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Abstract

Recently, Chen established a sharp relationship between the Ricci curvature and the squared mean
curvature for a submanifold in a Riemannian space form with arbitrary codimension. Afterwards, we
dealt with similar problems for submanifolds in complex space forms.

In the present paper, we obtain sharp inequalities between the Ricci curvature and the squared mean
curvature for submanifolds in Sasakian space forms. Also, estimates of the scalar curvature and the
fc-Ricci curvature respectively, in terms of the squared mean curvature, are proved.
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1. Preliminaries

A (2m+1) -dimensional Riemannian manifold (M, g) is said to be a Sasakian manifold
if it admits an endomorphism 0 of its tangent bundle TM,a vector field £ and a 1 -form
x), satisfying:

<p2 = -Id + i; ®£ ,

g(4>X, <PY) = g(X, Y) - r,(X)r,{Y), r,(X) = g(X, £),

Vx£ = (f>X,

for any vector fields X, Y on TM, where V denotes the Riemannian connection with
respect to g.
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A plane section n in TPM is called a ̂ -section if it is spanned by X and 4>X, where
X is a unit tangent vector orthogonal to £. The sectional curvature of a ^-section
is called a ^-sectional curvature. A Sasakian manifold with constant </>-sectional
curvature c is said to be a Sasakian space form and is denoted by M(c).

The curvature tensor of M(c) of a Sasakian space form M(c) is given by [1]

(1.1) R(X, Y)Z = Cj^-{gi.Y, Z)X - g(X, Z)Y] + ^

- ri(Y)r,(Z)X + g(X, Z)r,(Y)l- - g(Y, Z)r,(X)t;

Y, Z)<f>X - g(<(>X, Z)<fiY -2g((t>X, Y)<t>Z],

for any tangent vector fields X, Y, Z on M(c).
As examples of Sasakian space forms we mention K2m+1 and S2m+1, with standard

Sasakian structures (see [1]).
Let M be an n-dimensional submanifold of a Sasakian space form M(c) of constant

0-sectional curvature c We denote by K(n) the sectional curvature of M associated
with a plane section n C TPM, p 6 M, and V the Riemannian connection of M,
respectively. Also, let h be the second fundamental form and R the Riemann curvature
tensor of M. Then the equation of Gauss is given by

(1.2) R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, W), h(Y, Z))

-g(h(X,Z),h(Y,W)),

for any vectors X, Y,Z, W tangent to M.
Let p e M and [e{,... ,en] an orthonormal basis of the tangent space TPM. We

denote by H the mean curvature vector, that is

(1.3) ff()

We also set

(1-4) hr
v=g{h(el,e)),er)

and

(1-5) ll*ll2 =

For any tangent vector field X to A/, we put <j>X = PX + FX, where PX and FX
are the tangential and normal components of <pX, respectively. We write

(1-6)
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Suppose L is a &-plane section of TPM and X a unit vector in L. We choose an
orthonormal basis [e\,..., ek} of L such that e\ = X.

Define the Ricci curvature Rict of L at X by

(1.7) Rict(*) = *'i2+ * „ + •• • + *!*,

where AT,, denotes the sectional curvature of the 2-plane section spanned by eh e,. We
simply called such a curvature a k-Ricci curvature.

The scalar curvature r of the it-plane section L is given by

(1.8) r ( L ) =

For each integer k, 2 < k < n, the Riemannian invariant 0* on an n-dimensional
Riemannian manifold M is defined by

(1.9) @k(p) = T ^ - T inf Rict(X), p e Af,
AC — 1 t - ' ^

where L runs over all >fc-plane sections in TPM and Z runs over all unit vectors in L.
Recall that for a submanifold M in a Riemannian manifold, the relative null space

of M at a point p € M is defined by

(1.10) ^ = {X e rpM| A(X, JO = 0, for all 7 € TPM}.

2. Ricci curvature and squared mean curvature

Chen established a sharp relationship between the Ricci curvature and the squared
mean curvature for submanifolds in real space forms (see [4]). We prove similar
inequalities for certain submanifolds of a Sasakian space form.

A submanifold M normal to £ in a Sasakian space form M(c) is called a C-totally
real submanifold. It follows that 4> maps any tangent space of M into the normal
space, that is <p(TpM) C Tp

xM, for every p e M.

THEOREM 2.1. Let M be an n-dimensional C-totally real submanifold of a (2m +1)-
dimensional Sasakian space form M(c). Then:

(i) For each unit vector X € Tp M, we have

(2.1) Ric(X)<^{(n-lKc + 3) + n2\\H\\2}.

(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of
(2.1) if and only if X z J/p.
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(iii) The equality case of (2.1) holds identically for all unit tangent vectors at p if
and only if either p is a totally geodesic point or n = 2 and p is a totally umbilical
point.

PROOF. (i) Let X € 7̂  Af be a unit tangent vector X at p. We choose an orthonormal
basis ei,..., en, en+i,..., e2m+i = £, such that e{,..., en are tangent to M at p, with
e{=X.

Then, from the equation of Gauss, we have

(2.2)

From (2.2), we get

(2.3) n2||tf||2 = :

= 2T - n(n - 3)/4.

2m

r=n+l

2m
«i

r=n+l 2<i<j<n

r=n+l
2m 2m

E *^-»(—
r=n+l 2<i<j <n

From the equation of Gauss, we find

(2.4) * „ =
4 '

and consequently

(2.5)
2m

2<i<j<n r=n+l 2<i<j<n

Substituting (2.5) in (2.3), one gets

»2

(2.6) n2 c + 3

r=n+l y'=2

Therefore, n2||H||2/2 > 2Ric(X) - 2(n - l)(c + 3)/4 or equivalently (2.1).
(ii) Assume H(p) = 0. Equality holds in (2.1) if and only if

r e ! , . . . ,2m}.
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Then h[j = 0, for every./ e { 1 , . . , , n], r € {n + 1 , . . . , 2m], that is X e J/p.
(iii) The equality case of (2.1) holds for all unit tangent vectors at p if and only if

(2 8) K ^ 0 ' i£j, r<{n + l,...
\hn + --+Kn- 2h« = 0, » 6 {1 n}, r e [n + 1 2m}.

We distinguish two cases

(a) n ^ 2 , then p is a totally geodesic point;
(b) n = 2, it follows that p is a totally umbilical point.

The converse is trivial. •

In the following we will consider submanifolds M tangent to the Reeb vector field £.

THEOREM 2.2. Let M(c) be a (2tn + I)-dimensional Sasakian space form and M
an n-dimensional submanifold tangent to £. Then:

(i) For each unit vector X € TpM orthogonal to £, we have

(2.9) Ric(X) < {(n - l)(c + 3) + (3||PX||2 - 2)(c -

(ii) If H(p) = 0, f/ien a unit tangent vector X € TPM orthogonal to £ satisfies
the equality case of (2.9) if and only ifX € ^p.

(iii) 77ie equality case of (2.9) /JOWS identically for all unit tangent vectors orthog-
onal to f at p if and only ifp is a totally geodesic point.

PROOF. Let X e Tp M be a unit tangent vector X at p, orthogonal to £. We choose
an orthonormal basis « i , . . . , en =%, en+i,..., e2m+i such that ex,..., en are tangent
to M at p, with ex = X.

Then, from the equation of Gauss, we have

(2.10) n2||ff||2 = 2r + ||A||2 - n(n - l)(c + 3)/4 - (3||P||2 - 2n + 2)(c -

From (2.10), we get

2m+l

(2.11) n2\\H\\2 = 2r +
r=n+\

2m+l

£ >^-"(«-! ) —-(3||/>U2-2n+2) —

2m+l. 2m+l

r=n+l
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From the

(2.12)

equation

2m+l

r=n+l i<j

/"ill pi|2

of Gauss, we

2m+l

i r=n+l ;

F

2n 4

: find

E
><i<y<n

+ (3 | |P | | 2 -

Ion Mihai

2m+l

r=n+l 1

o C - 1

4

'.<i<j<n

- 2 n + 4)

c +
ii 4

T - l)(n-2)c +
2 4

c - 1

3

3

[6]

Substituting (2.12) in (2.11), as in the proof of Theorem 2.1 one gets

n2\\H\\2/2 > 2Ric(X) - 2(n - l)(c + 3)/4 - (3||PX||2 - 2)(c -

which is equivalent to (2.9).
The proofs of (ii) and (iii) are similar to their corresponding statements of Theo-

rem 2.1. In this case, since £ is tangent to M, it follows that a totally umbilical point
is totally geodesic. •

A submanifold M tangent to § is said to be invariant (respectively anti-invariant) if
<f>(TpM) c TpM, for every p e M (respectively <p(TpM) C Tp

LM, for every p € M).

COROLLARY 2.3. Let M be an n-dimensional invariant submanifold of a Sasakian
space form M(c). Then:

(i) For each unit vector X e TPM orthogonal to £, we have

(2.13) Ric(X) < {(« - l)(c + 3) + (c - l)/2}/4.

(ii) A unit tangent vector X € TPM orthogonal to £ satisfies the equality case
of (2.13) if and only ifX e oYp.

(iii) The equality case of (2.13) holds identically for all unit tangent vectors or-
thogonal to%atp if and only ifp is a totally geodesic point.

COROLLARY 2.4. Let M be an n-dimensional anti-invariant submanifold of a
Sasakian space form M(c). Then:

(i) For each unit vector X € TPM orthogonal to £, we have

(2.14) Ric(X) < {(n - l)(c + 3) - (c - 1) + n2\\H\\2}/4.

(ii) If H(p) = 0, then a unit tangent vector X e TpM orthogonal to £ satisfies
the equality case of (2.14) if and only ifX e <JYP.
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(iii) The equality case of (2.14) holds identically for all unit tangent vectors or-
thogonal to % at p if and only ifp is a totally geodesic point.

A submanifold M tangent to £ is called a contact CR-submanifold [8] if there exists

a pair of orthogonal differentiable distributions $ and S)L on M, such that:

(i) TM = & © @x © {£}, where {£} is the 1-dimensional distribution spanned

(ii) 9> is invariant by </>, that is <p(@p) C @p, for every p € M.
(iii) $>L is anti-invariant by <j>, that is <p(@p) C 7^XM, for every p e M.

COROLLARY 2.5. Let M be an n-dimensional contact CR-submanifold of a Sasa-
kian space form M(c). Then:

(i) For each unit vector X e @p, we have

Ric(X) <{(n- l)(e + 3) + (c -

(ii) For each unit vector X € S)^, we have

Ric(X) < {(n - l)(c + 3) - ( c - l)

3. Jt-Ricci curvature

In this section, we prove a relationship between the it-Ricci curvature and the
squared mean curvature for submanifolds in Sasakian space forms.

First, we state an inequality between the scalar curvature and the squared mean
curvature for C-totally real submanifolds.

THEOREM 3.1. Let M be an n-dimensional C-totally real submanifold of a Sasakian
space form M(c). Then we have

(3-D
n(n - 1) 4

PROOF. We choose an orthonormal basis {eu ..., en, en+1,..., e2m+i = £} atp such
that en+i is parallel to the mean curvature vector H(p) and e{, ...,en diagonalize the
shape operator An+l. Then the shape operators take the forms

/ a , 0 ••• 0 \

0 a 2 ••• 0

\0 0 ••• aj
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n

Ar = (h^j) , ij = 1 n; r = n + 2 2m, trace A, = E X = 0.

From (2.2), we get

(3.2) i=l r=n+2 i,7=l

On the other hand, since 0 < £ \ < ; (a, — a; )
2 = (n - 1) £ \ a2 - 2 £ ( < ; ataj, we

obtain

( n \ n n

x "* 1 x "* 2 i ^ x "* x ^ 2
2^a,l =2_^a] + 2^_iaiaj <n^a2,

which implies X]"=ia? ^ "ll^ll2- We have from (3.2)
(3.4) n2||tf II2 > 2r + n||//||2 - n(n - l)(c + 3)/4,

which is equivalent to (3.1). •

Using Theorem 3.1, we obtain the following.

THEOREM 3.2. Let M be an n-dimensional C-totally real submanifold M of a
Sasakian space form M(c). Then, for any integer k, 2 < k < n, and any point p e M,
we have

(3.5) \\H\\2(p)>Gk(j>)-(c + 3)/4.

PROOF. Let [ex, ...,en] be an orthonormal basis of TPM. Denote by L,-,...,-, the
it-plane section spanned by eh eik. It follows from (1.7) and (1.8) that

(3.6)

Combining (1.9) and (3.6), we find that x(p) > n(n - l)@t(p)/2, which together
with (3.1) gives us (3.5). D

Next, we obtain analogous estimates for submanifolds tangent to £.

THEOREM 3.3. Let M(c) be a Sasakian space form and M an n-dimensional sub-
manifold tangent to £. Then we have

( 3 . 7 )
n{n — 1) 4
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PROOF. We choose an orthonormal basis [eit ...,en = !•, en+i,..., e^+i] atp such

that en+i is parallel to the mean curvature vector H(p) and e{,.. .,en diagonalize the

shape operator An+i. Then the shape operators take the forms

a , 0 • • • • 0 \

0 a2 • • • 0

\ 0 0 • • • a j

= (hr
y), i,j = l , . . . , n , r = n + 2 , . . . , 2 m + l , t r a c e A r = V A « = 0 .

From (2.10), we get

2m+l n

r=n+2i,j=l

- ( 3 | | P | | 2 - 2 n

Since, by (3.4), we have £"=i a2 > n||//||2, it follows that

n2\\Hf > 2T + n||H||2 - n(n - - (3||P||2 -2n

which is equivalent to (3.7).

From (3.6) and (3.7), we obtain the following theorem.

•

THEOREM 3.4. Let M(c) be a Sasakian space form and M an n-dimensional sub-
manifold tangent to £. Then, for any integer k, 2 < k < n, and any point p 6 M, we
have

(3.8)
c + 3

4n(n - 1)

COROLLARY 3.5. Let M be an n-dimensional invariant submanifold of a Sasakian
space form M(c). Then, for any integer k, 2 < k < n, and any point p € M, we have

COROLLARY 3.6. Let M be an n-dimensional anti-invariant submanifold of a
Sasakian space form M(c). Then, for any integer k, 2 < k < n, and any point
p €M,we have \\H\\2(p) > Qk(p) - (c + 3)/4 + (c - l)/(2n).
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COROLLARY 3.7. Let M be an n-dimensional contact CR-submanifold of a Sasa-
kian space form M(c). Then, for any integer k, 2 < k < n, and any point p € M, we
have

(p) > &k(p)
4 2n(n — 1)

where 2/t = dim @.
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