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Abstract
The purpose of the present review is to describe how human physiology at very low carbohydrate intakes relates to the criteria for nutritional
essentiality. Althoughwe did not limit ourselves to one particular type or function of carbohydrates, we did primarily focus on glucose utilisation
as that function was used to determine the recommended daily allowance. In the general population, the human body is able to endogenously
synthesise carbohydrates, and does not show signs of deficiency in the absence of dietary carbohydrates. However, in certain genetic defects,
such as glycogen storage disease type I, absence of dietary carbohydrates causes abnormalities that are resolvedwith dietary supplementation of
carbohydrates. Therefore, dietary carbohydrates may be defined as conditionally essential nutrients because they are nutrients that are not
required in the diet for the general population but are required for specific subpopulations. Ketosis may be considered a physiological normal
state due to its occurrence in infants in addition to at very low carbohydrate intakes. Although sources of dietary carbohydrates can provide
beneficial micronutrients, no signs of micronutrient deficiencies have been reported in clinical trials of low-carbohydrate ketogenic diets.
Nonetheless, more research is needed on how micronutrient requirements can change depending on the dietary and metabolic context.
More research is also needed on the role of dietary fibre during a low-carbohydrate ketogenic diet as the beneficial effects of dietary fibre were
determined on a standard diet and several studies have shown beneficial effects of decreasing non-digestible carbohydrates.
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Introduction

The potential issue of inadequate dietary carbohydrate intake
was examined by the United States National Academy of
Medicine (formerly Institute of Medicine) in its determination
of recommended daily allowance for carbohydrates(1).
However, since that time there has been increasing interest in
and use of carbohydrate-restricted diets, particularly the low-
carbohydrate ketogenic diet (LCKD) which is defined as <50 g
of carbohydrates or<10% of energy derived from carbohydrates
per d(2). This is probably due to the increasing prevalence of
diabetes and obesity given that a LCKD has been shown to be
efficacious for the treatment of these health conditions(2-4).
Carbohydrate restriction is not recommended by some author-
ities, such as the Dietary Guidelines for Americans, but there
is an apparent lack of evidence that it is harmful, that carbohy-
drates are essential to human nutrition, or that a LCKD cannot
provide all the essential nutrients(5). Therefore, we decided to
re-examine the potential issues of inadequate carbohydrate
intake or dietary carbohydrate deficiency.

We performed the following search without restrictions in
language or other criteria ‘essential AND carbohydrate ANDdefi-
cien* NOT transferrin NOT glycoprotein’ on PubMed yielding

2764 results on 27 November 2017. However, upon abstract

review, we were unable to find indication of any significant dis-
ease or dysfunction caused by lack of dietary carbohydrates.
Therefore, thoughts of systematic review were abandoned,
and we instead decided to narratively review how human physi-
ology at very low carbohydrate intakes relates to the criteria for
nutritional essentiality. Dietary carbohydrates consist of a wide
variety of sugars, oligosaccharides, starches and dietary fibre
as well as performing a wide variety of functions in the body
in addition to energy metabolism. Although we did not limit
ourselves to one particular type or function of carbohydrates,
we did primarily focus on glucose utilisation as that function
was used to determine the recommended daily allowance(1).
We also included both the general population and specific
sub-populations in relation to answering the question of nutri-
tional essentiality.

The concept of nutritional essentiality

A nutrient is any substance normally consumed as a constituent
of food which provides energy, which is needed for growth,
development or maintenance of life, or which a deficit will cause
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characteristic physiological changes to occur(6). The concept of
nutritional essentiality was only firmly established less than
100 years ago and arose from observations that certain diseases
could be prevented by the inclusion of a nutrient in the diet(7–10).
There is a difference between physiological essentiality and
nutritional essentiality. Physiological essentiality represents a
substance that is indispensable for life, whereas nutritional
essentiality represents a substance that is indispensable in the
diet(7). For example, cholesterol is physiologically essential,
but need for it can be met by endogenous production so it is
not nutritionally essential. The criteria for nutritional essentiality
are as follows(7,11,12):

(1) The substance is required in the diet for growth, health and
survival.

(2) Its absence from the diet or inadequate intake results in
characteristic signs of a deficiency disease and, ultimately,
death.

(3) Growth failure and/or characteristic signs of deficiency are
prevented only by the nutrient or a specific precursor of it,
not by other substances.

(4) Below some critical level of intake of the nutrient, growth
response and/or severity of signs of deficiency are propor-
tional to the amount consumed.

(5) The substance is not synthesised in the body and is there-
fore required to be obtained from the diet for some critical
function throughout life.

Nutrient essentiality is a characteristic that varies by animal
species, not by nutrient. The currently established essential
nutrients for humans are water, energy, essential amino acids
(histidine, isoleucine, leucine, lysine, methionine, phenylala-
nine, threonine, tryptophan and valine), essential fatty acids
(linoleic and α-linolenic acids), vitamins (ascorbic acid, vitamin A,
vitamin E, vitamin K, thiamine, riboflavin, niacin, vitamin B6,
pantothenic acid, folic acid, biotin and vitamin B12), minerals
(Ca, P, Mg and Fe), trace minerals (Zn, Cu, Mn, iodine, Se, Mo
and Cr), electrolytes (Na, K and Cl) and ultra-trace minerals
(As, B, Si, Ni and V)(7,12–14). However, this list is still subject to
debate. For example, arachidonic acid and DHA may actually
be essential whereas linoleic and α-linolenic acids may not be
essential(15). Additionally, the role of ultra-trace minerals is still
being investigated(16,17).

The category of conditionally essential nutrients describes
nutrients not ordinarily required in the diet but must be supplied
exogenously to specific populations who do not synthesise them
in adequate amounts, such as in prematurity, pathological states
or genetic defects(7,8,18). The criteria of conditional essentiality
are as follows(7,8,19):

(1) Decline in the plasma or tissue level of the nutrient below
the normal range.

(2) Appearance of chemical, structural or functional
abnormalities.

(3) Correction of both of these by dietary supplementation of
the nutrient.

Carnitine, taurine, arginine, cysteine, glycine, choline, gluta-
mine, proline, serine and tyrosine are all generally classified as

conditionally essential nutrients(8,19–27). Vitamin D is sometimes
classified as an essential nutrient but is better classified as a con-
ditionally essential nutrient due to its ability to be adequately
synthesised in the body in the presence of unconstrained UVB
sunlight exposure(28,29). As further evidence accumulates, it is
likely that more nutrients will be found to be conditionally
essential.

The need for essential or conditionally essential nutrients
may be influenced by the presence of precursor substances,
presence of inhibitors, imbalances with other nutrients, drug
usage and genetic defects(7,8). These conditions alter the
amount that must be consumed, but do not alter the basic
requirement. For example, the presence of phytic acid in the
diet impairs Zn absorption and therefore increases the neces-
sary amount of Zn consumption(1,7).

If the definition of essential and conditionally essential
nutrients were broadened to include nutrients that provided
a desirable effect on health, then the specificity of the current
definition would be lost(7). Therefore, it would be clearer to
categorise nutrients with a biological effect without meeting
criteria for essentiality or conditional essentiality as desirable
for health, physiological modulators or bioactive substan-
ces(7,30). For example, fluoride in low doses protects teeth from
dental caries(7,31).

Physiological response during very low carbohydrate
intake

The recommended daily allowance for carbohydrates is 130 g/d
in order to ensure sufficient glucose for the brain(1). However,
when carbohydrate intake is less than 130 g/d, the body is able
to meet the energy needs of the brain with endogenously pro-
duced glucose and ketone bodies. Ketone bodies can be pro-
duced up to a rate of 2·5 mmol/min, at which point negative
feedback via insulinotropic and other effects prevents a further
increase in rate and acidosis(32). Ketone body oxidation also
becomes saturated at a rate of 2·5 mmol/min with higher utilisa-
tion by muscle at lower concentrations and higher utilisation by
the brain at higher concentrations(32).

Ketone bodies cross the blood–brain barrier to provide
energy to the brain, reducing total body glucose demand to
only 22–28 g/d(1). The body continues to utilise glucose at a
higher rate than this, though, as the body is able to endoge-
nously produce 80 g/d or more of glucose from protein-
derived amino acids, TAG-derived glycerol, recycled lactate,
recycled pyruvate and ketone bodies themselves(1,33,34).
These processes do not cease during higher levels of carbohy-
drate intake, and, importantly, the metabolism of TAG and
protein sources can be endogenous or exogenous(35). In fact,
if ample exogenous protein is supplied, ketogenesis significantly
decreases as glucose can be produced endogenously at a rate
that meets the energy needs of the brain(34). Nonetheless, ketone
bodies are oxidised for energymore efficiently than glucose, and
it has therefore been proposed that ketone bodies may be ben-
eficial in hypoxic brain injury(36–38). There is also recent evidence
that ketone bodies can act as cellular signalling molecules in
addition to metabolites, but the relevance of this is yet to be
determined(39–41).
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As long as adequate exogenous TAG and protein are con-
sumed, no loss of fat or lean mass occurs(42). If exogenous
TAGand protein are not adequately supplied, particularly during
times of increased energy demand such as lactation, then a
depletion of fat and lean mass occurs and can ultimately result
in death(34,43,44). Therefore, it is important to differentiate
between the effects of energy restriction and carbohydrate
restriction as they are not necessarily mutually inclusive even
though carbohydrates are a common energy source. It may be
hypothesised that very low carbohydrate intakes are detrimental
to physical performance as carbohydrate intake contributes to
glycogen stores. Although some studies support this, the major-
ity of studies indicate that physical performance during a very
low carbohydrate intake is no worse for many activities(45–58).
Long-term population data on safety are not available, but rand-
omised controlled trials of very low-carbohydrate diets up to
2 years in length have indicated no serious adverse effects(59).

Ketosis in children

Long-term data are similarly limited in children, but ketogenic
diets have been used since the 1920s in the treatment of drug-
resistant epilepsy in children, and the risk of serious adverse
events is considered low(60,61). More recently, a LCKD has also
been shown to be effective forweight loss in adolescentswithout
adverse effects(62). Moreover, it should be noted that ketosis is a
natural state in child development from gestation to weaning
even in the presence of carbohydrates(1,34,63,64). In fact, the
enzymes for metabolism of ketone bodies are more efficient
in infants than adults, and gluconeogenesis is well developed
even in premature infants(1,65–67). Ketone bodies are also used
during this time as precursors for the synthesis of brain structures
and myelinogenesis in addition to their use as a source of
energy(68,69).

Breast milk is considered optimal for newborn growth and
development(70). Breast milk contains carbohydrates in the form
of lactose, which provides energy, and oligosaccharides, which
serve as a prebiotic(1,71). However, in infants with epilepsy as
young as 1month old, the use of ketogenic formula does not lead
to growth failure or signs of deficiency(72–77). It is also thought
that breast milk is relatively insensitive to changes in maternal
diet, but this has not been tested for a maternal energy-sufficient
LCKD(78–80). There are no studies of infant carbohydrate restric-
tion in non-epileptic populations, but weaning onto meat-based
diets seems to have a positive effect on growth, head circum-
ference and psychomotor development in comparison with
cereal-based diets(81–84). Additionally, supplementation of
animal-source foods improves growth and test scores in
schoolchildren in the developing world, and early introduction
of eggs improves growth and reduces stunting(85–89). However,
these effects may be due to micronutrient deficiencies found
in the developing world or nutrients found in meat, such as
Fe, Zn, vitamin B12, fatty acids and protein(90,91).

In summary, the necessity of carbohydrates in growth is
largely unexplored, but the limited evidence available suggests
that children do not suffer from growth failure or acquire signs of
deficiency at low carbohydrate intakes.

Dietary carbohydrates do not meet criteria for nutritional
essentiality

Although carbohydrates are physiologically essential, they do
not meet the criteria for nutritional essentiality for the following
reasons:

(1) Dietary carbohydrates are not required in the diet for
growth and survival.

(2) Absence of dietary carbohydrates does not result in a char-
acteristic deficiency disease or death.

(3) Carbohydrates are synthesised in the body.

Populations where dietary carbohydrates may be
conditionally essential

Although carbohydrates, particularly glucose, are not ordinarily
required in the diet, theymay be required exogenously in certain
populations who do not synthesise them in adequate amounts
due to a genetic defect or pathological state. For example, gly-
cogen storage disease type I (von Gierke disease) results from
a genetic defect in glucose-6-phosphatase, thereby preventing
the liver from releasing glucose from gluconeogenesis and gly-
cogenolysis into the blood stream(92,93). Therefore, although
ketosis can lower the requirement for glucose, the body may still
be unable to produce and utilise a sufficient amount of glucose
without exogenous intake of carbohydrate depending on the
severity of the glucose-6-phosphatase enzyme defect. This
meets the criteria for conditional essentiality for the following
reasons:

(1) There is a decline in the plasma level of glucose below the
normal range with appearance of functional abnormalities.

(2) There is correction of the plasma level and function by
dietary supplementation.

There are several other genetic defects in fat and ketone body
metabolism that cause functional abnormalities during low
intake of dietary carbohydrates: carnitine deficiency, carnitine
palmitoyltransferase (CPT) deficiency, carnitine translocase defi-
ciency, pyruvate carboxylase deficiency, acyl-CoAdehydrogenase
deficiency (long, medium and short chain), 3-hydroxyacyl-CoA
deficiency, mitochondrial β-hydroxy β-methylglutaryl-CoA
(HMG-CoA) synthase deficiency, mitochondrial HMG-CoA lyase
deficiency, succinyl-CoA-3-oxoacid CoA transferase deficiency
and β-ketothiolase deficiency(61,94–97). Additionally, acute inter-
mittent porphyria may become symptomatic during low intake
of dietary carbohydrates(61,94). Several, but not all, of these
genetic disorders meet the aforementioned criteria for condi-
tional essentiality. Nonetheless, they all have potentially danger-
ous complications during low carbohydrate intakes.

Further investigation into the genetic defects and pathological
states where dietary carbohydrates are conditionally essential is
still needed. For example, carbohydrate intake has traditionally
been recommended for glycogen storage disease type III and V,
but recently case reports have found symptomatic improve-
ments using a LCKD(98,99). Additionally, although CPT-Ia defi-
ciency results in hypoketotic hypoglycaemia due to impaired
fatty acid oxidation, this variant is present at a high frequency
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in the Inuit, whose traditional diet consisted of minimal plant
food(100–102). Similarly, further investigation is needed into the
genetic defects and pathological states where dietary carbohy-
drate restriction may be the treatment of choice. For example,
GLUT1 deficiency and pyruvate dehydrogenase deficiency
have defects that prevent proper glucose utilisation, and diabe-
tes characteristically has abnormally elevated blood glucose
levels(61,94).

Circumstances where dietary carbohydrates may be
desirable for health

Although dietary carbohydrates themselves are not essential, it is
possible that sources of carbohydrates contain nutrients or proper-
ties unavailable from other food sources. The following sections
will examine only two of many possibilities: micronutrients and
dietary fibre.

Micronutrients

Starvation can lead to micronutrient deficiencies and potentially
severe complications, including death(103). Bariatric surgery
can also lead to micronutrient deficiencies, including thiamine,
vitamin B12, Fe, Cu and fat-soluble vitamins(104,105). The evidence
for micronutrient deficiencies on a LCKD is less clear as few stud-
ies have reported on micronutrient status. A recent systematic
review identified seven randomised control trials, two non-
randomised control trials and one cross-sectional study reporting
on micronutrient intake or status on carbohydrate-restricted
diets(106,107). Dietary intakes of thiamine, folate, Mg, Ca, Fe and
iodinewere noted to be reduced comparedwith baseline or con-
trol participants, but no adverse events related to micronutrient
deficiencies were reported(106,107). The majority of these trials
were hypoenergetic and used dietary recall or dietary records
to measure micronutrients, which has the potential for inaccur-
acies(108). Only one trial both provided food to participants and
was isoenergetic, and in this trial only Mg and iodine were
reduced whereas thiamine increased and folate, Ca and Fe were
unchanged(109). In this same trial, serum folate levels increased
despite no increase in dietary consumption; yet in another trial
serum folate levels decreased(109,110). Similarly, dietary intake of
vitamin C has been reported to decrease but serum vitamin
C levels have been reported to increase, indicating a need for
assessment of biological markers of micronutrient status(111–114).

Since macronutrients, micronutrients and metabolic path-
ways all have interrelated connections, it is difficult to predict
how a large change in diet would affect essential nutrients.
Unexpectedly, scurvy does not seem to occur on a diet based
solely on meat and fat(115). The reason for this is unknown,
but it may be due to vitamin C's interaction with glucose.
Glucose appears to compete with the oxidised form of vitamin
C for entry into cells and mitochondria(116–119). Once inside the
cell, glutathione, which is increased during a LCKD, appears
to recover the function of vitamin C(120–122). Vitamin C is also
found in meat, so it may be possible that the requirement is sim-
ply sufficiently met(116). However, there is a case report of a child
developing scurvy while on a classical ketogenic diet for epi-
lepsy, indicating a potential for deficiency when combined with

epileptic medications or proprietary ketogenic formulas(123).
Nonetheless, it may be pertinent to re-examine micronutrient
requirements on a LCKD because the current requirements
were only defined to prevent deficiencies on a standard
American diet.

Furthermore, how micronutrients interact with each other or
are converted to their active form is still incompletely under-
stood. As previously discussed, phytic acid, present in grains
and other plant sources, inhibits the absorption of Zn and other
minerals(7,31). Some nutrients, such as β-carotene and α-linolenic
acid, have low conversion rates to their active forms, thereby
increasing the importance of consuming their respective
active forms, which are found predominantly in animal
sources of food(124–127). Similarly the dietary reference values
for vitamin K are exclusively based on vitamin K1, but con-
sumption of vitamin K2 may play an important role in
health(128). Furthermore, vitamin K2 seems to work in con-
junction with vitamin A, vitamin D3, Ca, P and Mg, indicating
a highly complex interrelationship(129,130).

A decrease in micronutrient intake may be expected to occur
with a decrease in energy intake. Although many micronutrients
have a requirement related to body weight and growth rate, it
may be relevant to consider micronutrient intake adjusted for
energy intake because micronutrients involved in energy
metabolism may have an intake requirement relative to energy
intake(131). For example, absolute intake of thiamin has been
reported to decrease on a LCKD, as previously discussed, but
its intake relative to energy intake has been reported to increase,
resulting in a greater thiamin:energy ratio than if the subject's
usual diet was reduced by the same amount of energy(132).
Nonetheless, there has been a case report of two children devel-
oping thiamin deficiency while on a classical ketogenic diet for
epilepsy, again indicating a potential for deficiency when com-
bined with epileptic medications or proprietary ketogenic for-
mulas(133). There is another case report of thiamin deficiency
in a man supposedly following a low-carbohydrate diet but
whose diet actually consisted of only rice crispies and chicken
nuggets(134).

The bioavailability of micronutrients is relevant to consider,
such as how haeme Fe is more readily bioavailable than non-
haeme Fe(31). Therefore, although absolute Fe intake has been
reported to decrease on a LCKD, the intake of haeme Fe has
been reported to increase(132). Furthermore, the decrease in
absolute Fe, as well as other nutrients such as iodine, may only
be due to a decrease in foods that have been fortified with these
nutrients but do not naturally contain them in significant
amounts(111). Although fortification of food has undoubtedly
led to a decrease in the prevalence of micronutrient deficiencies,
food sources naturally containing the same micronutrients may
be preferable, but a framework for how dietary patterns and
nutrients interact still needs to be determined(135,136).

It may also be relevant to consider how micronutrient intake
compares among different dietary patterns. In trials comparing
weight-loss diets, micronutrient intake is decreased in most
groups for various micronutrients, although no signs of defi-
ciency were reported(111,137). Similarly in cross-sectional and
hypothetical analyses, it appears that a standard diet and popular
diet plans may not meet the recommended daily intake for
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several micronutrients, but conflicting reports exist(138–141).
Additionally, further research is needed to differentiate between
nutrient intake needed to prevent deficiencies and nutrient
intake needed for optimal health. For example, it has been pro-
posed that subclinical Mg deficiency is a health concern for a vast
majority of the population(142).

Dietary fibre

The National Academy of Medicine defines dietary fibre as intact
plant non-digestible carbohydrates, functional fibre as isolated
non-digestible carbohydrates that have beneficial effects in
humans, and total fibre as the sum of dietary fibre and functional
fibre(1,31). Dietary and functional fibre are not essential nutrients,
so potential health benefits were instead used to determine the
recommended intake(1,31). Specifically, adequate intake of total
fibre was determined based on risk reduction of CHD primarily
and risk reduction of diabetes secondarily(1,31). The evidence for
this is based on prospective studies showing a correlation
between cereal fibre and CHD as well as intervention studies
showing a reduction in serum cholesterol by viscous functional
fibre(1,31). Recentmeta-analyses of prospective cohort studies are
consistent with this, showing a reduced risk of cardiovascular
mortality, and even all-cause mortality, with dietary fibre con-
sumption(143–145). However, no randomised controlled trials
evaluating dietary fibre or cereals have reported on cardio-
vascular mortality(146,147). Randomised controlled trials of dietary
fibre, but not wholegrain cereals, have shown a reduction in total
and LDL-cholesterol but there was also a decrease in HDL-
cholesterol and an unclear risk of bias(146,147).

Although a reduction in dietary carbohydrates may lead to a
reduction indietary fibre, it may alsobepossible on a LCKD to con-
sume an equal or even greater amount of dietary fibre than a stan-
dard diet due to consumption of fibrous vegetables. Furthermore,
the roleof dietary fibrewas evaluated on a standarddiet but has yet
to be definitively tested or determined for a LCKD. Nonetheless,
a LCKD has been shown to generally improve markers of CVD
and diabetes in overweight populations(2–4,148–150). This may be
confounded by weight loss, as any diet that induces weight loss
in overweight populations improves markers of CVD and diabe-
tes, but a recent study indicates that some of these improvements
may be independent of weight loss(151–153). Specifically, it is
thought that the decrease in plasma TAG, increase in HDL,
and improved glycaemic control outweigh the potential increase
in LDL(2–4,148–150,154). It is beyond the scope of this article to
evaluate the evidence for and against the relationship between
serum cholesterol and CHD, but there have been several
recent reviews on this matter(155–162). Randomised controlled
trials reporting on cardiovascular mortality are still needed,
but this is not unique to a LCKD as dietary intervention trials
sparsely report on mortality(163).

The National Academy of Medicine also identifies satiety, lax-
ation and fermentation as other properties of total fibre that were
not used to determine the adequate intake(1,31). Both dietary fibre
and a LCKD seem to exert independent effects on satiety(164,165).
Dietary fibre can also contribute to satiety through decreasing
energy density, which can lead to reduced energy intake(165).
However, the role of dietary fibre in laxation and fermentation

is less clear as an increase in faecal weight does not necessarily
equatewith enhanced laxation and there appears tobe no relation-
ship between the level of dietary fibre intake and fermentation(1).
Although in the short term, there is a decrease in faecal butyrate on
a LCKD, it may be premature to draw conclusions that this is nec-
essarily detrimental as faecal butyrate does not account for
absorbed butyrate or the butyrate-producing capacity of the
colonic microbiome(166–169). It is also untested if endogenous
β-hydroxybutyrate production may compensate for colonic butyr-
ate needs due to the structural similarity of the molecules.

Although colonic bacteria concentration decreases after ini-
tiation of a LCKD, it appears that it may normalise after several
months(170). Themicrobiome has been shown to rapidly and reli-
ably change based on diet composition, possibly reflecting past
evolutionary pressures(171). This may be due to bacterial fermen-
tation of dietary fibre being compensated for by fermentation of
other components, such as glycoproteins and bile acids(172–174).
In fact, animal-derived non-digestible carbohydrates, such as
those found in connective tissue, are considered to be functional
fibre and are a part of the total fibre intake(1). Although this
change in fermentation has been argued to be detrimental to
colon health, it may be premature to draw this conclusion as
there is a lack of evidence from existing randomised controlled
trials that dietary fibre decreases adenomatous polyps and diver-
ticulosis(175–177). The National Academy of Medicine also states
that the relationship between fibre intake and colon cancer is
currently unresolved and the available evidence is too conflict-
ing to recommend an intake level based on the prevention of
colon cancer(1). The change in microbiome composition may
even be beneficial to overall health as it is associatedwith weight
loss in obese populations(178).

Additionally, although constipation has been noted as a side
effect of a LCKD, a recent clinical trial showed drastic improve-
ment in constipation by reducing dietary fibre intake(33,61,179).
A low-fibre diet may even be therapeutic for some bowel dis-
eases(180). Because insoluble and soluble fibre have differing
effects on the bowels, it may be possible that there are differing
types of constipation which are correspondingly resolved by
either increasing or decreasing dietary fibre(181–186). Another pos-
sibility is that dietary fibre is a marker of unrefined plant foods
and that indigestibility alone does not necessarily confer all
the same health benefits(1,187,188). If so, then added fibre may
not confer the same health benefits as unrefined plant foods.

It may also be possible that the apparent benefits of low-fibre
diets are at least partially mediated by a decrease in fermentable
oligosaccharides, disaccharides, monosaccharides and polyols
(FODMAP) since a decrease in FODMAP has been shown to
improve symptoms of irritable bowel syndrome(189–194). A mater-
nal low-FODMAP diet has also been shown to reduce symptoms
of colic in breastfed infants without gross changes in breast milk
composition(195). Although further research is needed to address
the shortcomings of current trials using a low-FODMAP diet,
a low-FODMAP diet is also being explored for the treatment
of inflammatory bowel disease(196–201). Interestingly, a low-
FODMAP diet improves symptoms of irritable bowel syndrome
despite a decrease in carbohydrate fermentation that is generally
thought to be beneficial to health and an increase in protein
fermentation that is generally thought to be detrimental to

264 J. Tondt et al.

https://doi.org/10.1017/S0954422420000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422420000050


health(202–205). Therefore, the interaction of fermentation and
health may be more complex than previously thought, and it
may be prudent to wait for more clinical trial data to determine
the beneficial amount of dietary fibre.

Conclusion and limitations

In conclusion, the carbohydrate requirement of the human body
can be met by endogenous synthesis without signs of deficiency
in the absence of dietary sources in the general population.
However, in certain rare genetic defects in metabolism, absence
of dietary carbohydrates causes abnormalities that are resolved
by dietary supplementation of carbohydrates, thus defining car-
bohydrates as conditionally essential nutrients. Ketosis may be
considered a physiologically normal state due to its occurrence
in infants, where it may contribute to brain development, in addi-
tion to its occurrence at very low carbohydrate intakes.

Although sources of dietary carbohydrates can provide benefi-
cial micronutrients, no signs of micronutrient deficiencies have
been reported in LCKD clinical trials. However, evidence in this
area is limited and more research is needed on howmicronutrient
requirements can change depending on the dietary and metabolic
context. More research is also needed on the role of dietary fibre
during a LCKD as the beneficial effects of dietary fibre were deter-
mined on a standard diet and several studies have shown benefi-
cial effects of decreasing non-digestible carbohydrates.

Our analysis and conclusions are subject to several limita-
tions. As is inherent in any narrative review, it is possible that
selection bias may have occurred. It is also possible that our
interpretation may have been unintentionally biased due to sub-
jectivity. However, human physiology at very low carbohydrate
intakes and nutritional essentiality are broad areas that lack the
controlled studies to allow quantitative systematic review.
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