ell\left(\operatorname{lead}\left(w_{j}^{\prime}\right)\right) & \text { if } w_{j}^{\prime} \neq 1 \\ 1 & \text { otherwise }\end{cases}
$$

It follows from (7) and (6) that

$$
\ell(\operatorname{lead}(w))=\lambda_{2}+\ell\left(t_{k}\right)+\ell\left(t_{k+1}\right)+1+\lambda_{3} .
$$

By (7) and (8) we have

$$
\ell\left(\operatorname{lead}\left(w^{\prime}\right)\right)=\ell\left(t_{k+1}\right)+1+\lambda_{3}
$$

Consequently, $\ell(\operatorname{lead}(w))>\ell\left(\operatorname{lead}\left(w^{\prime}\right)\right)$.
Now suppose that $w_{1} \neq 1$ and $w_{3} \neq 1$. If w_{2} begins with \hat{c} then w_{1} ends in \hat{c}, and therefore w_{3} begins with \hat{c} and w_{2} ends in \hat{c}. By (7) we get

$$
\begin{gathered}
\ell(\operatorname{lead}(w))=\ell\left(\operatorname{lead}\left(w_{1}\right)\right)-1+\ell\left(\operatorname{lead}\left(w_{2}\right)\right)-1+\ell\left(\operatorname{lead}\left(w_{3}\right)\right) \\
\ell\left(\operatorname{lead}\left(w^{\prime}\right)\right)=\ell\left(\operatorname{lead}\left(w_{1}\right)\right)+\ell\left(\operatorname{lead}\left(w_{3}\right)\right)-1
\end{gathered}
$$

hence

$$
\ell(\operatorname{lead}(w))>\ell\left(\operatorname{lead}\left(w^{\prime}\right)\right)
$$

If w_{2} begins with $1-c$ then w_{1} ends in $1-c$, w_{3} begins with $1-c$ and w_{2} ends in $1-c$. Write $w_{1}=w_{1}^{\prime} \hat{c} \nu_{k}(1-c), w_{2}=(1-c) \nu_{k+1} \hat{c} w_{2}^{\prime} \hat{c} \nu_{s}(1-c), w_{3}=(1-c) \nu_{s+1} \hat{c} w_{3}^{\prime}$. Applying (7) and (6) we obtain

$$
\begin{gathered}
\ell(\operatorname{lead}(w))=\lambda_{1}+\ell\left(t_{k}\right)+1+\ell\left(t_{k+1}\right)+\lambda_{2}+\ell\left(t_{s}\right)+1+\ell\left(t_{s+1}\right)+\lambda_{3} \\
\ell\left(\operatorname{lead}\left(w^{\prime}\right)\right)=\lambda_{1}+\ell\left(t_{k}\right)+\ell\left(t_{s+1}\right)+1+\lambda_{3}
\end{gathered}
$$

and clearly $\ell(\operatorname{lead}(w))>\ell\left(\operatorname{lead}\left(w^{\prime}\right)\right)$ which completes the proof of (11).
Now let

$$
u=\left(1+(1-c) \nu_{0} \hat{c}\right)^{\varepsilon_{1}} \prod_{i=1}^{n}\left[\left(1+\hat{c} \nu_{2 i-1}(1-c)\right)\left(1+(1-c) \nu_{2 i} \hat{c}\right)\right]\left(1+\hat{c} \nu_{2 n+1}(1-c)\right)^{\varepsilon_{2}}
$$

be an arbitrary reduced product of transvections. Assume that ε_{i}, ν_{i} are as in (3). Then $u=w+\sum_{w^{\prime} \in J} w^{\prime}+1$ where each $w^{\prime} \in J$ is obtained from w by dropping some factors $\hat{c} \nu_{i}(1-c),(1-c) \nu_{j} \hat{c}$.

Fix a $w^{\prime} \in J$. Then there exists a sequence of elements $w^{\prime}=w_{1}^{\prime}, \ldots, w_{s}^{\prime}=w$ such that each w_{k}^{\prime}, $(1 \leq k \leq s-1)$ is obtained from w_{k+1}^{\prime} by dropping some consecutive factors $\hat{c} \nu_{i}(1-c),(1-c) \nu_{j} \hat{c}$.

It follows from (11) that $\ell(\operatorname{lead}(w))>\ell\left(\operatorname{lead}\left(w_{s-1}^{\prime}\right)\right)>\cdots>\ell\left(\operatorname{lead}\left(w^{\prime}\right)\right)$. Thus, $\operatorname{lead}(u)=\operatorname{lead}(w)$ and since $\ell(\operatorname{lead}(w)) \geq 3, u \neq 1$. We conclude that $T\left(\mathbb{Q} G_{\beta}\right)$ is the free product of A_{α} and B_{β} and as $\beta \in I$ is arbitrary, the theorem is proved.

As a corollary we obtain a strong version of the Tits Alternative for $\mathcal{U}(\mathbb{Q} G)$.
COROLLARY 2.4. Let G be as in Theorem 2.3. Then every subgroup of $\mathcal{U}(\mathbb{Q} G)$ either contains a free noncyclic subgroup or is solvable of derived length at most 2 .

Proof. Let H be a subgroup of $\mathcal{U}(\mathbb{Q} G)$ which does not contain a noncyclic free subgroup. As

$$
\mathcal{U}(\mathbb{Q} G)=*_{\mathcal{U}(\mathbb{Q})}\left(T\left(\mathbb{Q} G_{\alpha}\right) \rtimes \mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)\right), \quad(\alpha \in I)
$$

and $\mathcal{U l}(\mathbb{Q})$ is central in $\mathcal{U}(\mathbb{Q} G)$, applying the Kurosh Subgroup Theorem [8, p. 17] to the factor group $\mathcal{U}(\mathbb{Q} G) / \mathcal{U}(\mathbb{Q})$ we conclude that, modulo $\mathcal{U}(\mathbb{Q}), H$ is either infinite cyclic, or a free product of two cyclic groups of order 2, or is conjugate to a subgroup of $T\left(\mathbb{Q} G_{\alpha}\right) \rtimes \mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)$ for some α. In the first case H is obviously abelian, and in the second it is metabelian. In the third case we may suppose that H is a subgroup of $T\left(\mathbb{Q} G_{\alpha}\right) \rtimes \mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)$.

Now $T\left(\mathbb{Q} G_{\alpha}\right)=A_{\alpha} * B_{\alpha}$ where A_{α} and B_{α} are torsion-free abelian groups. Since

$$
H \cap T\left(\mathbb{Q} G_{\alpha}\right) \subseteq A_{\alpha} * B_{\alpha}
$$

applying again the Kurosh Subgroup Theorem we see that $H \cap T\left(\mathbb{Q} G_{\alpha}\right)$ is abelian. But $H /\left(H \cap T\left(\mathbb{Q} G_{\alpha}\right)\right)$ is isomorphic to a subgroup of $\mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)$ and therefore is abelian. Hence H is either abelian or metabelian.
3. The Zassenhaus conjecture. Let G be a group, $G(i)=\{g \in G: o(g)=i\}$, and C_{g} be the conjugacy class of $g \in G$. For $u=\sum_{g \in G} u(g) g \in \mathbb{Q} G$ set $T^{(i)}(u)=\sum_{g \in G(i)} u(g)$ and $\tilde{u}(g)=\sum_{h \in C_{g}} u(h)$. We recall a result on generalized traces $T^{(i)}$:

LEMMA 3.1 (SEE [1, LEMMA 2.4]). Let G be a group and p a prime. If $u \in \mathcal{U}_{1}(\mathbb{Z} G)$ is a torsion unit of order p^{n} then $T^{\left(p^{n}\right)}(u) \equiv 1(\bmod p)$ and $T^{\left(p^{i}\right)}(u) \equiv 0(\bmod p)$ for all $i<n$.

Lemma 3.2. Suppose that $u, w \in \mathbb{Q} G$ and $x^{-1} u x=w$ where $x \in \mathcal{U}(\mathbb{Q} G)$. Then $\tilde{u}(g)=\tilde{w}(g)$ for all $g \in G$.

Proof. Let $[\mathbb{Q} G, \mathbb{Q} G]$ be the \mathbb{Q}-submodule of $\mathbb{Q} G$, generated by all $g h-h g(g, h, \in$ $G)$. Then $y=x^{-1} u x-u=x^{-1}(u x)-(u x) x^{-1} \in[\mathbb{Q} G, \mathbb{Q} G]$, and therefore $\tilde{y}(g)=0$ for all $g \in G$. The result follows.

The next result is an adaptation of [14, Lemma 37.13] to the case of an infinite group G.

Lemma 3.3. Let G be a group, $t=1+x \nu y$ where $x, \nu, y \in \mathbb{Q} G, y x=0$ and let $t w$ $(w \in \mathcal{U}(\mathbb{Q} G))$ be a torsion unit of order n such that

$$
(1+x \mathbb{Q} G y) \cap\langle w\rangle=\{1\} .
$$

If w commutes with x and y, then the element

$$
z=1+t+t t^{w}+t t^{w} t^{w^{2}}+\cdots+t t^{w} \cdots t^{w^{n-2}}
$$

where $t^{w^{i}}=w^{i} t w^{-i}$, is invertible in $\mathbb{Q} G$, and $z^{-1} t w z=w$.
PROOF. Since w commutes with x and y we see that $t^{w^{j}} \in 1+x \mathbb{Q} G y$, for all j. Therefore we get from $(t w)^{n}=1$ that

$$
\begin{equation*}
w^{n}=t t^{w} t^{w^{2}} \cdots t^{w^{n-1}}=1 \tag{12}
\end{equation*}
$$

We have that

$$
\begin{aligned}
z & =1+(1+x \nu y)+(1+x \nu y)\left(1+x \nu^{w} y\right)+\cdots+(1+x \nu y)\left(1+x \nu^{w} y\right) \cdots\left(1+x \nu^{w^{n-2}} y\right) \\
& =n+x \bar{\nu} y
\end{aligned}
$$

for some $\bar{\nu} \in \mathbb{Q} G$. Thus, $z^{-1}=\frac{1}{n}\left(1-\frac{1}{n} x \bar{\nu} y\right) \in \mathbb{Q} G$.
Now by (12) we get

$$
\begin{aligned}
t w z & =t z^{w} w=t\left(1+t^{w}+t^{w} t^{w^{2}}+\cdots+t^{w} t^{w^{2}} \cdots t^{w^{n-1}}\right) w \\
& =\left(t+t t^{w}+t t^{w} t^{w^{2}}+\cdots+t t^{w} \cdots t^{w^{n-1}}\right) w=z w .
\end{aligned}
$$

Hence, $z^{-1} t w z=w$ as desired.
Let G be the free product $G=* G_{\alpha},(\alpha \in I)$ of cyclic groups of prime order $\left|G_{\alpha}\right|=p_{\alpha}$ (the p_{α} 's are not necessarily distinct and I may be infinite). For $\alpha \in I$ fix a generator $c=c_{\alpha}$ of G_{α} and set

$$
w_{\alpha}= \begin{cases}\frac{2}{p} \hat{c}-c & \text { if } p>2 \\ c & \text { otherwise }\end{cases}
$$

where $p=p_{\alpha}$ and $\hat{c}=1+c+\cdots+c^{p-1}$. It is easy to see that $w_{\alpha}^{2}=c^{2}$.
THEOREM 3.4. A finite subgroup of $\mathcal{U}_{1}(\mathbb{Q} G)$ is conjugate in $\mathcal{U}(\mathbb{Q} G)$ to a subgroup of $\left\langle w_{\alpha}\right\rangle$ for some $\alpha \in I$.

Proof. Let $H \neq\{1\}$ be a finite subgroup of $\mathcal{U}_{1}(\mathbb{Q} G)$. By Theorem 2.3,

$$
\mathcal{U}(\mathbb{Q} G)=* \mathcal{U}(\mathbb{Q})\left(T\left(\mathbb{Q} G_{\alpha}\right) \rtimes \mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)\right), \quad(\alpha \in I),
$$

and $T\left(\mathbb{Q} G_{\alpha}\right)=A_{\alpha} * B_{\alpha}$ where A_{α} and B_{α} are the torsion-free abelian groups defined in Section 2.

Applying the Kurosh Subgroup Theorem to the factor group $\mathcal{U}(\mathbb{Q} G) / \mathcal{U l}(\mathbb{Q})$ [8] or a subgroup theorem for amalgamated free products we get that H is conjugate in $\mathcal{U l}(\mathbb{Q} G)$ (and therefore in $\mathcal{U l}_{1}(\mathbb{Q} G)$) to a subgroup of $T\left(\mathbb{Q} G_{\alpha}\right) \rtimes \mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)$ for some $\left.\alpha \in I\right)$. Thus, replacing H by its conjugate we may assume that

$$
H \subseteq T\left(\mathbb{Q} G_{\alpha}\right) \rtimes \mathcal{U}\left(\mathbb{Q} G_{\alpha}\right)
$$

Since every element of $T\left(\mathbb{Q} G_{\alpha}\right)$ has augmentation 1, we really have

$$
H \subseteq T\left(\mathbb{Q} G_{\alpha}\right) \rtimes \mathcal{U}_{1}\left(\mathbb{Q} G_{\alpha}\right)
$$

Let u be a nonidentity element of H. Then $u=t w$ where $t \in T\left(\mathbb{Q} G_{\alpha}\right)$ and $w \in$ $\mathcal{U}_{1}\left(\mathbb{Q} G_{\alpha}\right)$. Moreover, since $T\left(\mathbb{Q} G_{\alpha}\right)$ is torsion-free, w is a torsion unit of the same order as u.

Take a p-th primitive root of unity ζ and consider the isomorphism $\phi: \mathbb{Q}\langle c\rangle \longrightarrow \mathbb{Q} \oplus \mathbb{Q}(\zeta)$ defined by $\phi(c)=(1, \zeta)$ and linearly extended. Since the torsion units of $\mathbb{Q}(\zeta)$ are of the form: ζ^{k} or $-\zeta^{k}$, we see that $\phi(w)=\left(1, \zeta^{k}\right)$ or $\phi(w)=\left(1,-\zeta^{k}\right)$. If $p>2$ then $\phi^{-1}(1,-\zeta)=\frac{2}{p} \hat{c}-c=w_{\alpha}$. Thus, in any case $w \in\left\langle w_{\alpha}\right\rangle$.

Let $v \neq 1$ be another element of H. Similarly we can write $v=f w^{\prime}$ where $f \in T\left(\mathbb{Q} G_{\alpha}\right)$ and $1 \neq w^{\prime} \in\left\langle w_{\alpha}\right\rangle$. Replacing u or v by an appropriate power of it we may suppose that $v=f w^{-1}$. Then

$$
u v=t w f w^{-1} \in T\left(\mathbb{Q} G_{\alpha}\right) \cap H .
$$

As $T\left(\mathbb{Q} G_{\alpha}\right)$ is torsion-free $T\left(\mathbb{Q} G_{\alpha}\right) \cap H=\{1\}$ and hence $v=u^{-1}$. It follows that H is cyclic whose order divides $2 p$, and we may suppose that $H=\langle u\rangle$.

We shall now show that u is conjugate to w in $\mathcal{U l}(\mathbb{Q} G)$ and this will complete the proof of the theorem.

Using the fact that $T\left(\mathbb{Q} G_{\alpha}\right)=A_{\alpha} * B_{\alpha}$, write t as a reduced product $t_{1} \cdots t_{n}$ of elements from A_{α} and B_{α}. Since the order of $u=t_{1} \cdots t_{n} w$ divides $2 p$ we have $\left(t_{1} \cdots t_{n} w\right)^{2 p}=1$ which implies that

$$
t_{1} \cdots t_{n}\left(w t_{1} \cdots t_{n} w^{-1}\right)\left(w^{2} t_{1} \cdots t_{n} w^{-2}\right) \cdots\left(w^{2 p-1} t_{1} \cdots t_{n} w^{-(2 p-1)}\right)=1
$$

Note that $w A_{\alpha} w^{-1} \subseteq A_{\alpha}$ and $w B_{\alpha} w^{-1} \subseteq B_{\alpha}$, because w commutes with c. As the product $t_{1} \cdots t_{n}$ is reduced and $T\left(\mathbb{Q} G_{\alpha}\right)=A_{\alpha} * B_{\alpha}$, we have that n is odd and that

$$
t_{n} w t_{1} w^{-1}=t_{n-2} w t_{2} w^{-1}=\cdots=t_{\frac{n+1}{2}+1} w t_{\frac{n+1}{2}-1} w^{-1}=1
$$

Thus,

$$
u=\left(t_{1} t_{2} \cdots t_{\frac{n+1}{2}-1}\right) t_{\frac{n+1}{2}} w\left(t_{\frac{n+1}{2}-1}^{-1} \cdots t_{2}^{-1} t_{1}^{-1}\right)
$$

and u is conjugate by transvections to $t_{(n+1) / 2} w$. Since $T\left(\mathbb{Q} G_{\alpha}\right) \cap H=\{1\}$ it follows from Lemma 3.3 that $t_{(n+1) / 2} w$ is conjugate in $\mathcal{U}(\mathbb{Q} G)$ to w.

The theorem implies the Zassenhaus Conjecture (ZC3) for G :
COROLLARY 3.5. Let G be as in Theorem 3.4. Then every nonidentity finite subgroup of $\mathcal{U}_{1}(\mathbb{Z} G)$ is conjugate in $\mathcal{U}(\mathbb{Q} G)$ to one of the $G_{\alpha},(\alpha \in I)$.

PROOF. Let $H \neq\{1\}$ be a finite subgroup of $\mathcal{U}_{1}(\mathbb{Q} G)$. By Theorem $3.4 x^{-1} H x \subseteq\left\langle w_{\alpha}\right\rangle$, for some $x \in \mathcal{U}(\mathbb{Q} G)$ and some $\alpha \in I$. Thus H is cyclic; its order divides $2 p_{\alpha}$ if p_{α} is odd and is equal to 2 otherwise. Obviously, in the last case $x^{-1} H x=G_{\alpha}$, so we may assume that $p_{\alpha}>2$.

Suppose that H contains an element u of order 2 and set $w=x^{-1} u x$. It follows from Lemma 3.1 that there exists an element $g \in G$ of order 2 such that $\tilde{u}(g) \neq 0$. Hence by Lemma 3.2, $\tilde{w}(g) \neq 0$ which is impossible as $w \in \mathbb{Q} G_{\alpha}$, where G_{α} has order $p_{\alpha}>2$. We conclude that the order of H is p_{α} and that $x^{-1} H x=G_{\alpha}$.
4. Acknowledgements. We express our appreciation to Professor Mazi Shirvani for useful comments and for his lectures on coproducts of rings at the Universidade de São Paulo.

References

1. A. A. Bovdi, The Multiplicative Group of an Integral Group Ring. Uzhgorod, Dep. UkrNIINTI, 24.09.87, 2712-Uk87, 1987.
2. A. A. Bovdi, Z. Marciniak and S. K. Sehgal, Torsion Units in Infinite Group Rings. J. Number Theory 47(1994), 284-299.
3. M. A. Dokuchaev, Finite Subgroups of Units in Integral group Rings. Resenhas IME-USP (3) 2(1996), 293-302.
4. M. A. Dokuchaev and S. O. Juriaans, Finite Subgroups in Integral Group Rings. Canad. J. Math. (6) 48(1996), 1170-1179.
5. M. A. Dokuchaev, S. O. Juriaans and C. Polcino Milies, Integral Group Rings of Frobenius Groups and the Conjectures of H. J. Zassenhaus. Comm. Algebra (7) 25(1997), 2311-2325.
6. V. N. Gerasimov, The group of units of a free product of rings. Math. USSR-Sb. (1) 62(1989), 41-63.
7. L. Klinger, Construction of a counterexample to a conjecture of Zassenhaus. Comm. Algebra 19(1993), 2303-2330.
8. A. G. Kurosh, The theory of groups, II. Chelsea Publ. Co., New York, 1956.
9. F. Levin and S. K. Sehgal, Zassenhaus conjecture for the infinite dihedral group. Proc Amer. Math. Soc., Special Session, Series in Algebra 1, World Scientific, Singapore, 1993, 57-68.
10. A. I. Lichtman and S. K. Sehgal, The elements of finite order in the group of units of group rings of free products of groups. Comm. Algebra 17(1989), 2223-2253.
11. Z. S. Marciniak and S. K. Sehgal, Zassenhaus Conjecture and Infinite Nilpotent Groups. J. Algebra 184(1996), 207-212.
12. C. Polcino Milies, J. Ritter and S. K. Sehgal, On a conjecture of Zassenhaus on torsion units in integral group rings II. Proc. Amer. Math. Soc. (2) 97(1986), 206-210.
13. K. W. Roggenkamp and M. J. Taylor, Group Rings and Class Groups. Birkhäuser Verlag, Basel, 1992.
14. S. K. Sehgal, Units of Integral Group Rings. Longman's, Essex, 1993.
15. A. Valenti, Torsion Units in Integral Group Rings. Proc. Amer. Math. Soc. (1) 120(1994), 1-4.
16. A. Weiss, Rigidity of p-adic torsion. Ann. Math. 127(1988), 317-332.
17. \qquad Torsion units in integral group rings. J. Reine Angew. Math. 415(1991), 175-187.

Departamento de Matemática
Universidade de São Paulo
Caixa Postal 66281
São Paulo, SP
05315-970—Brazil
e-mail: dokucha@ime.usp.br
e-mail: mlucia@ime.usp.br

[^0]: Received by the editors December 9, 1996.
 At the beginning of this work the first author was supported by FAPESP; the rest of his work was partially supported by CNPq.

 AMS subject classification: Primary: 20C07, 16S34, 16U60; secondary: 20 E 06.
 Key words and phrases: Free Products, Units in group rings, Zassenhaus Conjecture.
 (C)Canadian Mathematical Society 1998.

