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Abstract

Let A be a complex unital Banach algebra, let a be an element in it and let 0 < ε < 1. In this article,
we study the upper and lower hemicontinuity and joint continuity of the condition spectrum and its level
set maps in appropriate settings. We emphasize that the empty interior of the ε-level set of a condition
spectrum at a given (ε, a) plays a pivotal role in the continuity of the required maps at that point. Further,
uniform continuity of the condition spectrum map is obtained in the domain of normal matrices.
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1. Introduction

LetA be a complex Banach algebra with unity e and a ∈ A. We identify λ · e as λ for
any λ ∈ C. The spectrum of a is defined as

σ(a) = {λ ∈ C : (a − λ) is not invertible inA}.

It is well known that σ(a) is a compact subset of C. The complement of σ(a) is called
the resolvent set of a. Throughout this note, K(C) denotes the set of all compact
subsets of C equipped with the Hausdorff metric. If / and . are two elements in K(C),
then the Hausdorff distance between / and . is defined as

H(/, .) = max
{
sup
s∈/

d(s, .), sup
t∈.

d(t, /)
}
, (1.1)

where d(s, .) = inf{|s − µ| : µ ∈ .} and d(t, /) = inf{|t − λ| : λ ∈ /}.
Consider the function

S :A→ K(C) defined by S (a) = σ(a).
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[2] Continuity of a condition spectrum and its level sets 413

Investigating the continuity of S at given a ∈ A is a long-standing problem in
mathematics (see [4]). Newburgh showed that S is continuous at all a ∈ A if A is
commutative [9, Corollary of Theorem 4], and in the noncommutative case, if σ(a)
is totally disconnected, then S is continuous at a [9, Theorem 3]. He proved that
S is upper semicontinuous [9, Theorem 1] in any Banach algebra A. In [4], it is
observed that if the Banach algebra is a finite-dimensional modulo radical, then S is
continuous. Kakutani provided an element T in the Banach algebra B(`2) such that S
is not continuous at T (see [10, page 282]). For more details about the continuity of S
at a particular element, one can refer to the review article [4].

There are many generalized notions of the spectrum of an element, for example the
Ransford spectrum, the ε-pseudospectrum (where ε > 0) and the ε-condition spectrum
(where ε ∈ (0, 1)).

For a ∈ A and ε > 0, the ε-pseudospectrum (see [7, Definition 2.1]) is defined as

Λε(a)B
{
λ ∈ C : ‖(a − λ)−1‖ ≥

1
ε

}
with the convention that ‖(a − λ)−1‖ = ∞ if (a − λ) is not invertible. By [7, Theorem
2.3], Λε(a) is a nonempty compact subset of C. Consider the following three set valued
maps. For a ∈ A,

Pa : R+ → K(C) defined by Pa(ε) = Λε(a).

For ε ∈ R+,
Pε :A→ K(C) defined by Pε(a) = Λε(a)

and
P : R+ ×A→ K(C) defined by P(ε, a) = Λε(a),

where R+ = {x ∈ R : x > 0} and R+ × A is a metric space with respect to the metric
given by

d((ε1, a1), (ε2, a2)) = ‖a1 − a2‖ + |ε1 − ε2|. (1.2)

It is natural to ask the question: ‘Are the above three maps continuous at a given
point?’.

For given ε and a, the answer to these questions is closely related to the question

‘Does the set LPε(a)B
{
λ ∈ C : ‖(a − λ)−1‖ =

1
ε

}
have empty interior?’.

Globevnik in [5] showed that the interior of LPε(a) is empty in the unbounded
component of the resolvent set, and if X is a complex uniformly convex Banach space
(see [11, Definition 2.4]) and T ∈ B(X), then the interior of LPε(T ) is empty. In [11]
(Theorem 3.1), Shargorodsky proved that there exists an invertible bounded operator
T acting on a particular Banach space X such that the interior of LPε(T ) is nonempty.
This example says that pseudospectra functions may have jump discontinuities.

The research article [7] discusses the continuity of the maps Pa,Pε and P and
how this continuity is related to the interior property of LPε(a). For fixed a ∈ A,
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Theorem 4.1 in [7] says that it is necessary and sufficient that the interior of LPε(a) is
empty for the continuity of Pa. Theorem 4.3 in [7] proves that the maps Pε and P are
continuous by assuming the continuity of Pa for every a ∈ A.

In this article, we consider the correspondence between two topological spaces. The
following is the definition of a correspondence.

Definition 1.1 [1, Definition 17.1]. A correspondence φ from a set X to a set Y assigns
to each x in X a subset φ(x) of Y . We write the correspondence φ between X and Y as
φ : X � Y .

For ε ∈ (0, 1) and a ∈ A, the ε-condition spectrum is defined by Kulkarni and
Sukumar in [8] as the following set.

Definition 1.2 [8, Definition 2.5].

σε(a)B
{
λ ∈ C : ‖(a − λ)‖ ‖(a − λ)−1‖ ≥

1
ε

}
with the convention that ‖(a − λ)‖ ‖(a − λ)−1‖ =∞ if (a − λ) is not invertible.

Further, for ε ∈ (0, 1], the ε-level set of the condition spectrum of a ∈ A is defined
in [13] as the following set.

Definition 1.3 [13, Definition 1.3].

Lε(a)B
{
λ ∈ C : ‖(a − λ)‖ ‖(a − λ)−1‖ =

1
ε

}
.

By [8, Theorem 2.7(4)], σε(a) is a nonempty compact subset of C. For ε ∈ (0, 1),
since Lε(a) is a closed subset of σε(a), Lε(a) is a compact subset of C (see [13, Note 2.2
and Proposition 2.7]). The following correspondences arise naturally from the above
definitions. For a ∈ A,

Ca : (0, 1)� C defined by Ca(ε) = σε(a)

and
LCa : (0, 1)� C defined by LCa(ε) = Lε(a).

For ε ∈ (0, 1),
Cε :A� C defined by Cε(a) = σε(a)

and
LCε :A� C defined by LCε(a) = Lε(a).

Finally,
C : (0, 1) ×A� C defined by C(ε, a) = σε(a)

and
LC : (0, 1) ×A� C defined by LC(ε, a) = Lε(a),

where (0, 1) ×A is a metric space in which the metric is defined as in Equation (1.2).
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The main aim of this article is to study the continuity of the correspondences defined
above.

In this note, it is observed that the emptiness of the interior of level set Lε(a) at
given ε and a plays an important role in the continuity of the above correspondences.

Section 2 of this paper has the basic definitions and related results which are used
in the subsequent sections. Section 3 deals with the continuity of the correspondences
Ca,Cε and C. In general, it is shown that the correspondences Ca and Cε are upper
hemicontinuous (Theorems 3.1 and 3.4). Further, we observe that emptiness of the
interior of Lε(a) at given ε and a turns out to be a necessary and sufficient condition for
the lower hemicontinuity of Ca (Theorem 3.5). By assuming that Ca is continuous, we
conclude that Cε and C are continuous (Theorem 3.12). By proving a characterization
for normal matrices in terms of the ε-condition spectrum (Theorem 3.18), it is found
that Cε is uniformly continuous on the set of normal matrices (Theorem 3.19).

Section 4 is devoted to the continuity property of LCa,LCε and LC. We will
see that continuity of these correspondences relies entirely on the continuity of the
correspondences Ca, Cε and C. In general, LCa,LCε are upper hemicontinuous
(Theorem 4.3) but not lower hemicontinuous. An example is given to show that LCa

and LCε are not lower hemicontinuous (Example 4.4). If the interior of Lε(a) is empty
at a and ε, then we prove that the correspondence LC is jointly upper hemicontinuous
(Theorem 4.5).

In the rest of the paper, B(a, r) denotes the open ball in the complex plane with
center a and radius r > 0 and B(a, r) denotes the closure of B(a, r). We denote the set
of all nonscalar elements in a Banach algebraA byA\Ce.

2. Basic definitions and results

In this section, we present some basic definitions and results which are necessary
for the main results of this paper given in subsequent sections. Since this section
contains well established results, the reader who is familiar with the concepts of upper
and lower hemicontinuity of a correspondence, the maximum modulus theorem for
vector valued maps and condition spectra can omit it.

2.1. Hemicontinuity and its properties.

Definition 2.1 [1, page 558]. Let X be a topological space. A neighborhood of a subset
A of X is any subset B for which there is an open subset V satisfying A ⊆ V ⊆ B.

In this note, we prove the continuity of condition spectra and level sets using upper
and lower hemicontinuous concepts. The book [1] has a detailed study about the
continuity of a correspondence.

Definition 2.2 [1, Definition 17.2]. A correspondence φ : X � Y between topological
spaces is:

(1) upper hemicontinuous at the point x ∈ X if, for every neighborhood U of φ(x),
there is a neighborhood V of x such that z ∈ V implies that φ(z) ⊆ U;
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(2) lower hemicontinuous at x ∈ X if, for every open set U with U ∩ φ(x) , ∅, there
is a neighborhood V of x such that z ∈ V implies that φ(z) ∩ U , ∅; and

(3) continuous at x ∈ X if it is both upper and lower hemicontinuous at x.

The following is a characterization for the upper and lower hemicontinuity of a
correspondence at a point using its graph.

Definition 2.3 [1, Definition 17.9]. A correspondence φ : X � Y between two
topological spaces is closed or has closed graph, if its graph

Grφ = {(x, y) ∈ X × Y : y ∈ φ(x)}

is a closed subset of X × Y .

Theorem 2.4 [1, Theorem 17.20]. Assume that the topological space X is first
countable and that Y is metrizable. Then, for a correspondence φ : X � Y and a
point x ∈ X, the following statements are equivalent.

(1) The correspondence φ is upper hemicontinuous at x and φ(x) is compact.
(2) If a sequence {(xn, yn)} in the graph of φ satisfies xn → x, then the sequence {yn}

has a limit point in φ(x).

Theorem 2.5 [1, Theorem 17.21]. Assume that the topological space X is first
countable and that Y is metrizable. Then, for a correspondence φ : X � Y and a
point x ∈ X, the following statements are equivalent.

(1) The correspondence φ is lower hemicontinuous at x.
(2) If xn→ x, then, for y ∈ φ(x), there exists a subsequence {xnk } of {xn} and elements

yk ∈ φ(xnk ) for each k such that yk → y.

Excluding the extreme case ε = 1, the level sets are subsets of the condition
spectrum. Hence, in order to analyze the continuity of the level set of the condition
spectrum correspondences, we use the subcorrespondence notion.

Definition 2.6 [1, page 564]. Let φ, ψ : X � Y be correspondences between the
topological spaces X and Y . If ψ(x) ⊆ φ(x) for each x ∈ X, then we say that ψ is a
subcorrespondence of φ.

Theorem 2.7 explains that with some extra presumption the upper hemicontinuity
of the subcorrespondence will be inherited from the upper hemicontinuity of the
correspondence.

Theorem 2.7 [1, Corollary 17.18]. Let φ, ψ : X � Y be correspondences between
the topological spaces X and Y such that φ is compact valued and ψ is a closed
subcorrespondence of φ. If φ is upper hemicontinuous at x ∈ X, then ψ is also upper
hemicontinuous at x.
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Here is a theorem which bridges the continuity of the compact-valued
correspondence between the topological spaces X and Y and the continuity of a
function from X to K(Y), where K(Y) denotes the space of nonempty compact subsets
of Y endowed with its Hausdorff metric topology (defined as in Equation (1.1)).

Theorem 2.8 [1, Theorem 17.15]. Let φ : X � Y between topological spaces be a
nonempty compact-valued correspondence from a topological space into a metrizable
space. Then the function f : X → K(Y), defined by f (x) = φ(x), is continuous at a ∈ X
if and only if the correspondence φ is continuous at a ∈ X.

In some parts of our work we concentrate on the limiting nature of the ε-condition
spectrum sets as ε → 1. The following is the definition of limit superior, limit inferior
and limit concepts involved in a sequence of sets.

Definition 2.9 [2, Definition 1.1.1]. Let (Kn)n∈N be a sequence of subsets of a metric
space X. We say that the subset

lim sup
n→∞

Kn B
{
x ∈ X : lim inf

n→∞
d(x,Kn) = 0

}
is the upper limit of the sequence Kn and that the subset

lim inf
n→∞

Kn B
{
x ∈ X : lim

n→∞
d(x,Kn) = 0

}
is its lower limit. A subset K is said to be the limit or the set limit of the sequence Kn

if
K = lim sup

n→∞
Kn = lim inf

n→∞
Kn = : lim

n→∞
Kn.

Note 2.10 [2, page 18]. It is clear from the definition that

lim inf
n→∞

Kn ⊆ lim sup
n→∞

Kn.

Note 2.11 [2, page 18]. If the sequence {Kn} is decreasing, then limn→∞ Kn exists and

lim
n→∞

Kn =
⋂
n≥0

Kn,

where Kn denotes the closure of Kn.

2.2. Basic results. We now list some lemmas and a theorem from Banach algebra
and the vector valued maximum modulus principle, which will be applied frequently
in the following sections.

Lemma 2.12 [9, Lemma 5]. Let b ∈ A. Consider the sequence {bn} inA such that each
bn is invertible and there exists a positive number M such that ‖b−1

n ‖ < M for all n. If
bn → b, then b is invertible.
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Lemma 2.13 [13, Lemma 4.1]. Let Ω0 be a connected open subset of C, let Ω be an
open subset of Ω0 and let X be a complex Banach space. For i = 1, . . . , n, suppose we
have the following.

(1) ψi : Ω0 → X are analytic vector valued maps.
(2)

∏n
i=1 ‖ψi(λ)‖ ≤ M for all λ ∈ Ω.

(3)
∏n

i=1 ‖ψi(µ)‖ < M for some µ ∈ Ω0.

Then
∏n

i=1 ‖ψi(λ)‖ < M for all λ ∈ Ω.

Theorem 2.14 [8, Theorem 2.7(2)]. Let a ∈ A. If 0 < ε1 < ε2 < 1, then σε1 (a) ⊆ σε2 (a).

Theorem 2.15 [8, Theorem 2.9]. Let ε ∈ (0, 1). If a ∈ A, then

sup{|λ| : λ ∈ σε(a)} ≤
1 + ε

1 − ε
‖a‖.

3. Continuity of ε-condition spectrum

This section contains the results on continuity and uniform continuity of the
condition spectrum. We start this section by recalling the upper hemicontinuity of
the correspondence Cε .

Theorem 3.1 [8, Theorem 2.7(5)]. The correspondence Cε is upper hemicontinuous at
a ∈ A.

Next, we establish a lemma about the graph of C which plays a crucial role in all
our results.

Lemma 3.2. The graph of the correspondence C is closed. Further, the
correspondences Cε and Ca are closed for fixed ε ∈ (0, 1) and fixed a ∈ A.

Proof. Consider the sequence {(εn, an), λn} in Gr(C) and ((ε0, a), λ) ∈ ((0, 1) ×A) × C,
where ((0, 1) ×A) × C is a metric space with the metric

d(((ε1, a1), λ), ((ε2, a2), µ)) = ‖a1 − a2‖ + |ε1 − ε2| + |λ − µ|. (3.1)

Suppose ((εn, an), λn)→ ((ε0, a), λ) as n→∞. Then εn → ε0, an → a and λn → λ as
n→∞. We need to prove that λ ∈ σε0 (a). If λ ∈ σ(a), then λ ∈ σε0 (a). If λ < σ(a), for
1/‖(a − λ)−1‖, there exists n0 ∈ N such that

‖(an − λn) − (a − λ)‖ <
1

‖(a − λ)−1‖
for all n ≥ n0.

Hence (an − λn) is invertible for n ≥ n0. Consequently, there exists a subsequence
{ank − λnk } of {an − λn} such that (ank − λnk )

−1 → (a − λ)−1 as k→∞. Hence

‖(ank − λnk )‖ ‖(ank − λnk )
−1‖ ≥

1
εnk
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and

‖(ank − λnk )
−1‖ → ‖(a − λ)−1‖, ‖(ank − λnk )‖ → ‖(a − λ)‖,

1
εnk

→
1
ε0

as k→∞.

We have λ ∈ σε0 (a). If ε0 = 0, then it is easy to see that λ ∈ σ(a). If ε0 = 1 and (a − λ)
is invertible, then ‖a − λ‖ ‖(a − λ)−1‖ ≥ 1. In a similar fashion, we can prove that the
correspondences Cε and Ca are closed. �

The results about the upper, lower hemicontinuity and continuity of Ca for fixed
a ∈ A \Ce at given ε ∈ (0, 1) begin from the forthcoming theorem. Before that, we
draw attention to the following note.

Note 3.3. The continuity of C for any scalar element a ∈ A and ε ∈ (0, 1) follows from
Theorem 3.9. From this, the upper and lower hemicontinuity of Ca and Cε at a are also
assured. For this reason, we prove the continuity of Ca only for nonscalar a ∈ A.

Theorem 3.4. Let a ∈ A\Ce. If ε0 ∈ (0, 1), then Ca is upper hemicontinuous at ε0.

Proof. Let εn ∈ (0, 1) and λn ∈ σεn (a) such that εn → ε0. If there exists a subsequence
{nk} such that εnk < ε0, then λnk ∈ σε0 (a). Since σε0 (a) is compact, λn has a limit point
λ ∈ σε0 (a). By Theorem 2.4, Ca is upper hemicontinuous at ε0.

Suppose there are only finitely many εn < ε0. Then there exists a decreasing
subsequence {εnk } with εnk > ε0. Fix n1; clearly, λnk ∈ σεn1

(a) for all nk ≥ n1. Since
σεn1

(a) is compact, λnk has a limit point λ in σεn1
(a). We prove that λ ∈ σε0 (a). It is

clear that the sequence {(εnk , λnk )} from graph of Ca and (εnk , λnk )→ (ε0, λ) as k→∞.
Since the graph of Ca is closed (Lemma 3.2), we have (ε0, λ) ∈ Gr(Ca). This implies
that λ ∈ σε0 (a). By Theorem 2.4, Ca is upper hemicontinuous at ε0. �

Unlike the upper hemicontinuity, the lower hemicontinuity of Ca for a ∈ A and at
given ε0 needs an extra assumption on the interior of Lε0 (a).

Theorem 3.5. Let a ∈ A \Ce. The correspondence Ca is lower hemicontinuous at
ε0 ∈ (0, 1) if and only if the interior of Lε0 (a) is empty.

Proof. Assume that the interior of Lε0 (a) is empty. Let V be a nonempty open subset
in C such that σε0 (a) ∩ V , ∅. For any ε > ε0, by Theorem 2.14, σε(a) ∩ V , ∅.

If there exists ε ∈ (0, 1) with ε < ε0 such that σε(a) ∩ V , ∅, then choose δ =

(ε0 − ε)/2. By Theorem 2.14, σε(a) ∩ V , ∅ for all ε ∈ (ε0 − δ, ε0 + δ), which yields
the lower hemicontinuity of Ca at ε0.

Suppose that, for every ε < ε0,

σε(a) ∩ V = ∅. (3.2)

Now, for any µ ∈ σε0 (a) ∩ V ,

1
ε0
≤ ‖a − µ‖ ‖(a − µ)−1‖ <

1
ε0 −

1
m

for all m >
1
ε0
.
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This gives µ ∈ Lε0 (a). There exists r > 0 such that B(µ, r) ⊆ V . By Equation (3.2),

‖a − λ‖ ‖(a − λ)−1‖ ≤
1
ε0

for all λ ∈ B(µ, r).

Since the interior of Lε0 (a) is empty, there exists λ0 ∈ B(µ, r) such that

‖a − λ0‖ ‖(a − λ0)−1‖ <
1
ε0
.

Take Ω = Ω0 = B(µ, r) and apply Lemma 2.13 to the analytic vector valued maps ψ1, ψ2

from Ω0 toA defined by ψ1(λ) = (a − λ) and ψ2(λ) = (a − λ)−1. This gives µ < Lε0 (a),
which is a contradiction.

Conversely, we assume that Ca is lower hemicontinuous at ε0. We prove that
the interior of Lε0 (a) is empty. Suppose that if the interior of Lε0 (a) is nonempty,
then there exists µ ∈ Lε0 (a) and r > 0 such that B(µ, r) ( Lε0 (a) ⊆ σε0 (a). Clearly,
B(µ, r) ∩ σε(a) = ∅ for all 0 < ε < ε0. This is in contradiction to Ca being lower
hemicontinuous at ε0. �

Theorem 3.6. Let a ∈ A\Ce. The correspondence Ca is continuous at ε0 ∈ (0,1) if and
only if the interior of Lε0 (a) is empty.

Proof. This is immediate from Theorems 3.4 and 3.5. �

Corollary 3.7. Let a ∈ A\Ce. The map Ca : (0, 1)→ K(C), defined by Ca(ε) = σε(a),
is continuous at ε0 ∈ (0, 1) if and only if the interior of Lε0 (a) is empty.

Proof. This is immediate from Theorems 3.6 and 2.8. �

Remark 3.8. The central theme of [13] is to identify and classify the Banach algebras
A in which the interior of Lε(a) is empty for any a ∈ A and ε ∈ (0, 1). IfA is a finite-
dimensional Banach algebra or A is a Banach algebra of continuous linear operators
defined on the Banach space X, where X or X∗(dual space) is a complex uniformly
convex Banach space, then the interior of Lε(a) is empty for ε ∈ (0, 1) and for all
a ∈ A. Because of these facts, the correspondence Ca is continuous in those Banach
algebrasA, for elements a ∈ A\Ce.

Theorem 3.9. The function C : (0, 1) × A → K(C), defined by C(ε, b) = σε(b), is
continuous at (ε0, λ) ∈ (0, 1) ×A, where λ ∈ C.

Proof. Consider a sequence {(εn, an)}, where an ∈ A and εn ∈ (0, 1) such that (εn, an)→
(ε0, λ) as n → ∞. This implies that an → λ, εn → ε as n → ∞. We claim that
σεn (an)→ σε(λ) as n→ ∞ in the Hausdroff metric on K(C). We first prove this
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theorem for λ = 0. If λ = 0, then σε(λ) = {0} for all ε ∈ (0, 1). We observe that

H(σεn (an), σε(λ)) = H(σεn (an), {0})

= max
{

sup
λ∈σεn (an)

d(λ, {0}), sup
µ∈{0}

d(µ, σεn (an))
}

= max
{

sup
λ∈σεn (an)

inf |λ|, sup
µ∈{0}

inf
λ∈σεn

|µ − λ|
}

= sup{|µ| : µ ∈ σεn (an)}

≤
1 + εn

1 − εn
‖an‖ [by Theorem 2.15].

Since ‖an‖ → 0 and the sequence {1 + εn/1 − εn} is bounded,

H(σεn (an), σε(λ))→ 0 as n→∞.

Suppose λ , 0. Then we consider the sequence, bn = an − λ. By our assumption,
bn → 0, and by the above argument the proof of this theorem follows. �

Corollary 3.10. Let λ ∈ C and ε0 ∈ (0, 1). The correspondence C is continuous at
(ε0, λ) ∈ (0, 1) ×A. Furthermore, Cλ is continuous at ε0.

Proof. This follows from Theorems 3.9 and 2.8. �

The next lemma presents an upper bound for the perturbed condition spectrum. This
lemma plays an essential role in proving the joint continuity of condition spectrum
correspondence. Proof of this lemma is similar to [7, proof of Theorem 2.3(7)].

Lemma 3.11. Let a ∈ A \Ce with η B inf{‖µ − a‖ : µ ∈ C} and ε ∈ (0, 1). Let n0 ∈ N
such that n0η ≥ 2. If b ∈ A such that ‖b‖ < min{(1 − ε/n0), εη}, then

σε(a + b) ⊆ σε+n0‖b‖(a).

Proof. If b = 0, then the result is immediate. Assume that b , 0. Suppose λ <
σε+n0‖b‖(a). Then ‖a − λ‖ ‖(a − λ)−1‖ < 1/ε + n0‖b‖. It follows that

‖(a − λ)−1‖ <
1

(ε + n0‖b‖)‖a − λ‖
. (3.3)

By the definition of η and since n0η ≥ 2, we observe that

‖(a + b − λ) − (a − λ)‖ = ‖b‖ < n0η‖b‖ < (ε + n0‖b‖)η ≤ (ε + n0‖b‖)‖a − λ‖.

By Equation (3.3), ‖(a + b − λ) − (a − λ)‖ < 1/‖(a − λ)−1‖. Hence, λ < σ(a + b). Next

‖(a + b − λ)−1 − (a − λ)−1‖ = ‖(a + b − λ)−1((a − λ) − (a + b − λ))(a − λ)−1‖

≤ ‖(a + b − λ)−1‖ ‖b‖ ‖(a − λ)−1‖.

By Equation (3.3),

‖(a + b − λ)−1 − (a − λ)−1‖ <
‖(a + b − λ)−1‖ ‖b‖
(ε + n0‖b‖)‖a − λ‖

.
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Now,

‖(a + b − λ)−1‖ ‖(a + b − λ)‖ = ‖(a + b − λ)‖ ‖(a + b − λ)−1 − (a − λ)−1 + (a − λ)−1‖

< ‖(a + b − λ)‖
‖(a + b − λ)−1‖ ‖b‖
(ε + n0‖b‖)‖a − λ‖

+
‖(a + b − λ)‖

(ε + n0‖b‖)‖a − λ‖
.

Moving the first part on the right-hand side of the inequality to the left and combining,
it follows that

‖(a + b − λ)−1‖ ‖(a + b − λ)‖ <
‖(a + b − λ)‖

(ε + n0‖b‖)‖a − λ‖ − ‖b‖
. (3.4)

Hence

(ε + n0‖b‖)‖a − λ‖ − ‖b‖ = ε‖a − λ‖ + n0‖b‖ ‖a − λ‖ − ‖b‖
≥ ε‖a − λ‖ + n0η‖b‖ − ‖b‖(∵ ‖a − λ‖ ≥ η)
= ε‖a − λ‖ + (n0η − 1)‖b‖
≥ ε‖a − λ‖ + ‖b‖(∵ n0η ≥ 2)
> ε‖a − λ‖ + ε‖b‖(∵ 1 > ε)
> ε‖a + b − λ‖.

Substituting this into Equation (3.4) implies that λ < σε(a + b). �

Now, our goal is to show that C and Cε are continuous by assuming that Ca is
continuous for every a ∈ A. But here we demonstrate the proof of continuity of
C and Cε (which are defined in Theorem 3.12) by presuming that Ca (defined in
Theorem 3.12) is continuous for all a ∈ A. The main idea of the proof can be found in
[7, Theorem 4.3].

Theorem 3.12. Suppose that the function

Ca : (0, 1)→ K(C) defined by Ca(ε) = σε(a)

is continuous at ε0 for every a ∈ A. Then the function

Cε0 :A→ K(C) defined by Cε0 (a) = σε0 (a)

is continuous at a with respect to the norm onA, and the function

C : (0, 1) ×A→ K(C) defined by C(ε, a) = σε(a)

is continuous at (ε0, a) with respect to the metric defined by Equation (1.2).

Proof. Suppose a = λ for some λ ∈ C. Then the conclusion follows from Theorem 3.9.
Assume that a ∈ A\Ce and ε0 ∈ (0, 1). For r > 0, consider the open ball

B(σε0 (a), r)B {D ∈ K(C) : H(D, σε0 (a)) < r}.

Since Ca is continuous at ε0, there exists δ ∈ (0, 1) with ε0 + δ < 1 such that

σε(a) ∈ B
(
σε0 (a),

r
2

)
for all ε ∈ (ε0 − δ, ε0 + δ). (3.5)
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Take ηB inf{‖µ − a‖ : µ ∈ C}. Note that η > 0. For any

b ∈ B
(
a,
η

2

)
B

{
b ∈ A : ‖a − b‖ <

η

2

}
and λ ∈ C, ‖b − λ‖ ≥ η/2. Hence infb∈B(a,(η/2)){inf{‖b − λ‖ : λ ∈ C}} ≥ η/2. Let n0 ∈ N
such that n0(η/2) > 2. Choose ν ∈ E such that ν < min{ε0/4n0, δ/4n0,1 − ε0/4n0, ε0η/4}.
We claim that if (ε,b) ∈ B((ε0,a), ν))B {(ε,b) ∈ (0,1) ×A : ‖a − b‖ + |ε0 − ε| < ν}, then
σε(b) ∈ B(σε0 (a), r). Let (ε, b) ∈ B((ε0, a), ν)). We calculate H(σε0 (a), σε(b)). Take
c = b − a. We observe that

ε0 − ν − n0‖c‖ ≥
ε0

2

(
1 −

1
2n0

)
> 0 (3.6)

ε0 + ν + n0‖c‖ ≤ ε0 +
1 − ε0

4n0
+ n0

1 − ε0

4n0
< 1 (3.7)

ε0 − ν + ‖c‖ < ε0 + (ε − ε0) = ε < 1 (3.8)

and
ε + ‖c‖ < ε + ν + (ε0 − ε) < ε0 + ν < 1. (3.9)

By Equations (3.6) and (3.7), the sets σε0−ν−n0‖c‖(a) and σε0+ν+n0‖c‖(a) are well defined.
Now,

σε0−ν−n0‖c‖(a) = σε0−ν−n0‖c‖(b − c) [by assumption c = b − a]
⊆ σε0−ν(b) [by Lemma 3.11]
⊆ σε0−ν+‖c‖(b) [by Theorem 2.14]
⊆ σε(b) [by Equation (3.8) and by Theorem 2.14]
= σε(a + c) [by assumption c = b − a]
⊆ σε+n0‖c‖(a) [by Lemma 3.11]
⊆ σε0+ν+n0‖c‖(a) [by Equation (3.9) and by Theorem 2.14].

Finally, from the above calculation,

σε0−ν−n0‖c‖(a) ⊆ σε(b) ⊆ σε0+ν+n0‖c‖(a).

Now,

H(σε0 (a), σε(b)) = max
{

sup
λ∈σε0 (a)

d(λ, σε(b)), sup
µ∈σε (b)

d(µ, σε0 (a))
}

≤ max
{

sup
λ∈σε0 (a)

d(λ, σε0−ν−n0‖c‖(a)), sup
µ∈σε0+ν+n0‖c‖(a)

d(µ, σε0 (a))
}

≤ max{H(σε0 (a), σε0−ν−n0‖c‖(a)),H(σε0+ν+n0‖c‖(a), σε0 (a))}. (3.10)

We observe that

|ε0 − (ε0 − ν − n0‖c‖)| = ν + n0‖c‖ < (n0 + 1)ν < (2n0)ν < (2n0)
δ

4n0
=
δ

2
.
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Similarly, |ε0 − (ε0 + ν + n0‖c‖)| = ν + n0‖c‖ < δ/2. By Equation (3.5),

H(σε0 (a), σε0−ν−n0‖c‖(a)) ≤
r
2

and H(σε0 (a), σε0+ν+n0‖c‖(a)) ≤
r
2
.

By Equation (3.10), H(σε0 (a), σε(b)) < r. This proves the theorem. �

Corollary 3.13. Suppose Ca is continuous at ε0 ∈ (0, 1). Then Cε0 is continuous
at a ∈ A with respect to the norm on A. Further, the correspondence C is jointly
continuous at (ε0, a).

Proof. This theorem follows from Theorems 3.12 and 2.8. �

Remark 3.14. For a fixed a ∈ A, the assumption that Ca and Ca are continuous at
ε0 ∈ (0, 1) can be replaced by the assumption that the interior of Lε0 (a) is empty for
given ε0 and a. After this replacement, the proof of Theorem 3.12 and Corollary 3.13
follows from Corollary 3.7 and Theorems 3.6 and 3.9.

The following lemma gives a fine picture about the growth of the condition
spectrum when the value of ε approaches 1. With the aid of this lemma, we look
at the limiting behaviour of σε(a) as ε → 1.

Lemma 3.15. Let a ∈ A\Ce. If K ( C is compact with K ∩ L1(a) = ∅, then there exists
an ε ∈ (0, 1) such that K ( σε(a).

Proof. Take λ ∈ K. We first prove that there exists δ′ ∈ (0, 1) such that λ ∈ σδ′(a). If
λ ∈ σ(a), then λ ∈ σδ′(a) for all 0 < δ′ < 1. If λ < σ(a), then

‖a − λ‖ ‖(a − λ)−1‖ = M

for some M > 1 (since K ∩ L1(a) = ∅). Take δ′ = 1/M. It follows that λ ∈ σ1/M(a).
Hence, for any 0 < δ′ < δ < 1,

‖a − λ‖ ‖(a − λ)−1‖ >
1
δ
.

Hence λ is an interior point of σδ(a). There exists an rλ > 0 such that B(λ, rλ) ( σδ(a).
Thus the collection {B(λ, rλ) : λ ∈ K} is an open cover for K. Since K is compact,
we have K ⊆

⋃n
i=1 B(λi, rλi ). Since each B(λi, rλi ) ( σδi (a), by taking ε = max{δi : i =

1 to n}, we get K ( σε(a). �

Note 3.16. For any fixed a ∈ A, by Theorem 2.14 and Note 2.11, we have
limε→0 σε(a) = σ(a).

Consider a ∈ A\Ce. If σ(a) has either one element or has more than two elements,
then [13, Theorems 3.5 and 3.8] tell us that L1(a) has at most one element, and if
σ(a) = {λ1, λ2} for some complex numbers λ1 and λ2, then, by [13, Lemma 3.4], the
elements of L1(a) belongs to the perpendicular bisector of the line segment joining
λ1, λ2. These facts imply that L1(a) has empty interior. Thus, by Theorem 3.17, we
obtain that σε(a) grows to C as ε → 1.
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Theorem 3.17. Let a ∈ A \ Ce. Consider the sequence {εn}, where εn ∈ (0, 1). If
limn→∞ εn = 1, then limn→∞ σεn (a) = C.

Proof. Let λ ∈ C \ L1(a). There exists a compact set K such that λ ∈ K and K ∩ L1(a) =

∅. By Lemma 3.15, K ⊂ σε(a) for some ε ∈ (0, 1). Since limn→∞ εn = 1,

d(λ, σεn (a)) = 0 for all n ≥ n0

for some n0 ∈ N. Hence λ ∈ lim infn→∞ σεn (a).
If λ ∈ L1(a), then, by Lemma 3.15, there exists a sequence {λk} and a subsequence

{εnk } of {εn} such that λk ∈ σεnk
(a) and |λ − λk| < 1/nk. From this, it follows that

limk→∞ d(λ, σεnk
(a)) = 0. For given δ > 0, there exists nk > 0 such that 1/nk < δ. By

Theorem 2.14, for any n which satisfies nk ≤ n such that d(λ, σεn (a)) ≤ d(λ, σεnk
(a)) <

1/nk < δ, we have λ ∈ lim infn→∞ σεn (a). The proof of the theorem follows from
Definition 2.9 and Note 2.10. �

Next, we noticed that the condition spectrum map defined on the set of all normal
matrices enjoys uniform continuity for a fixed ε ∈ (0, 1). In this regard, Theorem 3.18
identifies the condition spectrum set for a given normal matrix. Theorem 3.19 deals
with uniform continuity.

In the following theorem, Mn(C) denotes the Banach algebra of the set of all n × n
matrices. If A ∈ Mn(C), then the norm is defined as ‖A‖ = smax(A), where smax(A)
denotes the maximum singular value of A (see [6, Example 5.6.6]).

Theorem 3.18. Suppose A is normal and σ(A) = {λ1, λ2, . . . , λk}. Then

σε(A) =
⋃
i, j∈k

B
(λi − ε

2λ j

1 − ε2 ,
ε

1 − ε2 |λi − λ j|

)
, (3.11)

where k = {1, 2, . . . , k}.

Proof. Assume that A is normal and σ(A) = {λ1, λ2, . . . , λk}. Then A = U∗DU, where
D = diag{λ1, λ2, . . . , λk}. We observe that

λ ∈ σε(A) \σ(A)⇔ ‖(A − λ)‖ ‖(A − λ)−1‖ ≥
1
ε

⇔
maxi∈k |λ − λi|

min j∈k |λ − λ j|
≥

1
ε

⇔
|λ − λm|

|λ − λl|
≥

1
ε

(for some l,m ∈ k).

Consider the inequality
ε|λ − λm| ≥ |λ − λl|.

Apply λ = x + iy, λm = ar + iai and λl = br + ibi and square both sides. This gives

ε2[(x − ar)2 + (y − ai)2] ≥ (x − br)2 + (y − bi)2.
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Rearrange and expand to get

(1 − ε2)x2 + (1 − ε2)y2 − 2(br − ε
2ar)x − 2(bi − ε

2ai)y + |λl|
2 − ε2|λm|

2 ≤ 0.

Now complete the square

(1 − ε2)
(
x −

br − ε
2ar

1 − ε2

)2
+ (1 − ε2)

(
y −

bi − ε
2ai

1 − ε2

)2

≤
(br − ε

2ar)2 + (bi − ε
2ai)2

(1 − ε2)
− (|λl|

2 − ε2|λm|
2)

=
|λl|

2 + ε4|λm|
2 − 2ε2(brar + biai) − (|λl|

2 − ε2|λm|
2)(1 − ε2)

(1 − ε2)

=
ε2(|λm|

2 + |λl|
2) − 2ε2(arbr + aibi)
(1 − ε2)

=
ε2

(1 − ε2)
|λm − λl|

2.

From here, ∣∣∣∣∣λ − λl − ε
2λm

1 − ε2

∣∣∣∣∣ ≤ ε

1 − ε2 |λm − λl|.

Hence, λ ∈ σε(A) \σ(A) if and only if

λ ∈
⋃

i, j∈k,i, j

B
(λi − ε

2λ j

1 − ε2 ,
ε

1 − ε2 |λi − λ j|

)
.

Since σε(A) has no isolated points,

σε(A) =
⋃
i, j∈k

B
(λi − ε

2λ j

1 − ε2 ,
ε

1 − ε2 |λi − λ j|

)
. �

Theorem 3.19. Let A and B are two normal matrices. If ε ∈ (0, 1), then

H(σε(A), σε(B)) ≤
1 + ε

1 − ε
‖A − B‖.

Proof. By [3, Theorem 17, Lecture 18], it is known that H(σ(A), σ(B)) ≤ ‖A − B‖. Let
µ ∈ σε(A). Since A and B are normal, by Equation (3.11), µ = (µi − ε

2µ j/1 − ε2) + δ1
for some δ1 ≤ (ε/1 − ε2)|µi − µ j| for some µi, µ j ∈ σ(A). For any λk, λl ∈ σ(B), consider
the scalar

λ =
λk − ε

2λl

1 − ε2 +
ε

1 − ε2 |λk − λl|.

Clearly, λ ∈ σε(B) and

|λ − µ| ≤

∣∣∣∣∣ (µi − λk) + ε2(λl − µ j)
1 − ε2

∣∣∣∣∣ +
ε

1 − ε2 (|µi − λk| + |µ j − λl|)

=
1 + ε

1 − ε
‖A − B‖ (By Theorem 17, Lecture 18 in [3]). �

Question 3.20. Can an analog of Theorem 3.19 be obtained for normal elements of
any C∗ algebra?
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4. Continuity of level sets of ε-condition spectrum

This section presents results for the continuity of level sets of ε-condition spectra
and the necessity of an empty interior for level sets in continuity. The upper
hemicontinuity of the level set correspondence LCa follows in a similar way to the
upper hemicontinuity of the condition spectrum correspondence Ca without needing
any further assumptions.

Note that, if a = λ for some λ ∈ C, then Lε(a) = ∅ for any ε ∈ (0, 1). Thus it is trivial
that the correspondence LCa,LCε and LC are continuous at a and ε ∈ (0, 1). For this
reason, we concentrate on the nonscalar elements inA only.

Lemma 4.1. The graph of the correspondence LC is closed. Further, the
correspondences LCa and LCε are closed for fixed a ∈ A and ε ∈ (0, 1).

Proof. Consider the sequence {(εn, an), λn} in Gr(LC) and ((ε0, a), λ) ∈ ((0, 1) × A) ×
C. Here ((0, 1) × A) × C is a metric space whose metric is defined in Equation (3.1).
Suppose ((εn, an), λn)→ ((ε0, a), λ) as n→∞. Then εn → ε0, an → a and λn → λ as
n→∞. Clearly,

‖(an − λn)−1‖ =
1

εn‖(an − λn)‖

and εn‖(an − λn)‖ → ε0‖a − λ‖. If we take bn = (ank − λnk ) and b = a − λ, then, by
Lemma 2.12, a − λ is invertible. Since ‖(an − λn)−1‖ → ‖(a − λ)−1‖, λ ∈ Lε0 (a). Hence,
the graph of LC is closed. Similarly, we can prove that LCa and LCε are closed. �

Remark 4.2. For ε ∈ (0, 1) and a ∈ A \ Ce, it is evident that Lε(a) ( σε(a). By
Lemma 4.1, we understand that the correspondences LCa,LCε and LC are closed
subcorrespondences of Ca,Cε and C, respectively.

Theorem 4.3. Let a ∈ A \ Ce and ε0 ∈ (0, 1). The correspondence LCa is upper
hemicontinuous at ε0 and LCε0 is upper hemicontinuous at a.

Proof. This follows from Remark 4.2 and Theorems 2.7, 3.4 and 3.1. �

In general, the correspondence LCa and LCε need not be lower hemicontinuous
even though the interior of Lε(a) is empty for given a and ε. By looking at a particular
Banach algebra A and an appropriate element a ∈ A, we furnish an example to show
that the correspondence ε 7→ Lε(a) is not lower hemicontinuous at some ε0 and that,
for a fixed ε0 ∈ (0, 1), the correspondence b 7→ Lε(b) is not lower hemicontinuous at a.
The following example has been found with the help of one of the famous pioneering
illustrations that were constructed by Shargorodsky in [12]. This example shows that
the level set of a pseudospectrum need not be empty.

Example 4.4. Consider the Banach space `∞(Z) with norm

‖x‖∗ = |x0| + sup
n,0
|xn| where x = (. . . , x−2, x−1, x0 , x1, x2, . . .),
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where the box represents the zeroth coordinate of an element in `∞(Z). For M > 2,
consider an operator A ∈ B(`∞(Z)) such that

A(. . . , x−2, x−1, x0 , x1, x2, . . .) =

(
. . . , x−2, x−1, x0,

x1

M
, x2, x3, . . .

)
.

We first show that the interior of Lε0 (A) is empty for ε0 = 1/M + 1. It is proved in
[12, Theorem 3.1] that

‖(A − λ)−1‖ = M for |λ| < min
{ 1

M
,

1
2
−

1
M

}
. (4.1)

Take r = min{(1/M), (1/2) − (1/M)}. From [7, Example 4.9], we have σ(A) = {z ∈ C :
|z| = 1} and

‖(A − λ)−1‖ ≥ M for |λ| < 1. (4.2)

It is easy to see, with unit vectors y = (yk)∞k=−∞
such that

yk =

1 for k = 1, 2,
0 otherwise,

and z = (zk)∞k=−∞
such that

zk =


1 for k = 1, 4,
−λ for k = 3,
0 otherwise,

where 0 < |λ| < 1,that

‖A‖ =
1
M

+ 1 and ‖A − λ‖ ≥
1
M

+ 1 + |λ|2 for 0 < |λ| < 1. (4.3)

By Equations (4.1) and (4.3), we get ‖A‖ ‖A−1‖ = M + 1 and, by Equations (4.2)
and (4.3),

‖A − λ‖ ‖(A − λ)−1‖ ≥ M + 1 + M|λ|2 > M + 1 for 0 < |λ| < 1. (4.4)

Thus B(0, 1) ∩ Lε0 (A) = {0}. Hence the interior of Lε0 (A) is empty in the set B(0, 1).
By [13, Corollary 4.3], the interior of Lε0 (A) is empty in the set {λ ∈ C : |λ| > 1}.

Now, we show that the correspondence ε 7→ Lε(A) is not lower hemicontinuous at
ε0.

For any ε > 1/M + 1, it is clear that Lε(A) ∩ B(0, r) = ∅ but Lε0 (A) ∩ B(0, r) , ∅.
Hence the correspondence LCA is not lower hemicontinuous at ε0.

Next, we prove the the correspondence LCε0 is not lower hemicontinuous at A.
Let δ > 0 and consider the set {S ∈ B(`∞(Z)) : ‖A − S ‖ < δ}. Choose N ∈ N such

that N > M > 2 and (1/M) − (1/N) < δ. Take B ∈ B(`∞(Z)) such that

B(. . . , x−2, x−1, x0 , x1, x2, . . .) =

(
. . . , x−2, x−1, x0,

x1

N
, x2, x3, . . .

)
.
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By [7, Example 4.9], σ(B) = {z ∈ C : |z| = 1}. Applying A = B and M = N in Equations
(4.1)–(4.4) gives

‖(B − λ)−1‖ = N for |λ| < min
{ 1

N
,

1
2
−

1
N

}
and

‖B − λ‖ ‖(B − λ)−1‖ ≥ N + 1 > M + 1 for 0 ≤ |λ| < 1.

Thus Lε0 (B) ∩ B(0, r) = ∅ but ‖A − B‖ < δ and Lε0 (A) ∩ B(0, r) , ∅. Hence the
correspondence LCε0 is not lower hemicontinuous at A.

Next, we pay attention to the continuity of correspondence LC. We show that an
empty interior of Lε(a) is a sufficient condition for the continuity.

Theorem 4.5. Let (ε0, a) in (0, 1) × A. If the interior of Lε0 (a) is empty, then LC is
jointly upper hemicontinuous at (ε0, a).

Proof. It is assumed that the interior of Lε0 (a) is empty. By Remark 3.14, C is jointly
continuous. In particular, C is jointly upper hemicontinuous at (ε0, a). Since LC is the
closed subcorrespondence of C, it follows, by Theorem 2.7, that LC is jointly upper
hemicontinuous at (ε0, a). �
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