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ABSTRACT. Ice shelves and ice tongues are dynamically coupled to their cavities. Here we compute
normal modes (eigenfrequencies and eigenfunctions) of this coupled system using a thin-plate
approximation for the ice shelf and potential water flow in the ice-shelf cavity. Our results show
that normal modes depend not only on the ice-shelf parameters (length, thickness, Young’s modulus,
etc.) but also on the cavity depth. The dominant eigenmodes are higher for ice shelves floating over
deeper cavities; they are also higher for shorter ice shelves and ice tongues (<50 km long). The high-
eigenfrequency eigenmodes are primarily controlled by the ice flexure and have similar periods to sea
swell. These results suggest that both long ocean waves with periods of 100–400 s and shorter sea swell
with periods of 10–20 s can have strong impacts on relatively short ice shelves and ice tongues by exciting
oscillations with their eigenfrequencies, which can lead to iceberg calving and, in some circumstances,
ice-shelf disintegration.

INTRODUCTION
A growing body of observations of the ocean wave effects
on ice shelves and ice tongues (e.g. MacAyeal and others,
2006; Cathles and others, 2009; Bromirski and others, 2010;
Brunt and others, 2011) has revived interest in various
aspects of ice-shelf/wave interaction. In the late 1970s/early
1980s Holdsworth and Glynn (1978, 1981) proposed that
iceberg calving from ice tongues can be a result of ice-shelf
vibration excited by ocean swell. Such vibration, especially
with frequencies close to those of the ice-shelf normal
modes (eigenfrequencies), can persist and cause significant
flexural stresses, leading to ice-shelf fracturing and calving.
Considering the effects of monochromatic long waves on the
ice stress regime, Sergienko (2010) demonstrated that wave-
induced flexural stresses are sufficiently large that, when
superimposed on other existing stresses, they can lead to
fracture initiation and development. Holdsworth and Glynn
(1978, 1981) used numerical models to compute normal
modes of a two-dimensional (plan view) ice tongue floating
on inviscid water. In this study, similar to many other studies
of ice-shelf flexure (e.g. Reeh, 1968; Vaughan, 1995), a
one-dimensional ice shelf (or ice tongue) is considered, and
analytical expressions for their normal modes are derived.

GEOMETRY AND MODELS
We consider an ice shelf or ice tongue with constant
thickness, H, floating on inviscid sea water of depth Hc
(Fig. 1). It is assumed for the purpose of computing normal
modes that there are no variations in the transverse direction,
i.e. the plane-strain approximation is adopted. As in previous
studies, floating ice is treated as elastic material with a
constitutive relation described by Hooke’s law. This choice is
justified by the fact that the anticipated period of oscillations
(seconds to hours) is short compared with the Maxwell time,
which is defined to be the characteristic time required to
create significant viscous deformations after an initial elastic
deformation (Maxwell, 1867).

Ice flexure
The thin-beam approximation is used in the treatment of
floating-ice flexure (e.g. Timoshenko and Goodier, 1934).
The main reason for employing this approximation in the
computation of the normal modes of an ice shelf and its
cavity is the small aspect ratio (ice thickness or cavity
depth to the ice-shelf length) of this system. The thin-
beam approximation is based on the following assumptions:
(1) there is a neutral plane at the mid-plane of the ice that
does not experience deformation; (2) vertical shear stresses
are negligible; and (3) vertical cross sections in the ice that
are parallel when the ice is undeformed remain parallel when
the ice is deformed. These assumptions allow simplifications
in the momentum-balance equations describing the ice stress
regime, and vertical integration of these equations. The well-
known thin-beam equation describing flexure of an elastic
beam floating in inviscid water is

ρiH
∂2η

∂t2
= − ∂2

∂x2

(
D

∂2η

∂x2

)
− ρwgη + Pw, (1)

where η is the vertical displacement of the neutral plane, ρi is
the ice density, ρw is the water density, g is the acceleration
due to gravity, Pw is the wave-induced pressure (described
below), and D is the effective flexural rigidity

D =
EH3

12(1− ν2)
, (2)

where E is the Young’s modulus and ν the Poisson ratio.
In circumstances where H(x) is spatially uniform, as in the

present study, Eqn (1) can be rewritten as

ρiH
∂2η

∂t2
= −D ∂4η

∂x4
− ρwgη + Pw. (3)

Water flow
Following common practice in studies of wave interactions
with sea ice (e.g. Squire, 2007), sea water in the sub-ice-shelf
cavity is assumed inviscid and irrotational. Its velocity can
be described by a potential, Φ,

�v = �∇Φ, (4)
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where �v is sea-water velocity. We use the shallow-water
approximation (e.g. Stoker, 1957) to describe waves in the
ice-shelf cavity. This approximation is justified by the fact
that the aspect ratio of sub-ice-shelf cavities is small. The
governing equation for Φ in the sub-ice-shelf cavity is

∂η

∂t
= −Hc ∂

2Φ
∂x2

. (5)

A detailed derivation of this equation is given by Stoker
(1957). In a linear theory, the wave-induced pressure felt by
the ice shelf, Pw, is

Pw = −ρw ∂Φ
∂t

. (6)

Flexural waves of the ice-shelf/sub-ice-shelf cavity system
are described by Eqns (3), (5) and (6) and the corresponding
boundary conditions described below. It is useful to write
these equations again:

ρiH
∂2η

∂t2
= −D ∂4η

∂x4
− ρw

∂Φ
∂t
− ρwgη (7a)

∂η

∂t
= −Hc ∂

2Φ
∂x2

, (7b)

where the expression for Pw (Eqn (6)) was taken into account.
The two models used in this study are similar to those used
by Vinogradov and Holdsworth (1985) to study ocean-wave
effects on an ice-tongue stress regime and to investigate their
dependence on the length of the ice tongue.
It should be noted that many glaciological studies

disregard the coupling effect of the ice shelf and sea water
underneath it (last one or two terms in Eqn (7a)), and
prescribe an arbitrary motion of sea water in the cavity (e.g.
Bassis and others, 2008; Lescarmontier and others, 2012).
Such treatments are justifiable in circumstances where the
primary interest is the effect of tides. In studies focused on
the effects of waves with shorter wavelengths, the coupling
needs to be taken into account, because the ice-shelf flexure
excites waves in the cavity (Sergienko, 2010).

NORMAL MODES
The system of equations describing flexural interaction of the
ice shelf with water underneath is Eqns (7). These equations
are complemented by the following set of boundary
conditions. We assume that the ice shelf is clamped at the
grounding line (boundary 1 in Fig. 1)

η = 0 (8a)
∂η

∂x
= 0. (8b)

At the ice front (boundary 2 in Fig. 1) the following
conditions are satisfied

∂2η

∂x2
= 0 (9a)

∂3η

∂x3
= 0. (9b)

These conditions correspond to zero normal stress and
bending moment at the ice front. The boundary condition
for Φ at the grounding line (boundary 3 in Fig. 1) is

∂Φ
∂x

= 0. (10)

Since normal-mode oscillations are standing waves, there
is no mass transport associated with them. Therefore, the
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Fig. 1. Model geometry. I. ice-shelf domain; II. ocean domain.
Conditions on boundaries 1–4 are described in the text.

boundary condition operating on the water layer at the ice
front (boundary 4 in Fig. 1) is the no-flux condition, i.e.

∂Φ
∂x

= 0. (11)

The variable η can be eliminated from the above equations
by differentiating Eqn (7a) with respect to t and substituting
Eqn (7b). This yields a single equation for Φ:

ρiHHc
∂4Φ

∂t2∂x2
−ρw

∂2Φ
∂t2

+DHc
∂6Φ
∂x6

+ρwgHc
∂2Φ
∂x2

= 0. (12)

Using separation of variables,

Φ(x, t ) = X (x)T (t ), (13)

we arrive at

ρiH
D
d2T
dt2

d2X
dx2

− ρw
DHc

d2T
dt2

X+T
d6X
dx6

+
ρwg
D
T
d2X
dx2

= 0. (14)

The above equation can be reduced to one involving T (t )
only,

d2T
dt2

+ ω2T = 0, (15)

where ω is the eigenfrequency, if X (x) satisfies the equation

d6X
dx6

+
d2X
dx2

(
ρwg
D

− ω2
ρiH
D

)
+ ω2

ρw
DHc

X = 0 (16)

and boundary conditions

dX
dx

=
d2X
dx2

=
d3X
dx3

= 0, x = −L (17)

at the landward terminus of the sub-ice ocean cavity, and

dX
dx

=
d4X
dx4

=
d5X
dx5

= 0, x = 0 (18)

at the ice front.
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The general solution of Eqn (16) is

X (x) =C1 cos (αx) + C2 sin (αx)

+ C3 cos
(
1
2
αx
)
cosh

(√
3
2

αx

)

+ C4 cos
(
1
2
αx
)
sinh

(√
3
2

αx

)

+ C5 sin
(
1
2
αx
)
cosh

(√
3
2

αx

)

+ C6 sin
(
1
2
αx
)
sinh

(√
3
2

αx

)
,

(19)

where C1–C6 are unknown constants and

α =
√
p
3u
− u (20)

u =

⎛
⎝−q

2
+

√
p3

27
+
q4

4

⎞
⎠

1
3

(21)

p(ω) =
ρwg
D

− ω2
ρiH
D

(22)

q(ω) = ω2
ρw
DHc

. (23)

Substitution of X (x) in the form of Eqn (16) into boundary
conditions, Eqns (17–18), leads to a system of homogeneous
linear equations for C1–C6. This system has a nontrivial
solution if its determinant is zero. Equating the determinant to
zero generates a transcendental equation used to determine
the eigenvalues, α,

4 cosh

(√
3
2

γ

)
sin
(γ
2

)
+ sin(γ)

[
4 + cosh

(√
3γ
)]
+ sin (2γ)

= 4
√
3 sinh

(√
3
2

γ

)
cos

(γ
2

)
+
√
3 sinh

(√
3γ
)
cos(γ),

(24)
where γ = αL. Roots of this equation are found numerically.
The first three nonzero roots of Eqn (24) are γ1 ≈ 4.2747,
γ2 ≈ 7.3268 and γ3 ≈ 10.4716. For n > 3 the roots of this
equation can be approximated as

γn ≈ π

(
n +

1
3

)
. (25)

Eigenvalues, αn, of Eqn (16) are

αn =
γn
L
. (26)

Equation (24) also has a trivial root, γ = 0. It corresponds to
no motion in the system.
The expression for eigenfrequencies, ωn , is determined

from Eqn (20), and can be written as

p(ωn )
3u(ωn )

− u(ωn) = α2n, (27)

where un depends on ωn through Eqns (22) and (23).
Equation (27) is a dispersion relationship written in an
implicit form. The eigenfrequencies, ωn , corresponding to
eigenvalues αn are the roots of this expression, and they are
found numerically.
The corresponding eigenfunctions of Φn are

Φn (x, t ) = Xn (x) exp (iωnt ) . (28)

The expressions for ηn eigenfunctions are determined from
Eqn (7b).
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Fig. 2. Period of the first, most fundamental normal modes of various
ice shelves. (a) 50 km long and various ice thicknesses and cavity
depths, period T (sec); (b) various lengths but with cavity depth
equal to the ice thickness, period T (min). Note the difference in
the period units between (a) and (b).

DISCUSSION AND CONCLUSIONS
Figure 2 shows the first, most fundamental, normal modes of
a variety of ice shelves with various geometries. Ice shelves
with deeper cavities generally have shorter normal-mode
periods. Ice shelves <100 km long with cavity depths larger
than their thicknesses generally have periods of the first
normal mode in the range 100–200 s. Longer ice shelves
have longer normal-mode periods (e.g. the normal-mode
period of a 100km long and 200m thick ice shelf above
a 200m deep cavity is ∼20 min).
For higher modes the ice-shelf-flexure effects rapidly

increase and shift the normal modes of the coupled system
to frequencies higher than they would have been without
ice-shelf flexure. As Figure 3a shows, higher normal modes
are less sensitive to the depth of the cavity. However, their
dependence on the ice-shelf length is similar to the lower
modes (Fig. 3b). These results suggest that different floating
tongues that usually have length ∼10–15 km will respond
in a similar way to sea swell, regardless of the water depth
underneath them. It is feasible that the uniform length of
ice tongues can be explained by their natural oscillations
and by the fact that their higher frequencies are primarily
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Fig. 3. Same as Figure 2 for the 15th normal mode. Periods are in
seconds.

determined by ice flexure, and less dependent on the cavity
or other aspects of ocean geometry.
The eigenfrequencies increase (eigenperiods decrease)

rapidly as the modes increase. Figure 4 shows eigenperiods
of an ice shelf 300m thick, 50 km long with cavity depth
300m. The periods of the 10th and 15th modes are ∼25 s
and ∼12 s, respectively. These periods correspond to sea
swell that is common around the Antarctic coast during
the austral summer (e.g. Cathles and others, 2009). Hence,
oscillations corresponding to 10–20 normal modes are likely
to be excited.
A crucial question in the analysis of wave influences

on ice shelves is whether waves in the open ocean can
excite motions of the ice shelf that lead to the ice-shelf
flexural stresses. Here the presented computation of normal
modes of floating ice shelves demonstrates that for relatively
short ice shelves or floating glaciers (≤50 km) the first,
most fundamental, normal mode is in the 100–400 s period
range, with higher-order modes following at shorter periods.
This means that both long ocean waves with periodicities
≥200 s, and shorter waves with periodicities 10–20 s are
likely to couple well with ice shelves and lead to significant
stress effects, leading to iceberg calving (Holdsworth and
Glynn, 1978). The long-period waves are formed as a result
of nonlinear interaction of waves with shorter wavelength,
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Fig. 4. Periods of the normal modes of an ice shelf 300m thick,
50 km long with a cavity 300m deep.

and can be either created locally or travel from afar (e.g.
Bromirski and others, 2010), and the wave energy in the sea-
swell spectrum is abundant around Antarctica (e.g. NOAA
WAVEWATCH, 2010). Therefore, short ice shelves and ice
tongues are most susceptible to the mechanical effects of the
ice/ocean interaction.
Another aspect that plays an important role, but is not

considered in this study, is wave dissipation. Caused by
turbulent processes and interaction with bottom topography,
it tends to reduce the wave amplitudes as they propagate into
the ice-shelf cavity. The reinforcement of wave propagation
mentioned above, due to ice-shelf flexure, counteracts
the effects of dissipation to some degree, and is most
effective closer to the ice front, where calving occurs and
observed ice-shelf disintegrations initiate. However, in order
to excite significant flexural stresses, ocean waves have to
have high amplitudes to overcome dissipation. Perhaps the
relatively rare occurrence (so far) of very strong storms (e.g.
Shillington, 1981) explains why ice-shelf disintegrations are
also relatively rare.
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