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Abstract Consider an isospectral manifold formed by matrices M 6 g[r(C)[i] with a fixed leading
term. The description of such a manifold is well known in the case of a diagonal leading term with
different eigenvalues. On the other hand, there are many important systems where this term has mul-
tiple eigenvalues. One approach is to impose conditions in the sub-leading term. The result is that the
isospectral set is a smooth manifold, bi-holomorphic to a Zariski open subset of the generalized Jacobian
of a singular curve.
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1. Introduction

Consider a Hamiltonian system written in the form of a Lax pair, i.e. {&/&t)A{x) =
[A{x), B{x)\, where A(x) and B(x) are complex matrix polynomials in a variable x, i.e.

A{x) = Adx
d + Ad^xd~x + • • • + Ao, Ate fl(r(C),

B(x) = Bix1 + Bi-iX1-1 + • • • + Bo, Bi e fllr(C).

The coefficients Ait Bj are matrices which depend on the dynamical variables. The
coefficients of the spectral polynomial P{x,y) = det(^4(a;) — j/Idr) are the first integrals
of the system. It is easy to see that the matrix Ad is invariant of time, consequently it is
natural to fix it. Denote by Mj, the isospectral variety

MJ
P = {A{x) : det(A(x) - yldr) = P{x,y) = 0 and Ad = J).

The affine curve X& = {(x,y) € C2 : P(x,y) = 0} is embedded in O?(d). Let Xa be
the compactification of Xa, we will call it the spectral curve associated to the matrix
polynomial A{x). If the affine curve Xa is smooth, then it is easy to check that the
variety Mp is smooth (L. Gavrilov, personal communication; see also [8]).
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606 0. Vivolo

n(x,y) = x

oo pi

Figure 1. Spectral curve with an ordinary 3-tuple point at infinity.

Several articles on the same topic have appeared. Adler and van Moerbeke [2] fixed
the matrix Ad = J and searched to calculate the variety Mp/PGlr(C,J) (¥Glr(C,J)
corresponds to a subgroup of the projective group FGlr(C) formed by matrices which
commute with J; moreover, this subgroup acts on Mj, by conjugation) when the matrix
J is diagonal with simple eigenvalues. So the spectral curve becomes smooth (even at
infinity). However, it is interesting to consider singularities at infinity, because a lot of
integrable systems possess an affine smooth spectral curve and at infinity this curve is
singular (this happens when the matrix J has eigenspace, the dimension of which is
greater than one), for instance the Kowalevskaya top [5], the anharmonic oscillator, the
Gamier system and integrable quartic [14, p. 172].

If the affine curve Xa is smooth, van Moerbeke and Mumford [18] describe the quotient
variety Mp/PGlr(C, J) as a Zariski open subset in the Jacobian J(X). If the affine curve
X& is not smooth, they express the variety Mp/PGlr{C,J) as a Zariski open subset
in a generalized Jacobian. The difference between the present paper and [18] is that
we describe Mp (not the quotient variety Mp/PGlr(C, J)), and, furthermore, the affine
curve X& is smooth but its compactification is singular at infinity.

The article of Adams, Harnad and Hurtubise [1] gives an expression of the same
quotient variety Mp/WGlr(C,J) as an affine part of the usual Jacobian J(X). This
result is also proved by Beauville [3].

In [6,9,13], the authors describe abstract Hamiltonian systems. On the other hand,
Hitchin [9] noted that it is important to explicitly find the Hamiltonian differential equa-
tions describing these systems. Here, we consider concrete realization of integrable sys-
tems. The difference between our systems and the integrable systems of Hitchin type
described in the literature [6,13] is the line bundles, which we consider, are neither sta-
ble nor semi-stable; moreover, Hitchin's systems linearize on abelian varieties but our
systems linearize on generalized Jacobians.

To conclude, we mention a recent article of Gavrilov [8], who uses smooth spectral
curves and shows that the variety Mp is an open subset of a commutative algebraic
group (the generalized Jacobian of Xa).
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Singular spectral curves and completely integrable systems 607

The purpose of the present article is to describe the variety Mj> in the case where
the matrix J is diagonalizable and has multiple eigenvalues (then the matrix J is not
regular). *

Suppose that the affine curve Xa is smooth and at Qi G Xa (where x(Qi) = oo), Xa

is locally a normal crossing of many branches. Let T = {(C, J), (E, K)} be the data at
infinity of XA (J is an endomorphism J 6 End(Cr), E a vector space and K 6 End(-E),
see Definition 3.2. We assume that J is diagonalizable and K is diagonalizable with
distinct eigenvalues. Let X be the smooth compactification of Xa. Let Pi, P2, • • •, PT be
the 'infinite' points of the curve X and X' ~ (X, J2i Pi) the singular curve obtained from
X identifying the points Pi, P2, . . . , Pr with a single point noted 00. Define

M£ = {A(x) e MJ
P : pr£ .Ad^\E = K},

where prB is the projection on E and \E is the restriction to E. Denote further by O'
the canonical Riemann theta divisor formed by special line bundles on X' of degree pa

(the arithmetic genus of X'), that is to say dimH1(X',L') ^ 0.
The main result of this article is the following theorem.

Theorem 1.1. The variety Mp is smooth and bi-holomorphic to a Zariski open subset
of generalized Jacobian of X', J(X') - O'.

2. The generalized Jacobian

Now, we introduce the notation of this article [17]. The construction and properties of
generalized Jacobians are due to Rosenlicht [15,16] (even if the generalized Jacobian has
already been used by Jacobi [10]) and Lang [11,12]; they rely on the theory of abelian
varieties, developed by Weil [20]. We consider J to be a smooth compact irreducible
algebraic curve. Let P, for 1 < i ^ s be some distinct points on X. We put m = YH=\ n%Pi
and rij 6 N*, Vi = 1,2,..., s. We call S(D) the support of some divisor D on X, i.e.
S(m) = {P1,P2,...,Ps}, denote Xreg = X - S(m) and r = £*= 1 n,.

Definition 2.1. To the pair (X, m) we associate a singular curve X' = Xreg [j 00. The
curve X' is, as a topological space, just X with its points P i , . . . , Ps identified with a
single point 00. The structure sheaf O' of X' is defined in the following way. Let O\' be
the direct image of the structure sheaf Ox under canonical projection X -> X'. Then

o , =
P [C ifP = OO,

where ix is the ideal of O^ formed by the functions / having a zero at Pi of order at
least rii.

We define the sheaf C'(D), where D is a divisor on X such that 5(D)f|5(m) = 0, by

i
{O'x, i fP

• A matrix is regular if all eigenspaces are of dimension one.
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608 O. Vivolo

The sheaf C'(D) is a locally free ©'-module of rank one and there is a one-to-one corre-
spondence between isomorphism classes of invertible sheaves £ on X' and isomorphism
classes of line bundles V over X'.

Let

L'(D) = H°(X', C'(D)), I\D) = H\X', C'

l'(D) = dime L'(D), i'(D) = dimc I'(D).

As the sheaf Ox/O'x is coherent, we put 5P = dimc{OP/OP) with P e X', the arith-
metic genus pa (dimension of H1(X', O')) of the singular curve X' is obtained from the
geometric genus pg of X by the relation

Pa = Pg +<5oo-

In fact,

Sec = dime ( °° ) = dimc ( -r^. ) - 1 = deg(m) - 1,

then
Pa = Pg -r deg(m) - 1

or

Pa = Pg + T - 1.

A divisor D o n ! with S(£>) f) 5(m) = 0 verifies

Now we define the equivalence relation ~ .

Definition 2.2. Let D\ and D2 be two divisors on X with 5(Dj) f|5(m) = 0 and
S[D-i) P| S(m) = 0. Then D\ ~ D2, provided that there exists a global meromorphic func-
tion / on X, such that (/) = D\ — D2 and vpt(f — 1) ̂  n*, i = 1,2,..., s {vp(-) is the
order function at P).

Definition 2.3. We call the subgroup Pic°(X') of Pic(X') := Div(X')/ ~ formed by
the divisors D on X with S(D) f~| 5(m) = 0 and deg(D) = 0 the generalized Jacobian of
X', denoted J(X').

It is known that J(X') is an extension of J(X), the Jacobian of X, by the algebraic
group (C*)5-1 x Cr-S:

0 -> (C*)s - 1 x C r - S -> J(X') A J(X) -> 0.

Remark 2.4. There is a one-to-one correspondence between isomorphism classes of
invertible sheaves C on X' and isomorphism classes of line bundles L over X'.
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Singular spectral curves and completely integrable systems 609

3. The spectral curve

Let x be an affine coordinate on P1. We now consider the vector space M of all complex
matrix polynomials A(x) in a variable x, of fixed degree d (d ^ 1) and dimension r

A{x) = Adx
d + Ad^x*-1 + • • • + Ao, AiE glr(C).

Let
MP = {A(x) e M : det(A(x) - yldr) = P(x,y) = 0}

and MJ be the affine subspace formed by matrices with a fixed leading coefficient An = J.
We put

Mp = MP n MJ = {A(x) e MJ : det(A(x) - yldr) = P(x,y) = 0},

where P(x,y) is an irreducible fixed polynomial,

P{x,y) = det(A(x) - yldr) = ( - l ) V + s1(x)yr-1 + • • • + sr(a;),

with deg(sj(a;)) < i.d. Let F2(d) be the c(-weighted projective space defined by (C3 -
{(0!0,0)})/~, where (x,y,z) ~ {Xx,Xdy,Xz) with A 6 C*.

Definition 3.1. Let Xa = {(x,y) G C2 : P(x,y) = 0} be the curve associated to the
irreducible polynomial P(x,y). The spectral curve is the closure X& of Xa in F2(d).

Now fix a spectral polynomial P(x,y) = det(A(x) — yld), and assume that A<i is
diagonalizable.

Let
Ed = C \ ud = Ad.

Let ud € End(.E<i) be an endomorphism of Ed and Sp{ud) = {X\,..., Xk} of respectively
order s\,..., Sk, we introduce the set

Id = {i: dimKer(zi(i — Aj) > 1}.

If Id j£ 0, then we can define

and ud_i G End(Sd_i) by

where ul
d_ x, i 6 Id is the endomorphism

A \Si \ C1

ij -> tbd
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610 0. Vivolo

Definition 3.2. The data T of the spectral curve at infinity is the set

F := {(Ed,ud),{Ed-i,ud-i)}.

Definition 3.3. The projective sub-group of PG/r(C) such that the data T is invariant
under the conjugation action of this sub-group is denoted ¥Glr(€,\T)

PGZr(C; T) = {R G FGlr(C) : Vfc € {d, d - 1} RBkuk\Ek = uk}

and

v »-> 1 !-»• pr(RvR~1).

We assume that the curve Xa — Ylieid QiIS smooth (where x{Qi) = oo and y{Qi) = A,)
}and, at Qi, X& is a normal crossing of Si branches. Let T :=

be the data of the spectral curve at infinity where Ud is diagonalizable and itd-i is
diagonalizable with distinct eigenvalues. The geometric genus of Xa is

Let X be the smooth compactification of Xa. When we desingularize Xa, each point Qi
gives Si distinct points on X.

The projection

7r:P2(d)-{[0,l ,0]}-+P1

[a;, y, z] ^ \x, z]

identifies the surface P2(d) — {[0,1,0]} with the holomorphic line bundle Opi (d), and, as
[0,1,0] ^ X, then X is naturally embedded in OPi(d) too. The induced projection

•n : X -*• IP1

is a ramified covering of degree r, and over the affine plane C it is simply the first
projection

{x,y) >->x.

Definition 3.4. If 7r~1([l,0]) = YA=I Pi> t n e n w e define the modulus m to be the
effective divisor m = J2i=i Pi- We denote by X' = Xm the singular curve obtained from
X when we identify its points P\,P-2,... ,Pr with a single point oo. The arithmetic genus
of X' is given by pa= pg + r — I.

Remark 3.5. Suppose the multiplicity of Aio is greater than 1 and (ud-i)l° is homol-
ogous to

Oil \
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Singular spectral curves and completely integrable systems 611

and the coefficients ct\, c*2,.. -, aSio are fixed and distinct. The coefficient ctj is the coef-
ficient of z in the Puiseux expansion of y, i.e. y = Xio + ctjZ + • • •.

Definition 3.6. Let P(x, y) € C[x, y] and T = {(Cr, J), (E, K)} be the data at infin-
ity of the spectral curve. We introduce the variety Mp defined by

M£ = {A(x) € MJ
P : A(x) = Jxd + Ad^xd-1 + • • • + Ao, Ad^\E = K}.

For A(x) e M£ and R e FGlr(C,T), then RA(x)R~1 G Mp7, it is easy to see that we
can choose a suitable base such that J and K are simultaneously diagonalized.

4. The eigenvector bundle

For each non-singular point p e Xa which is not a branching point of X, there is a
one-dimensional eigenspace l(x) C Cr of A(x(p)) with eigenvalue y(p). This gives a holo-
morphic line bundle on Xa defined everywhere except for singular points and branching
points. Let X be the non-singular compact model of Xa, the eigenvector bundle extends
to a holomorphic line bundle I on the whole smooth curve X. Indeed, the mapping
p —»l(p) determines a meromorphic mapping

x -> C P 7 - 1

Since any such mapping is actually holomorphic, the eigenvector bundle extends to X.
We denote its dual by L. If D is the minimal effective divisor such that Vi, (/i) > —D,
then L = LD- If S(D) f] 5(m) ^ 0, LD does not define a line bundle on X', that is why
we must normalize the bundle LD to define the eigenvector bundle on X'.

Proposition 4.1. Let f(x,y) = (/i,/2, • • • ,/r) be an eigenvector of A{x) 6 Mp
normalized by the condition

fl + f2 + --- + fr = l-

Let D be the minimal divisor, such that (fi) > —D, i = 1,2, . . . , r . Then we get
S(D) f] S(m) = 0 and we define (the dual to the) eigenvector bundle on the singularized
spectral curve X'.

Proof. If j € Id, we shall write the polynomial P(x,y,z) near the points Qj = (x =
oo, y = Xj). This point give Sj distinct points Pni,..., Pns. when we desingularize Xa.
Without loss of generality, we shall assume that Xj = 0. The polynomial P(x, y, z) is
homogeneous in P2(d) of degree rd:

P(x,y, z) = det{zdA{x/z) - yldr).

Write P(l,y, z) as the sum of homogeneous polynomials in ascending degrees

P(l, y, z) = PSj(y, z) + PSj+i{y, z) + • • • + Prd{y, z).
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612 0. Vivolo

Precisely

Let 0n i be the eigenvector of v4(:r) near the points Pni for i = 1,2,..., Sj. We have

y = aniz-\ .

We put <pni = eni + vni z -\ . and get

( A d + A d - i z + - - - ) ( e n i + v n i z + - - - ) = ( a n i z + - - - ) ( e n i + v n i z + • • • ) ,

or, componentwise,

Adeni = 0,

= an

We get that eni corresponds to the eigenvector of {6%
Notice the vectors f(Pi) = (fi(Pi),. ••, fr(Pi)) are fixed and depend on the spectral

curve Xa at infinity. Let c E P and consider the hyperplane Hc = {v 6 C : (c, v) =
CiV\ + • • • + crvr = 0}. To normalize the eigenvector / , we choose c £ Cr such that
f(Pi) $ Hc (in our case, we can choose c = ( 1 , . . . , 1)), and the normalization of / is
given by (c, / ) = 1. / has a pole at Pi if and only if the line determined by f(Pi) is
contained in the plane ci/i + C2/2 + • • • + crfr = 0, so with the above normalization Pj
is not a pole for / . •

If D is the pole divisor of the normalized eigenvector / , then denote by L = LD the
line bundle and by C = Co the corresponding sheaf of sections.

5. The dimension of H°(X, C{D))

To calculate dimH°(X,£(D)) we follow [18]. Let (1)00 = E L i pi a n d introduce Xo =
X — {Pi, i"2> • • • J Pr} and let RQ be the algebra of regular functions in Xo- Clearly RQ =
C[x,y]. Put R = C[x]. Let V denote the subspace of H°(X0,C(D)) generated by linear
coordinates in Cr. Now we prove that the natural mapping r : V <g)R —> H°(Xo, C{D)) is
surjective. r(V <S> R) is an i?o-module if / = ( / 1 , . . . , fr) is the standard basis in V, then
yf = A(x)f so that yfo e r(V ® R). Suppose that r(V ® R) is a proper i?o-submodule
in H°(X0, £{D)). Then there is a maximal ideal / m in RQ such that

r{V®R)ClmH°{X0,C(D)).

A maximal ideal Im in RQ is naturally associated with a point p € Xo:
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Singular spectral curves and completely integrable systems 613

All functions in r(V <g> R) would vanish at p, while 1 = Y%=i fi contradicts this fact.
Hence, any function of / e L(D) is an element in r(V <g» R):

Moreover,

We get

The r eigenvectors {fi{Pj))i^i^r are independent because the matrix J is diagonalizable,
and det(fi(Pj))i^ij^r ^ 0, implying bf = 0 for 1 ^ i ^ r. In the same way, b? = 0 for
1 < i ^ r and 1 < j ^ a, proving that

Therefore dim^°(X, £(D)) = r.

6. Calculation of deg(£>)

We consider E = D + n ^ [ = 1 Pi with n large enough. Clearly dimL(£l) ^ r(n +1), since
every function xlfj for 0 < i ^ n and 1 ̂  j ^ r belongs to that space. But every function
/ G L(E) belongs to r(V ® /2). So that

Using the same process, it is easy to show that a ^ n. Therefore, the dimension of L(E)
is r(n + 1). Using the Riemann-Roch Theorem on X we get

rn + deg(D) - ps + 1 = dimL(E) = r(n + 1).

So that
deg(D) = pg + r - 1.

7. Statement of the main result

Firstly, we state the next proposition.
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614 0. Vivolo

Proposition 7.1. We define 0 as the canonical Riemann theta divisor of JP*(X)
formed by special line bundles LD of degree pa, i.e. dim H1 (X, C(D)) ^ 0. ff LD e
PicPa(X) — 0, then the sheaf TT*£(D) (n is the projection X -> P1 induced by [x, y, z] ^4
[x, z]) is a trivial Opi -module of rank r:

ir*£(D) = O?i 0 Opi © • • • © O?i.

Then we have a bi-holomorphic map

{a matrix A(x) e Mp up to conjugation by a matrix in PGXr(C)}

I
{an isomorphism class of a line bundle L 6 PicPa(X) — 0}.

Proof. The demonstration of [3] works with little modifications. Let L be a line bundle
on X of degree deg(L) = pa and dim H°(X,C) — r. By the Riemann-Roch Theorem,*

= deg(L) — pg + 1 = r. Moreover,

dim if0(A", C) = d im# 0 (P \ 7r*£),

X{C) = x(7r*£) = deg(7r,£) + (1 - PgtlP1)) rank(7r,£) = deg(7r,£) + r.

Then we obtain that 7r»£ is a locally trivial Cpi-module of rank r, degree 0 and it has r
holomorphic sections, so

The invertible sheaf £ on X can be equivalently described as a locally trivial O7i -module
?r»£ equipped with an additional structure of a 7r*C-module, or, equivalently, a homo-
morphism of algebras a : n*O —> End(7r*£). To describe the homomorphism a amounts
to giving a linear map

A : ir*C ->

that is to say, a polynomial r x r matrix A(x) of degree d. Clearly, A(x) satisfies
P(x,A{x)) = 0 and as P(x,y) is irreducible over C(x), then by the Cayley-Hamilton
Theorem the spectral polynomial of A(x) is P(x,y). Note that the matrix A(x) is deter-
mined only modulo an automorphism of TT*£, and hence up to conjugation by a matrix
R € GLr(C). •

Denote

PGLr(C;^) = {Re FGLT(C) : R is a diagonal matrix}.

* x(£) is the Euler-Poincare characteristic defined for a line bundle L on X by

X(C) = dim H°(X, C) - dim H1 (X, C).
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Singular spectral curves and completely integrable systems 615

The group FGLr{C;T) acts freely and properly on the smooth manifold Mp by con-
jugation. We consider the following commutative diagram

r(C;F) • 0

I" I'
o > ( c*) 1 - 1 > j(x') - e1 —±-> j(x) - e > o

where 0' = <j>~l(Q). We are ready to state the following theorem.

Theorem 7.2. Denote by 0' = 4>~1(0) the theta divisor formed by line bundles V €
PicPa(X') such that dimH1(X',L') ^ 0. The variety M^ is smooth and bi-holomorphic
to J(X') - 0'.

Proof. Let PicPa(X') be the shifted Picard group Pic°(X') of degree pa line bundles
on X'. It is isomorphic to the Jacobian variety J(X'), and J(X') — 0' is the subset of
line bundles V € PicPa(X') with one non-zero holomorphic section. We get a mapping

{a matrix A(x) €

{an isomorphism class of a line bundle L 6 PicPa(X') — 0'}.

In fact it is an isomorphism, to show that we follow [8] and prove the fibres (/3-1(6) and
4>~l o l(b) have the same dimension and I' is an injective morphism of algebraic groups.
The dimension of the fibres is r — 1. Now check that /' is injective. Let V be a line bundle
on X' of degree deg(L') = pa and dimH°(X', £') = 1. By the Riemann-Roch Theorem
X{£) = deg(L') - pa + 1 = 1. Moreover,

dim H°(X', C) = dim H °{WX, TT*£')>

X(C') = X(ir*C) = deg(7r,£') + (1 - pg(P1))rank(7r»£') = deg(n*£')+r.

Then we obtain that 7r*£' is a locally trivial Opi-module of rank r, degree 1 - r and has
one holomorphic section, so

The invertible sheaf C onX' can be equivalently described as a locally trivial O?i -module
7r»£' equipped with an additional structure of a irtO'-module, therefore a homomorphism
of algebras a : 7r*C —> End(7T»£'). To describe the homomorphism a we shall give a linear
map

A:nt£'^Tr*£'(d),

that is to say, a polynomial r x r matrix A(x) of degree d. Clearly, A(x) satisfies
P(x, A(x)) = 0 and as P(x,y) is irreducible over C(x), then by the Cayley-Hamilton
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616 0. Vivolo

Theorem the spectral polynomial of A{x) is P(x, y). Note that the matrix A(x) is deter-
mined only modulo an automorphism of irtC As the vector 1 = J2fi € H°{Wl,-n*£)
in the base / i , f 2 , . . . , fr, is the vector (1 ,1 , . . . , 1), then A{x) is determined up to con-
jugation by a constant matrix R with eigenvector (1 ,1 , . . . ,1). Thus if A.'{x) is another
matrix in Mp which defines the same eigenvector sheaf £', then A'(x) = RA(x)R~1. As
R commutes with the leading term J, #£,,_, commutes with u^-i and ( 1 , 1 , . . . , 1) is an
eigenvector of R, then R = Id € FGLr{C).

Finally it remains to show that Mp is smooth. We choose a € P1, a ̂  [0 : 1] generic
(i.e. such that A(a) has a simple spectrum), the vector fields

are tangent to the fibre ip l(b). It is shown in [14] that these vector fields induce transla-
tion invariant vector fields on J{X') (although the results are formulated only on J(X)).
The direction of these vector fields is moreover computed (formula (8.5) on p. 177 of [14]).
These formulae imply that these vector fields span, for a generic, the tangent space to
the generalized Jacobian J(X'). •

8. Examples

Example 1: a harmonic oscillator with two degrees of freedom

Consider the simplest case, where A(x) is written in the base {ei, e2,es}:

o
= o

0
0
0

0
0

ai 0
A(x) ^Ayx + Ao = I 0 0 0 \x+\ 0 a2

2/1

2/2

The spectral polynomial P(x,y) = det(A(x) - yldr) is

P(x, y) = hi + h2y + h3y
2 -y3 + x{hA + h5y + a0y

2).

When ai = a2, the polynomial P(x,y) is not irreducible, so consider the case a,\ ^ a?..
Let

Xa = {(x,y):P(x,y) = 0}cP2.

Let X& denote the closure of the affine curve Xa in the total space of the line bundle
Opi (1). We choose oo € C* and (hi,fi2, h3, h4,h5) e C5 such that X& — Q is smooth, and
then at Q (x(Q) — oo and y(Q) = 0), the curve Xa is locally a normal crossing of two
branches. Denote by X the smooth compactification of Xa. The double point Q € Xa

gives two smooth points P\,P2 £ X on Xa. Therefore, X is topologically a sphere. Let
P3 = (a; = oo,y = ao), the modulus is m = Pj + F2 + P$ and call X' — Xm,

P(x, y, z) = a0aia2xz2 - ao(ai + a2)xyz + a0xy2 - y3

+ (ai + a2 + a3)y
2z + {xxyi + x2y2 - aia2 - axa3 - a2a3)yz2

+ (aia2a3 - a2xiyx - aix2y2)z
3.
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The data of Xa at infinity is

( / / n
J7=|({ei1e2 le3},yli) , f{ei,e2}, f J

The variety M^ is defined by

axa2a3 — 02X12/1 — aix2y2 = hi

a2a3 = h2

a2 + a3 = h3

617

Mi =

a2

a3

—ao(ai + a2) = h5

I \2/2/

The Hamiltonian system on M£ is ^o = [Ao, A{\, or, in others words,

2/i =

2/2 = ao2/2

afi = -

a?2 = -

01 = 0,

d2 = 0,

d3 = 0.

The Hamiltonian function is

H{A{x)) = \Resx=

so
x

H(A(x)) = yiXi + y2x2.

The Poisson bracket {•, -}i is given by

{yi,Xi}i = — ao, {y2:x2}i = -ao, {2/ii^j}i — {^iiJ/j}i = 0> tor i ^ j .

The functions a, ai, a2 and a3 are Casimir functions for this structure.

Remark 8.1. We can take

Hk(A(x)) = \Resx=0 t r ( / ! 2 (z) )^ , k = 2,3,
Us

as the Hamiltonian function for the above system. Following the scheme described by
Reyman [14], we get other compatible Poisson structures. For instance,

H2 = a0a3,
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with the Poisson bracket
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{•>'}2

a0

ai

a2

a3

2/i

2/2

Xi

x2

a0

0
0
0
0
0
0
0
0

a,

0
0
0
0

- 2 / i

0

Xl

0

0-2

0
0
0
0
0

- 2 / 2

0

X2

as
0
0
0
0

Z/i

2/2

-Xi

-x2

2/i

0

2/1

0

- 2 / 1

0
0

a3-ai

0

2/2

0
0

2/2

- 2 / 2

0
0
0

a 3 — a2

Xi

0
- X i

0
X i

o-i — a3

0
0
0

x2

0
0

- x 2

x2

0
a2 — a3

0
0

or again we may consider

with the following Poisson bracket

^

{•>-}3

a0

a i

a2

« 3

2/i

2/2

X l

x2

a0

0
0
0
0

2/i

2/2

- X l

- x 2

a j

0
0
0
0
0
0
0
0

« 2

0
0
0
0
0
0
0
0

as
0
0
0
0
0
0
0
0

2/i

- 2 / 1

0
0
0
0
0
0
0

2/2

- 2 / 2

0
0
0
0
0
0
0

X j

X l

0
0
0
0
0
0
0

X2

X2

0
0
0
0
0
0
0

The components of the eigenvector of A(x) are given by

/ i = j/i(o2 - y), $2 = (ai - y)yi, h = («i - v){o-2 - y)-

We normalize these functions by dividing by g = / i + f2 + fs = y2 — (ai + a2 + y\ +
2/2)2/ + 01^2 + ai2/2 + 2/1 a2- This polynomial 5 has two roots denoted y° and y1. At each
value of y, there is one value of x, we call x° the value of x for y° and x1 for j / 1 . Let
Qo = (x°,y°) and Qi = (x 1 ^ 1 ) . We get

Ukl9)>-Qo-Qu fc = 1,2,3.

We put D = Qo + Qi, deg(£>) = 2. Using Theorem 7.2, we get that the variety Mp is
an open given by J2(X') — 0'.*

* Let JP«(X') = PicPa(X') be the variety (isomorphic to the generalized Jacobian J(X')) formed by
line bundles of degree pa (the arithmetic genus of the singularized curve X') over X'.
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Example 2: integrable perturbation of the harmonic oscillator with five
degrees of freedom

Now consider the Hamiltonian function

a2)p\ + (ai + b2)p\

- (ai + a2)q\ - (ax

a2)p\ + (bx + b2)p4

- (61 + a2)q\ -

b2)p
2
4 + (a2 + b2)p\

- (a2 + 62)95

defined on the co-tangent bundle T*C5 of C5, equipped with a canonical symplectic form
u> = dp1Adgi+dp2Adg2+dp3Ad93 + dp4Ad74+dp5AdQ5. Under asimple transformation

( + ) ( + ) i l 4

Po = 5(2:5 + 2/5),

the Hamiltonian function becomes

9s = l i -

H = 62)2:22/2 a2)x3y3 + (61 + b2)x4y4 + (a2 + b2)x5y5,

and the symplectic structure becomes:

Xi

x2

X3

X4

X5

2/1

2/2

2/3

2/4

2/5

2:1

0
0
0
0
0

- 1
0
0
0
0

2:2

0
0
0
0
0
0

- 1
0
0
0

2:3

0
0
0
0
0
0
0

- 1
0
0

X4

0
0
0
0
0
0
0
0

- 1
0

x5

0
0
0
0
0
0
0
0
0

_2

2/1

1
0
0
0
0
0
0
0
0
0

2/2

0
1
0
0
0
0
0
0
0
0

2/3

0
0
1
0
0
0
0
0
0
0

2/4

0
0
0
1
0
0
0
0
0
0

2/5

0
0
0
0
2
0
0
0
0
0

(8.1)

We perturb H, adding terms of order three

H' = (a! + a2)xiyi + {ax + 62)2:22/2 + (61 + a2)x32/3 + (61 + 62)x4j/4

+ (a2 + 62)2:52/5 + (2:12:2 + 2:30:4)2/5 + (2/12/2 + 2/32/4)2:5-

Proposition 8.2. The system (H1, {•, - } 4 , K10) is algebraically completely integrable.

Note in the base {ei,e2,63,64}

A(x) = Axx + Ao =

( °
0
0

v°

0
0
0
0

0
0
1
0

0
0
0

- 1

\

J

X

0

Xl

\ 2/2

0

6i

2:3

2/4

2/1

2/3

a2

2/5

2:2

x4

2:5

62

\

)
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The Hamiltonian system is A® = [AijAg]

X'I = (ai + a2)xi + 2/2X5, 2/1 = ~(ai + 2̂)2/1 — ^22/5,

x2 = (fli + 62)x2 + 2/1X5, 2/2 ^ ~(fli + 62)2/2 ~ xi2/5,

^3 = ifi2 + bi)x3 + 2/4X5, 2/3 = ~ (a2 + 61)2/3 — X42/5,

X4 = (61 + 62)x4 + y3x5, 2/4 = -(61 + 62)2/4 - X32/5,

x5 = 2(a2 + 62)x5 + 2(xxx2 + x3x4), y5 = -2(a2 + b2)y5 - 2(yiy2 + 2/32/4),

d2 = 0, 62 = 0.

The corresponding Hamiltonian function is

-Hi(^4(x)) = i/cesx=otr(A (a;)) —J x
(ax + b2)x2y2 + (61 + a2)x3y3 + (bi + b2)x4y4

(a2 + 62)x52/5 + (xix2 + x3x4)2/5 + (2/12/2 + 2/32/4)x5,

with the Poisson bracket of (8.1).

Remark 8.3. As in the previous example, this system possesses another Poisson
structure compatible with the first one. We find the same system with H2 = x\y\ —
x2y2 + X32/3 — X42/4 -\- a\ — b\ and the Poisson structure {•, -}5 (see Table 1).

Fix the polynomial

P(x,y) =det( i4(x)-yldr)

= hi + h2x + h3y - axbix2 + h4xy + h5y
2 + (ai + bi)x2y

+ {b2 - a2)xy2 - («! +bi + a2 + b2)y
3 - x2y2 + y4,

where a\ ^bi and a2,b2,hi € C. Note that

Denote by Xa the closure of the affine curve Xa in the total space of the line bundle
Cpi (1). We choose a0 6 C* and (hi,h2, h3, h4, h5) £ C5 such that X& — Q is smooth, and,
at Q (x(Q) = 00 and y{Q) = 0), the curve Xa is locally a normal crossing of two branches
(i.e. ai ^ a2). Denote by X the smooth compactification of X&. The double point Q G Xa

gives two smooth points, Pi,P2 S X, on Xa. Therefore, X is topologically a 2-torus. Let
P3 = (x = 00,2/ = 1) and P4 = (x = 00, y = —1), the modulus is m = Pj + P2 + P3 + P4

and call X' = Xm. The data of Xa at infinity are

= \ {ene2},( "J °
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The isospectral variety Mp is the set

01026162 — 6162X12/1 - 0261x22/2 — 0162X32/3

- 0102X42/4 - 0161X52/5 + ai(x3X42/5 + 2/32/4X5)

+6i(xix22/5 + 2/12/2X5) + (X12/4 - x32/2)(x42/i - X22/3) =

- o2) + ai(x32/3 - x4y4) + 6x(xi2/i - X22/2) =

- a i 6 2 ( 6 i + a 2 ) - 6 i a 2 ( a i + 6 2 ) + (6i+62)xi2/i

+ (61 + a2)x22/2 + (ai + 62)x32/3 + (01 + a2)x42/4

+ (61 + ai)x52/5 - (2/12/2 + 2/3j/4)x5 - (xix2 + x3x4)2/5 = /13

(ai + 6i)(a2 - 62) - X12/1 + X22/2 - X32/3 + X42/4 = ^4

6162 + (ai + O2)(6i + 62) — X12/1

-X22/2 - X32/3 - X42/4 - x52/5 = /15

Using Theorem 7.2, we state the result

M£ = J5(X') - 9'.

Remark 8.4. Using the same approach, we will be able to construct other completely

integrable systems.

Acknowledgements. I express deep gratitude to my supervisor and friend L. Gav-

rilov, whose guidance and support were important for the successful completion of this

project.
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