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The linear collisionless plasma response to a zonal-density perturbation in quasisymmetric
stellarators is studied, including the geodesic-acoustic-mode oscillations and the
Rosenbluth—Hinton residual flow. While the geodesic-acoustic-mode oscillations in
quasiaxisymmetric configurations are similar to tokamaks, they become non-existent
in quasi-helically symmetric configurations when the effective safety factor in
helical-angle coordinates is small. Compared with concentric-circular tokamaks,
the Rosenbluth-Hinton residual is also found to be multiplied by a geometric
factor C that arises from the flux-surface-averaged classical polarization. Using the
near-axis-expansion framework, we derive an analytic expression for C, which varies
significantly among different configurations. These analytic results are compared with
numerical simulation results from the global gyrokinetic particle-in-cell code GTC, and
good agreement with the theoretical Rosenbluth—Hinton residual level is achieved when
the quasisymmetry error is small enough.
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1. Introduction

In axisymmetric magnetic confinement fusion devices, zonal flows are poloidal E x B
flows which are toroidally symmetric but vary in the radial direction (E is the electric
field and B is the magnetic field). Electrostatic zonal flows (Lin et al. 1998; Dimits
et al. 2000; Diamond et al. 2005) (and their electromagnetic counterparts called ‘zonal
structures’; Zonca et al. 2015; Dong et al. 2019; Zocco et al. 2023) have been widely
studied due to their role in regulating drift-wave turbulent transport. Since the poloidal
direction is not a symmetry direction in tokamaks, poloidal flows are expected to generate
geodesic-acoustic-mode (GAM) oscillations (Winsor, Johnson & Dawson 1968), which
are subject to collisionless Landau damping (Conway, Smolyakov & Ido 2021). However,
Rosenbluth and Hinton (RH) found that the zero-frequency branch of the zonal flow,
where the divergence of the poloidal flow is balanced by the divergence of the parallel
flow, does not experience collisionless Landau damping, so it can continuously grow
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while being driven by external source terms (Rosenbluth & Hinton 1998). Supposing
the source term is axisymmetric, the zero-frequency zonal-flow response is shielded by
neoclassical polarization and reduced by a factor 1/(1 + 1.6¢%¢~'/?), where ¢ is the safety
factor and € is the inverse aspect ratio. This factor is known as the RH residual-flow level,
which is important because the residual zonal flow can fully suppress turbulence near
the linear instability threshold, which is known as the Dimits shift (Dimits et al. 2000).
The RH residual flow has also been widely simulated to test the validity and accuracy of
gyrokinetic simulations (Ye et al. 2016; Moritaka et al. 2019).

Collisionless zonal-flow dynamics has also been studied in stellarators in the context of
existing experimental devices such as LHD, W7-X, HSX and TJ-II (Sugama & Watanabe
2006b; Mishchenko, Helander & Konies 2008; Helander et al. 2011; Xanthopoulos et al.
2011; Sanchez et al. 2013; Monreal et al. 2016, 2017; Nicolau et al. 2021; Smoniewski et al.
2021). It was found that, after the initial GAM oscillations, zonal flows also experience
slowly damped oscillations due to radially unconfined trapped particles. The RH level
has been derived using both the gyrokinetic and the drift-kinetic formulation, which is
written as a velocity-space integral. However, due to the complicated stellarator geometry,
numerical calculation is usually required to evaluate the RH residual level.

In quasisymmetric (QS) stellarators (Boozer 1983; Niihrenberg & Zille 1988;
Rodriguez, Helander & Bhattacharjee 2020), the magnitude of the magnetic-field vector
B, which lies on flux surfaces, can be expressed as |B| = B(y, M0 — N¢), where i is
the flux-surface label (defined as the toroidal magnetic flux divided by 27 in this paper),
0 and ¢ are the poloidal and toroidal angles in Boozer coordinates (Boozer 1982) and M
and N are constant integers. This includes both quasi-axisymmetric (QA) devices where
M # 0 and N = 0, and quasi-helically (QH) symmetric devices where M # 0 and N # 0.
(The quasi-poloidally symmetric devices with M = 0 are not considered in this paper.)
Since the drift-kinetic gyrocentre motion in QS stellarators is isomorphic to tokamaks
in Boozer coordinates, the collisionless zonal-flow dynamics is expected to be also very
similar. However, zonal flows in stellarators can still have geometry-specific properties. For
example, a recent study pointed out that, due to the small effective safety factor, a higher
level of RH residual flow can be achieved in QH stellarators (Plunk & Helander 2024)
than tokamaks. With the progress in stellarator optimization, QS configurations with great
accuracy have been designed (Landreman & Paul 2022), so the collisional neoclassical
transport can be lowered to a level similar to tokamaks, and turbulent transport will be the
dominant mechanism controlling confinement times (Guttenfelder ez al. 2008; Beurskens
et al. 2021). Since zonal flows often play a crucial role in regulating turbulent transport,
we aim to make analytic progress in understanding zonal flows in QS stellarators, which is
made easier due to the isomorphism in gyrocentre motion with tokamaks, when expressed
in Boozer coordinates.

Here, we explore the collisionless zonal-flow dynamics in QS stellarators, including
the GAM oscillation frequency and the RH residual-flow level. The effects from
gyroaveraging are not considered in this study, assuming the radial wavelength of zonal
flows is much larger than the ion gyroradius. We also assume the adiabatic-electron model
since electrons have zero bounce-averaged radial drift in QS stellarators (Mishchenko et al.
2008), but note that effects from kinetic electrons can be important for non-QS stellarators
(Monreal et al. 2016; Nicolau et al. 2021). It is found that, while the GAM oscillations
in QA stellarators are similar to tokamaks, they become non-existent in QH stellarators
when the effective safety factor in helical-angle coordinates is small. Compared with
concentric-circular tokamaks, the RH residual is also found to be multiplied by a geometric
factor C that arises from the flux-surface-averaged classical polarization (mm;|V/|*/B?),
where n; is the ion density and m; is the ion mass. An analytical expression of C is
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obtained using the near-axis-expansion (NAE) framework (Garren & Boozer 1991a,b;
Landreman, Sengupta & Plunk 2019; Landreman & Sengupta 2019; Jorge, Sengupta &
Landreman 2020; Rodriguez, Sengupta & Bhattacharjee 2022; Rodriguez, Sengupta &
Bhattacharjee 2023), which varies significantly among different configurations. Note that
similar modification in the RH level has been found in tokamaks, which is mainly due to
the flux-surface elongation (Xiao & Catto 2006). However, the elongation is limited by the
vertical stability, so that typically C < 2.5 (Humpbhreys et al. 2009; Lee er al. 2015). Here,
alarger C (and the RH level) can be achieved for QA stellarators, provided that they are not
subject to the vertical stability. Meanwhile, we found that C < 1 for QH stellarators, but
the RH level is still enhanced due to the small effective safety factor (Plunk & Helander
2024).

These analytic results are compared with numerical results from the global gyrokinetic
particle-in-cell code GTC. We simulate zonal flows in first-order and second-order NAE
configurations, as well as the ‘precise QA’ and ‘precise QH’ configurations reported in
Landreman & Paul (2022). While the GAM physics is reasonably predicted by the theory,
we found that, for the RH residual level, good agreement between analytical and numerical
results is achieved only when the amplitude of the QS-breaking magnetic-field component
is small enough. As the next step of this research, we will study how the geometric factor
C affects the nonlinear interactions between zonal flows and turbulence in QS stellarators.

The rest of the paper is organized as follows. In § 2, we present our results on the RH
level and the GAM frequency. In § 3, we present numerical simulation results. Conclusions
and discussions are given in § 4.

2. Theory of collisionless zonal-flow dynamics
2.1. Calculation of Rosenbluth—Hinton residual flow in Boozer coordinates

Consider the time evolution of a zonal electrostatic potential @ (y, f) and its associated
radial electric field E, = —09,@|Vy|. The RH residual flow can be understood from the
conservation of toroidal angular momentum, where ‘toroidal’ refers to the symmetric
direction of the magnetic field (Sengupta & Hassam 2018). In an electrostatic gyrokinetic
plasma, toroidal angular momentum consists of the E x B-flow part Lg.p and the
parallel-flow part £ (Scott & Smirnov 2010; Brizard & Tronko 2011; Stoltzfus-Dueck
& Scott 2017; Zhu et al. 2024). The E x B part is defined as Lg,p = —t(P - Vi),
where ¢ is the rotational transform, (---) is the flux-surface average and the classical
polarization P is obtained from V . P = e(Z;én; — én.). We have assumed a single
gyrocentre ion species with mass m;, charge number Z;, density n; = nj + dn; and
temperature 7; = Tj, while electrons are assumed adiabatic so their density perturbation
can be written as §n. = nepe(® — (P))/T., where e is the elementary charge. Neglecting
effects from gyroaveraging, we obtain P = —njom;V & /eB* from quasineutrality (see
(2.26a,b) below), so that

Livp =1Agdy @, Ay = momi(|Vy|*/B). (2.1a,b)
The parallel-flow part is defined as £ = fdvfimileA) - dr/d@, where v is the parallel
velocity, b= B/B, fi(r, v, 1) is the gyrocentre ion distribution and we have neglected the
electron contribution. Assuming @ evolves in time slowly compared with the trapped-ion

motion, £ can be solved as the neoclassical plasma response to E, (Rosenbluth & Hinton
1998; Xiao & Catto 2006; Mishchenko ef al. 2008). We obtain

LH = LA,BWD, (22)

https://doi.org/10.1017/50022377824001739 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824001739

4 H. Zhu, Z. Lin and A. Bhattacharjee

where A, is given by (2.7) below. Assuming that a zonal-density perturbation is applied
to the plasma at r = 0 such that E, is established without parallel flow, then the plasma
response will lead to GAM oscillations as well as the generation of parallel flow. For the
linear zonal-flow dynamics where the perturbation is small, radial momentum transport
(which is nonlinear) can be neglected, so that the toroidal angular momentum is conserved
at each flux surface, Aydy @Y, t=0) = (A, + Ay)dy P (Y, t = 00), from which we
obtain the RH residual level as

E,(t=00) _ 1

= . (2.3)
Er(t:()) 1+A1/A0

Therefore, to evaluate the RH residual level in QS stellarator configurations, we need to
quantitatively calculate A; and A,.

A general expression for A; has been derived by Mishchenko et al. (2008) using the
Boozer-coordinate representation, where the magnetic field can be written as

B=Vy xVO+:VoxViy =GV +1IVO +§VY, 2.4)

where G, I and § are the covariant components of B. To study both QA and QH
configurations, we use a helical angle ¥ = 6 — N¢ as the independent coordinate, where
N 1is the toroidal mode number of B, so that the magnetic-field strength depends on ¢ but
not ¢. Then

B=Vi{ x V9 4+yVox Vi =GyVo+1IVH + 5V, (2.5)

where (y = ¢t — N and Gy = G + NI. Therefore, for QH configurations with |N| > [¢|, the
effective rotational transform |¢y| can be much larger than |¢| in helical-angle coordinates.
We describe charged-particle gyrocentre orbits using their energy £ and pitch-angle
variable 1 = /&, where u is the magnetic moment. In QS stellarators, gyrocentre orbits
include passing orbits £ > B and trapped orbits where £ < wB.x, and we can define
the flux-surface average (- - -) and the bounce average - as

[aaovzr [ aodemyam Gt
J .

’ f = ) Ta
/dﬁ de/g /dl? deB./g/v
where vy = £,/2(€ — uB)/m; is the parallel velocity and /g = (Vi x Vi) - Vo) lis
the Jacobian. For the bounce average, the integration is from ¥ =0 to ¢ = 2n for
passing particles, and back and forth between bounce points for trapped particles. Then,
Mishchenko et al. (2008) obtained

7222 B - B\"'"| B .\’
A1:4n/dvd/1‘—1°v3 <—G2>—<—> <—G> ) 2.7)
Ty luy| [vy] vyl

Here, v = \/2E/m;, p; = /Tim;/ZeB is the gyroradius at thermal velocity, fio is the
Maxwellian distribution function and the integration is only over the passing-orbit velocity
space. Also, G is the solution of

(f) =

(2.6a—c)

UHB . VG =1Vq - V'Qh, Vg = ,OHV X (UHE), P = miv”/Z,-eB. (2.861—6‘)

Note that we have simplified (2.7) compared with Mishchenko et al. (2008) assuming that

the bounce-averaged radial drift velocity is zero, vq - Vi = 0.
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We can further carry out the calculation of A, for QS magnetic fields where B does not
depend on ¢, so that

INY)

BJE

B GNU”

UHB' V = =
BJs

Oy, vq:VY

EYJR (2.9a,b)

so that G = Gypy/tn. Using the relation (B/|v N = |vy|/B for passing orbits, we obtain

A = 4nG12\,q12V/d5d/1585ﬁ0<<|;)?|) — (I%">> (2.10)

where gy = (' is the effective safety factor. Since the particle motion in QS stellarators
is isomorphic to tokamaks in Boozer coordinates (Boozer 1983), the velocity-space
integration can be calculated following the existing literature (Rosenbluth & Hinton 1998;
Xiao & Catto 2006). Writing the magnetic-field strength as B = By[1 + € cos ¢ + O(€?)],
where € < 1 is a small parameter, A; is given by

2 2
- %‘?GN [1.662 + 0(e?)]. @.11)

The evaluation of Ay, however, depends on the geometry. In a large-aspect-ratio
concentric-circular tokamak with major radius Ry, G = ByR, and ¥ ~ Byr*/2, where
r = €R, is the radius of the flux surface, we have Ay = njom;r> and A, /Ay = 1.6¢%¢ /> 4
0(€%), which is the well-known RH result in tokamaks. In QS stellarators, however, |V /|
varies significantly on a flux surface, so that the evaluation of A is non-trivial and depends
on the geometry. In the following, we use the NAE framework to derive an analytic
expression for Ay.

2.2. Calculation of Ay from the near-axis expansion theory

The NAE framework provides a systematic approach to constructing QS stellarator
configurations. Given a prescribed set of parameters, QS configurations can be generated
using NAE expansions up to second order in € (more details on the accuracy of the
model can be found in § 3 below). However, since the RH residual is predicted accurately
to the lowest order in €, we focus on parameters required to construct first-order QS
configurations. Also, only vacuum fields are considered in the following because / does
affect B to first order in €. Then, five quantities appear in the calculation of A, and the
RH residual, including three from the axis shape ry(¢), and another two quantities 7 and
o (¢), which determine the flux-surface shaping and rotational transform. In particular,
0(0) = 0 for first-order configurations that possess stellarator symmetry (provided the
axis also possesses such symmetry), and o (0) # 0 for those which do not. Here, stellarator
symmetry refers to a property of B that (Bg, B, By) — (—Bg, B,, B;) under (R, z, ) —
(R, —z, —¢p) with respect to a reference point (chosen to be z = ¢ = 0) in cylindrical
coordinates. Correspondingly, if (R(¢), z(¢)) is a field line then (R(—¢), —z(—¢)) is also
a field line, including the axis (Dewar & Hudson 1998).

Given a magnetic axis ro(¢), we can calculate its arc length I(¢) = f |dry/de|de,
curvature k(@) and torsion t(¢). We can also define orthonormal vectors along the
axis, which are the tangent vector #(¢), the normal vector 7(¢) and the binormal

vector 6((,0). These quantities are obtained through the following relations (Mercier 1964;
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Landreman & Sengupta 2019):

TP PO (2.12a-d)
=—, Kkh=—, =txn Thn=——, 12a—
dl dl dl

where d/dl = (dl/dg)~'d/dg. Specifically, we obtain # from the first equation (which by
definition satisfies |#| = 1), ¥ and 7 from the second equation assuming x > 0 and |71| = 1,
b from the third equation and 7 from the last equation. This procedure can be carried
out when « does not vanish anywhere, which applies to the QA and QH configurations
(Landreman & Sengupta 2018). For first-order vacuum QS configurations, the magnetic
fields are given by

B=G,Vg, Gy=ByR,, Ro=I(¢=2m)/2m, (2.13a—c)

where By is the value of the magnetic field on the axis and 2R, measures the total length
of the axis. Also, the Boozer toroidal angle ¢ is defined such that d//d¢ is a constant,
namely,

@ =1/R,. (2.14)

The corresponding equilibria are represented as

1 .
r(Y, %, @) = ry(@) + € [— cos Da(p) + _ﬁz(sin Y + o cos z?)b(tp)] +0().  (2.15)
K ]
Here, € = 14/2v/By, where 7 is a constant in the model that describes the variation of B
along the flux surface; 0 = o (@) is the solution of the Riccati equation

nt ) 2G()T_)2'E

9 - (14024 ]
0 Kt Byk?

de

=0, (2.16)

where the on-axis rotational transform ¢, is found together with the solution o (¢) that
satisfies the periodic boundary condition in ¢. From (2.15), flux surfaces with constant
Y are rotating ellipses, which are characterized by their elongation tan ¢ and tilt angle ®
with respect to 7. These two quantities can be obtained from (Rodriguez 2023)

2% /K? —207?/K?

in2¢) = ——, tan(2®) = ——.
sin(2¢) 1+ 02+ 0%/ k4 an(20) 1+02—0*/k*

(2.17a,b)

(Note that © is a geometric poloidal angle measured in configuration space, which is not
the same as ©.) Therefore, the flux-surface shape is determined by both 7 and o (¢), and
0 (0) = 0 for configurations that also possess stellarator symmetry.

Given a NAE configuration described above, we calculate A, as follows. Using the

relation
vy 1 or or 2.18)
= —— X —, .
Jg89% 0o
and
or € . . €K . N 5 ar n
— = ——sindn+ —(cos —osin?)b+ O(¢”), — = Rpt+ O(¢), (2.19a,b)
v K 0? R1%
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we have (to the lowest order in €) (Jorge & Landreman 2021)

vyl L1 ar ar] e :
VY = — __rx_r =f— 77—sin219—|—If—(cosé‘—osinﬁ‘)2 , (2.20)
B? B> | /gd¥ ¢ n? | k2 n?
and obtain
|V‘/f|2 miniezfl ﬁz i 2 de
Ay = mn; = — - =+ =1 —, 2.21
0 ’””<Bz 2 [ alet 0|5, 2.21)

The RH residual is then calculated as

I 1
14+ Ay /Ay 1+ 1.64%€172/C+ O(e%)

(2.22)

Compared with concentric-circular tokamaks with the same € and ¢, the RH residual in
QS stellarators is modified by a geometric factor C, which is given by

1 27 1 ﬁz P 5 d(p

The expected result C =1 for concentric-circular tokamaks can be recovered with
n=«k=Ry and 0 = 0. (Note that, for tokamaks, a non-zero on-axis current density
should be included in the first-order NAE equations in order to have non-zero rotational
transform.) For stellarator configurations with 77 # « and o # 0, we have 7%/« + (1 +
02)/n? > 24/1 + 02 > 2 so that the integral is always larger than one, leading to possible
enhancement of the RH residual. The denominator (7R,)?, however, depends on the
configuration. Although 7 is a free parameter in the NAE theory, it is often chosen to
maximize ¢, while approximately minimizing the flux-surface elongation at the same time
(Rodriguez et al. 2023). For the precise QA configuration studied in § 3, we found that
(7Ry)?> < 1 and C > 1, leading to enhanced RH residual. For precise QH configuration,
(7Ry)? > 1 and C < 1, but the RH residual is still much larger due to the small effective
safety factor |gy| = |to — N|~' (Plunk & Helander 2024). Also note that o (0) is often
chosen to be zero so that the configuration possesses stellarator symmetry. From (2.23),
it appears that non-stellarator symmetric configurations with non-zero o (0) could lead
to larger (1 + o%) and hence larger RH residual. However, (2.16) indicates that (i) — N)
scales inversely with (1 + o2) at large o due to the periodic boundary condition in ¢, so
that the residual level does not necessarily increase with increasing o (0).

2.3. Geodesic acoustic modes in quasisymmetric stellarators

For numerical verification of the RH residual flow in a gyrokinetic code, one often initiates
the simulation with a radially sinusoidal ion gyrocentre density perturbation and observe
the time evolution of the corresponding radial electric field E,. For these simulations, E,
exhibits damped GAM oscillations at the beginning and reaches the stationary RH residual
at the end. Since GAM oscillations are always present, it is also of interest to understand
the GAM frequencies and damping rates. In tokamaks, the elongation is found to affect
both the RH residual level (Xiao & Catto 2006) and the GAM frequency (Gao 2010).
Here, for QS stellarators, we expect the geometric factor C to play a similar role. In the
drift-kinetic regime, a comprehensive analytic derivation of the GAM frequency in circular
tokamak geometry has been given by Sugama & Watanabe (20064, 2008), Gao et al.
(2008) and Dorf et al. (2013). Here, we present an outline of the derivation from Sugama
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& Watanabe (2006a), which is slightly modified due to the QS stellarator geometry, as
well as simplified assuming @ = (@) for reasons discussed below. Under the radially local
approximation, we write the ion gyrocentre distribution function as fiy + Re(5f exp(iky /))
and the potential as Re(® exp(iky,v)), where ky, is the wavenumber in /. Neglecting the
gyroaveraging operator, the linearized gyrokinetic equation for ions is written as

9 a A ed
(5 + UHb -V + 1a)d) (Sf = —(U”b -V + iwd)ﬁOT—, (224)
i0

where wyq = kyvq - Vi is the drift frequency and b = B/B. Note that, here, 1 and V)
are treated as the independent velocity-space variables, namely, v, no longer depends on
spatial variables. This simplification is made assuming the GAM frequency ~ v;/Ry is
much larger than the ion transit frequency ~ v /gRy (Dorf et al. 2013). This assumption is
justified for tokamaks with ¢ > 1, where the existing GAM theories have been developed
and tested. For QS stellarators, this criterion will be replaced by ¢gy/+/C > 1, as discussed
below. For vacuum fields, /g = Gy/B?, Gy = Gy = BoRy and B = By[1 + e cos ¥ +
0(€?)], we have

i Gl

UHb'V% 813, Wy ~

ky 8y sin 1, (2.25a,b)
Rogn Rogn Ve

where 8, = eBoRogn(py + 1/Ziev)) represents the neoclassical finite-orbit-width effects
and the toroidal derivative 9, has been omitted for the zonal-flow dynamics. The
potential @ is solved from the long-wavelength limit of the gyrokinetic Poisson equation
(quasineutrality condition)

nioh; - e(@ — (D))
Vo (SR VL0) = —@h—sn). on = — (2.26,b)

Here, én; is a gyroaveraged version of §n; and will be approximated by the latter in
the following. For concentric-circular tokamaks, one can Fourier decompose in ¢, §f =
>, 8fme™ and @ =Y @, e™ and obtain the following results:

b [0 Sny, D,
M Ay o), I = form #£0, (2.27a.b)
Nip T 7 0

where 8n,, = [ d*vf,, and py = pi|VY|, with p; = /miTy/ZeB the ion gyroradius.
For QS stellarators, however, |V/|?/B?* varies significantly with ¢ and ¢ (2.20), so that
different poloidal and toroidal Fourier harmonics are coupled. While the solution for the
zonal part (@) is still given by @y in (2.27a,b) with only a small O(k;,p;,) correction,
the solution for the non-zonal part @ — (@) can be significantly different from @, in
(2.27a,b), and solving them correctly can be a non-trivial task. For simplicity, we assume
® = (@) and neglect the contribution from the non-zonal potential in the following.
This is also consistent with the RH analysis where @ = (@) has been assumed for the
calculation of Lz.p (2.1a,b), and can be achieved within the adiabatic-electron model
assuming Ty < To.

With the assumption that @ = (@), the gyrokinetic equation (2.24) does not depend on
@, so that the Fourier components df;, are well defined. To solve df;, as a function of 7, we
apply Laplace transform in time, df,,, = [ dte*'sf,, and &y, = [ dte’ ®,. The m = 0
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component of (2.24) is

k8
—iw8fy — Sfo(t = 0) = 11;,,;, 0 (810 — 8 0. (2.28)
N

To obtain §f4, ,, as a function of @, ,,, we write (2.24) as

3 + Y (exp(iky 8y cos 1)8f) = u 9 exp(iky dy cos ﬁ)ﬁtp
at RoqN 819 RO qn 819 Q
(2.29)

From the relation exp(ikyd, cos®) =) i"J,(k,8,)e", where J, are the Bessel
functions, we can solve for &f,, ., as (Sugama & Watanabe 2006a)

Ofnw _ Z il’ﬁ]Jl(kwaw)sz (kwfsm/f) |: m+10) e®piir o + iaferlfl’(t =0

)] . (2.30)
fo 7 @ — (m+Dvy/Rogy LRogn/vy Tio fo

The above expression can be simplified assuming |k, 8, | < 1. Since we only consider the
contribution from @, ,, we obtain §f; ,, as

8w (kllfallf) v/Rogny €Dy n <k1p5x//)3 2(vy/Rogn)  ePo
fio 2 Jw—v/Rgy To 2 @ — 2(vy/Rogn) 2Tio

and similarly for 6f_, ,,. Here, higher-order (in k §,,) terms have been neglected, and é1; is
from §f,,(t = 0). Note that the gyrokinetic Poisson equation (2.27a,b) shows that §fy/fio 1S
smaller than e®,/T, by a factor (k, ,ow)z. Therefore, §1; can be neglected in (2.31) when
the initial condition only consists of the m = 0 component §fy(z = 0), as is the common
situation for numerical simulations.

Integrating (2.28) over (u, v), together with (2.27a,b) and (2.31), one obtains

Do = (Rogn/vi) Po(t = 0)/K(®). (2.32)
Here, @ = wRygy /vy, vi = +/2T;/m; and K (@) is the GAM dispersion function

+ 481, (2.31)

2
K(®) = —id — ig—g[%ﬁ + 30 + 20" + 20* + DZ([®) + Jrow], (2.33)

where Z(®) is the plasma dispersion function. Also

J 'ﬁ(k 84)2 exp(—a?/4) @ +5)4+3é)2+3+ 3 (2.34)
=1— ex — , .
Fow = 175~ Ky Oy ) exp 16T T2

is from the resonance condition at @ = 2v;/Rygy, which was shown to significantly
enhance the GAM damping rates. Compared with Sugama & Watanabe (2006a, 2008),
the geometric factor C appears in the ratio between 85, and ,oi

kydy)* €’R3 2

((kypy)?)  «IVYyl/B)?) C

Therefore, compared with the tokamak results, here, for QS stellarators, we replace g with
gn/~/C except for the definition of &.
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The evolution of @ with 7 is obtained through @ (¢) = f dw exp(—iwt) @, /21, where
the integration is from —oo + iy, to +00 + iy, with any positive real y,. Letting v =
w; + iy and & = &, + iy, the GAM frequencies are found from K(®) = 0 in the lower
complex plane. Analytic results can be obtained using the asymptotic expansion of Z(®)
assuming |®| 3> 1 and |y| < ||, resulting in (Sugama & Watanabe 2006a, 2008)

\/7%/ < Uy >< 46 )1/2
w[‘ = = 1 + 2 9
2 /C \Rogn 49qy/C

2 ) -1
= () (i)
2 C \Rolgn| 49qy/C

1 00 1 3
X |:exp(—c?)3)(c?)f + @) + Z(k,/,&/;)z exp(—a?/4) (1638 + Ec?)f + gé)rz)] .

(2.36)

Therefore, w.qnRo/vi ~ qn/~/C and |y /w| ~ (qn/~/C) exp(—¢3/C), so that GAM
oscillations are expected to be heavily damped in QH configurations with small g3 /C.
Note, however, that the ratio between the GAM frequency and the transit frequency is
gn/~/C, which should be larger than one in order for the above GAM theory to be valid.
While such a criterion is generally satisfied for the QA configurations studied in § 3 below,
it is not satisfied for QH configurations where ¢y/+/C < 1, so that the above GAM theory
may not quantitatively describe the heavy GAM damping in QH configurations.

2.4. Application beyond the near-axis expansion

Although the NAE description allowed us to derive an analytical expression of C (2.23), it
is not required for the theoretical description of the RH residual and the GAM oscillations.
Here, we examine the assumptions behind these theories and their validity for general QS
stellarators beyond the NAE description.

The RH residual flow is a result of the toroidal angular momentum conservation, which
is a general result in QS configurations, and the expressions (2.1a,b) and (2.7) for Ay and
A, are also general. Therefore, as long as the magnetic-field strength satisfies

B = By[l +ecos® + O(e)], (2.37)
we will have Ay ox €% and A;  1.6¢3€*?, and then the RH residual can still be written as
(1 + 1.6¢%€~"/?/C) with a small parameter € and a factor C. While C can be estimated from
the axis shape using the NAE result (2.23), it can also be more accurately calculated from
direct numerical evaluation of A,. Suppose the relation (2.37) holds and C is obtained
from either the NAE or direct numerical evaluation, the theory of GAM oscillations in
§ 2.3 can also be carried out without assuming the NAE.

The relation (2.37) holds for any QS stellarators near the axis where the NAE description
is valid, where € = nr is proportional to the inverse aspect ratio and characterizes the
variation of B along field lines. As shown in § 3.5, this relation also holds very well for
the precise QA and precise QH configurations, even if they are not obtained from the
NAE approach. In fact, a recent work has shown that a large class of QS magnetic fields
can be described by the cnoidal solutions of the Korteweg—de Vries equation, which are
dominated by the cos ¢ component even far away from the axis (Sengupta et al. 2023).
Therefore, we expect our theory of the collisionless zonal-flow dynamics to be applicable
to a large class of QS stellarators beyond the NAE.
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3. Numerical simulations
3.1. Simulation set-up

We use the global gyrokinetic particle-in-cell code GTC (gyrokinetic toroidal code!) to
simulate collisionless zonal-flow dynamics. The code utilizes global field-aligned mesh in
Boozer coordinates and has been verified for the simulation of microturbulence and zonal
flows in the stellarator geometry (Wang et al. 2020; Fu et al. 2021; Nicolau et al. 2021;
Singh et al. 2023). We choose a global code because, for the non-axisymmetric stellarator
geometry, different radially local flux tubes could lead to different results, whereas a
global code provides a simpler and more sharply defined set-up for studying zonal
flows. Note that previous studies also showed that flux-tube simulations give reasonable
approximations to the global simulation results of the RH residual when the parallel extent
of the flux tube is sufficiently long, but the flux-tube length required for convergence is
configuration-dependent, for example, 4 poloidal turns for HSX (Smoniewski ef al. 2021),
2 poloidal turns for LHD and at least 6 poloidal turns for W7-X (Sénchez et al. 2021).

We use single-species deuterium ions with m; = 2m,,, Z; = 1, and uniform n;y and Tj.
Att = 0, we choose a radial location v, and apply a radially sinusoidal perturbation in the
ion weights in a narrow range V¥ € [V¥o — AV /2, ¥y + Ay /2] so that

W — —wsin (2:1‘#;]#%) . w< L. (3.1)

In other words, we apply a zonal-density perturbation with wavenumber k, = 2 /A at
the flux surface v, similar to the flux-tube simulations. We can apply the perturbation at
different radial locations with varying ¥ and study the dependence of the RH residual on
€ = nrwith r = /2y/By. We also choose Ay = 0.2/, where ¥, is the value of v
at the outermost flux surface of the equilibrium, so that the zonal-flow wavelength Ar =
0.1a is always 1/10 of the minor radius at the boundary a = /2, /By, and ky, py, and k8,
(and hence the GAM frequencies) become independent of 1/,. For each configuration,
we choose 8 different values of v corresponding to r = 0.24, 0.3a,..., 0.9a, which are
evenly spaced and away from the inner and outer radial boundaries v, = 0.01y, and
Yo = ¥, used in the simulations. We note that, as r decreases, the zonal-flow wavelength
Ar becomes comparable to r, so that € becomes less well defined and the simulation results
are expected to deviate from the theory. For this reason, the radial location r = 0.1« is not
included, even though it is still away from the inner boundary. At ¢ > 0, the ion weights
are evolved from the delta-f gyrokinetic equation

(Lo + SL)Sf = —8Lf, (3.2)
with
.9 . uB* - VB 9 . ZeB* - V], ® 9
Lo=— b v L=y V-—— 0"
0 dt * (v” + vd) miB a'l)H vE miB 81)”
(3.3a,b)

Here, vz = b x V(J,®) /B is the E x B-drift velocity, Jo denotes gyroaverage on @, B* =
B(1 + pyV x b) and f, is chosen to be Maxwellian. With the assumption T,y < Ty, the
potential @ = (@) is obtained from the gyrokinetic Poisson equation (2.26a,b).

Uhttps://sun.ps.uci.edu/gtc
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RH
Configurations Ny N Ro qN n C  residual @™ oMMy pnum
Ist-order QA,a 3 0 102 —-292 0.60 5.11 0.11 0.82 079 -0.09 -0.11
Ist-order QA,b 3 0 102 -256 070 315 009 096 096 —-0.06 —-0.06
Ist-order QA,c¢ 3 0 102 -2.44 0.80 218 0.07 .09 110 -0.05 -0.05
2nd-order QA 2 0 106 244 0.63 428 012 092 08 —0.12 -0.12
2nd-order QH 4 4 120 -0.35 157 045 046 456 N/A -230 NA
Precise QA 2 0 107 236 0.68 354 0.1 096 094 —-0.09 -0.09
Precise QH 4 —4 127 036 150 042 046 450 NA -2.07 NA

TABLE 1. Summary of the configurations studied in this paper. Here, Ny, is the field period.
The value of gy is taken at the axis. The RH residuals are theoretically calculated at € = 0.1.
The GAM frequencies and damping rates are normalized to v /R( and are independent of €
since ky 8y, does not depend on ¢ in our simulations. Here, 2" + iy is the solution of the
dispersion function (2.33) and @™ + iy ™™ is obtained from numerical fitting of the simulation
data for QA configurations. Numerical fitting is not applicable to QH configurations where GAM
oscillations do not exist.

In the following, we present simulation results for several first-order and
second-order vacuum QA and QH configurations obtained from the NAE approach
(Landreman et al. 2019; Landreman & Sengupta 2019), as well as the ‘precise QA’
and ‘precise QH’ configurations obtained from global optimization (Landreman & Paul
2022). These configurations are generated by VMEC? . For the NAE configurations, the
VMEC input files are generated by pyQsc® , which prescribes their fixed outermost flux
surfaces at a = /2v,/By = 0.1 m with By = 1 T. In other words, while their boundaries
are described by the NAE, these VMEC equilibria are still global and are not identical
to the NAE inside the boundary (Landreman & Sengupta 2019). For the precise QA
and precise QH configurations, the corresponding VMEC equilibria are readily available
from Landreman (2021), and the outermost flux surfaces correspond to a = 0.16 m and
a = 0.11 m, respectively. With the VMEC equilibria, the geometry and the magnetic fields
are then converted to Boozer coordinates using BOOZ_XFORM?*, which coordinates are
used for the GTC simulations. Several geometric parameters of these configurations are
summarized in table 1, and all these configurations possess stellarator symmetry. For the
numerical details, we choose n;y = 10" m~ in our simulations, which does not enter our
results on the RH residuals and GAM frequencies. The choice of T}y, however, requires
further justification. The RH analysis assumed a small but finite |ky 8| ~ |ky 0y gn/ JC R
so that Tjy cannot be too large. Since the stellarator configurations presented here have
relatively small radius » ~ 0.1 m and weak magnetic field By =~ 1 T, we choose T;p = 1 eV
for the QA configurations and Ty = 5 eV for the QH configurations, which correspond to
|ky 8y | = 0.15 for the precise QA and precise QH configurations in § 3.5 below. The mesh
grids have a radial resolution of a/200 ~ 0.5 mm (20 grids per zonal-flow wavelength)
and a poloidal resolution of 1 mm (about 5p;). In the toroidal direction, we simulate one
field period of the configurations with N, (N, + 1) planes. Here, N, planes are used where
on; 1is calculated for solving @, and an additional N, planes are inserted between each
neighbouring two of the N, planes where magnetic fields are interpolated for pushing

Zhttps://princetonuniversity.github.io/STELLOPT/VMEC.html
3https://landreman. github.io/pyQSC
“https://hiddensymmetries.github.io/booz_xform
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FIGURE 1. Simulation results for concentric-circular tokamaks. (a) The radial electric field
E,(¢) at ¢ = 0.05 normalized to its initial value with increasing q. At ¢ = 1.8, GAM oscillations
become persistent and do not damp to zero. (b) Same as (a) but with decreasing g. The GAM
oscillations indicated by the text arrow are heavily damped and eventually become non-existent.
(c) Comparison between analytical (curves) and numerical (markers) results for the RH level.

particles (Wang et al. 2020). We use N, = 2, and note that GTC prefers N,(N, + 1) 4+ 1 to
be even for the periodic cubic spline, so we choose N, = 15 for the QA configurations, and
N, = 31 for the QH configurations. Approximately 100 marker particles per mesh node are
used, and the simulation time step is 0.02R,/vy;. The simulation results are well converged
for these choices of parameters.

3.2. Concentric-circular tokamak configurations

Before presenting the results in QS stellarators, we first show results in several
concentric-circular tokamak configurations with different g. Although the theoretical and
numerical results have been well established for tokamaks, the results shown here will help
give an overall picture on the zonal-flow behaviours, in particular the unusual behaviours
at small and large g. These tokamak configurations can be described analytically in GTC
with major radius Ry = 1 m and minor radius at the outer boundary a = 0.1 m. The
magnetic field is given by B = GoV¢ + ¢ 'V x Vi, with Gy = ByR, and By =1 T,
and the Boozer toroidal angle ¢ is minus the cylindrical toroidal angle, i.e. ¢ = —¢. We
simulate 1/24 of the torus with 4 planes, and the other simulation parameters are similar
to those described above.

Figure 1(a) shows the results at ¢ = 1.0, 1.4 and 1.8. At ¢ = 1.4 the zonal flow behaves
in the expected way, namely, damped GAM oscillations followed by the RH residual
flow. At g = 1.0 the GAM is quickly damped, followed by a slow relaxation to the RH
residual flow. At g = 1.8, however, GAM oscillations become persistent and do not damp
to zero, even though the theory in § 2.3 still predicts a finite y < 0. These undamped GAM
oscillations occur around ¢ ~ 1.6, and they have also been observed in GTC simulations
in the past (Lin et al. 2000) as well as from another global gyrokinetic code COGENT
(Dorf et al. 2013).

Figure 1(b) shows the results at ¢ = 0.9, 0.7 and 0.5. As ¢ decreases, the GAM
oscillations are heavily damped and eventually become non-existent at ¢ = 0.5, when the
initial perturbation relaxes to the residual flow through a slower oscillation. These slower
oscillations cannot be described by the GAM theory in § 2.3, since g < 1 is outside its
applicable range.

Finally, figure 1(c) shows the RH residual level at different ¢, and theory and simulation
results agree well (within a 10 % difference). This is expected as the RH flow is a result
of the toroidal angular momentum conservation regardless of the GAM behaviours. Also
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FIGURE 2. The Fourier spectrum of B for the first-order NAE QA configurations. Shown is
JY 312\4 , where the summation is over the range in (M, N) indicated by the legends.

note that the theory and simulation results start to deviate at the smallest €, where the
zonal-flow wavelength becomes comparable to the minor radius so that € itself becomes
less well defined.

3.3. First-order NAE configurations

For first-order NAE configurations, we follow the examples presented in Landreman et al.
(2019). For QA configurations, the axis shape is chosen to be

ro(@) = (1 + 0.045 cos 3¢)ex — 0.045 sin 3¢e., (3.4)

where ¢ is the cylindrical (not Boozer) toroidal angle. To see the effects from 7, we
compare three different configurations with 7 = 0.6, 0.7 and 0.8, which are labelled by
‘a’, ‘b’, ‘c’ in table 1, respectively. For these configurations, the magnetic-field strength
can be written as B = )_ By cos(M® — Ng), where Byy is the Fourier spectrum in
Boozer coordinates calculated from BOOZ_XFORM, and only the cosine components
are included due to stellarator symmetry. Figure 2 shows the amplitude of the N =0
components, which are QS, and the amplitude of the N # 0 components, which are
QS-breaking. It is seen that B is dominated by the (M, N) = (1,0) QS component, but
the N # 0 QS-breaking components are also significant; in particular, they remain finite
near the axis, which seemingly contradicts the NAE description. As mentioned above,
while their boundaries are prescribed by the NAE, these VMEC equilibria are global and
not identical to the NAE inside the boundary. Landreman & Sengupta (2019) showed that,
if we prescribe the boundary at r = a from the first-order NAE theory, the axes of the
resulting VMEC equilibria will slightly differ from the original axes assumed by the NAE,
resulting in a O((a/Ry)*) QS error even at the axes. Therefore, we do not expect these
configurations to be close to QS even near the axes.

The GAM oscillations nevertheless behave as expected, and are insensitive to the QS
property. As shown in figure 3(a,b), C decreases with increasing 7 so that the GAM
frequency increases. Meanwhile, the GAM damping rate also decreases due to increasing
qx/C. To compare with the analytic results, the simulation results are often fitted with the
following formula (Sugama & Watanabe 2006a):

E,(1)
E.(0)

= RH + (1 — RH) cos(w!""1) exp(y™™"1), (3.5)

where RH is the residual level. However, we found it difficult to achieve a globally good
fit, because the initial GAM damping rate is much larger than the late-time damping rate
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FIGURE 3. Simulation results for the first-order NAE QA configurations. (a,b) The radial
electric field E,(¢) at € = 0.05 normalized to its initial value. The GAM oscillations and the RH
levels are shown separately in two figures for a clearer view. (c) Comparison between analytical
(curves) and numerical (markers) results for the RH level. The configurations have the same
range in r but different a range in € = 5r due to their different 7.

as E, approaches the RH residual. The reason is that, as with the typical Landau-damping
process, the initial perturbation is not a GAM eigenstate, which only emerges at large ¢
after the initial fast damping due to phase mixing. Therefore, we ignore the initially large
GAM damping rates, and numerically find (o™, y™™) that matches E, as it approaches
the RH level. Comparison with solutions of the dispersion function (2.33) are shown in
table 1, and both w, and y agree well with the theoretical prediction. Also note that the
GAM oscillations do not completely damp to zero at i = 0.8 where |gy|/+/C = 1.65,
consistent with the observation in figure 1.

For the RH level, however, numerical results do not agree with the theoretical
predictions. As shown in figure 3(c), theory and simulation results do not show any
agreement. Further, as € increases, the numerical RH level actually decreases, in contrast
to the theory. This is not a surprise considering the large QS-breaking components shown
in figure 2. In fact, Helander et al. (2011) studied the effects of radially unconfined trapped
particles and found the long-time residual level to be

E(oo)z[1 o | BYe ]“
E(0) NG

where the factor 8 comes from the unconfined particles. At small |k, py |, B/ (ky py)* can
be large and hence can provide a possible explanation for the observed decrease in the RH
level at large €.

For the first-order QH configurations, the example presented in Landreman & Sengupta
(2019) has @ = 0.025 m, so it is 4 times thinner than the first-order QA configurations. The
reason is that, due to the strongly shaped axis, the first-order QH configuration achieves
the same level of QS-breaking components in B at a 4 times smaller » compared with the
first-order QA configuration. Therefore, we expect even more significant QS errors for the
first-order QH configuration at larger radius a ~ 0.1 m, so we skip this configuration and
proceed to second-order NAE configurations below.

(3.6)

3.4. Second-order NAE configurations

We have seen that, for the first-order NAE configurations, the QS-breaking components
of B are significant, resulting in disagreement in theory and simulation results on the
RH level. To see if such deviation can be reduced with reduced QS error, we test the
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FIGURE 4. The Fourier spectrum of B in helical angle (¥, ¢) for the second-order NAE QA

and QH configurations. Shown is ./ ZBJZW , where the summation is over the range in (M, N)
indicated by the legends.

second-order NAE QA and QH configurations from Landreman & Sengupta (2019). For
the second-order QA configuration, the axis is chosen to be

ro(¢p) = (1 +0.173 cos 2¢ + 0.0168 cos 4¢ + 0.00101 cos 6¢)er
4+ (0.159 sin 2¢p + 0.0165 sin 4¢ + 0.000985 sin 6¢)e., (3.7)

with 7 = 0.632. For the second-order QH configuration, the axis is

ro(¢) = (1 +0.17 cos 4¢ + 0.01804 cos 8¢ + 0.001409 cos 12¢
+ 0.00005877 cos 16¢)exr + (0.1583 sin4¢ + 0.0182 sin 8¢
4 0.001548 sin 12¢ + 0.00007772 sin 16¢)e;, (3.8)

with 7 = 1.569. The normal vector n rotates around the axis poloidally four times as the
axis is traversed toroidally, resulting in N = 4. For these configurations, the boundary at
r = a is carefully chosen so that the axes of the resulting VMEC equilibria are much
closer to the original axes assumed by the NAE, which reduces the QS error at the axis
to O((a/Ry)?). As shown in figure 4, the QS-breaking components of B are much smaller
compared with the first-order configurations near the axis (figure 2). However, a toroidal
variation in B has to be introduced in order to construct these configurations, which is zero
at the axis and increases with r as O(r/Ry)>. Therefore, strictly speaking, the QS-breaking
components remain at O(e?) rather than O(e?) for the second-order NAE configurations.

Numerical results are shown in figure 5. For the second-order QA configuration, the
GAM oscillations are very similar to the first-order QA in figure 3; the numerical fitting
formula (3.5) provides a reasonable description at large ¢, and the numerical and theoretical
frequencies also agree. Meanwhile, the RH residual agrees much better with theory at
small €, but still deviates from theory at large € due to the increasing QS error. For the
second-order QH configuration, gy/+/C = 0.48 and E, quickly drop to the RH residual
without GAM oscillations, consistent with the result in tokamaks with ¢ = 0.5 (figure 1)
as well as previous numerical results from simulations of zonal flows in HSX (Smoniewski
et al. 2021). Since GAM oscillations do not exist, the numerical fitting (3.5) is not
applicable to the QH configuration. Also, despite the small C, the RH level in the QH
configuration is still much larger than the QA configuration due to the small |gy|, as
predicted by an earlier study (Plunk & Helander 2024). However, the simulated RH
level is still much lower than the theoretical prediction, indicating that the QS-breaking
components of B are still significant.
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FIGURE 5. Simulation results for the second-order NAE QA and QH configurations. (a,b)
Values of E,(f) at € = 0.05 for QA and QH. The black dashed curve is from the numerical
fit (3.5). (b) Comparison between analytical (curves) and numerical (markers) results for the RH
level. The QH configuration has the same range in r as the QA configuration, but a larger range
in € = nr due to its larger 7.
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FIGURE 6. The Fourier spectrum of B in helical angle (9, ¢) for the precise QA and QH

configurations. Shown is /> Bzzwv’ where the summation is over the range in (M, N) indicated
by the legends.

3.5. The precise QA and QH configurations

The precise QA and QH configurations are obtained from global optimization using
the software framework SIMSOPT (Medasani et al. 2024). As shown in figure 6, the
QS-breaking components of B are very close to zero. Also, the QS components of B
are still dominated by M = 1, so that B = By[1 + € cos ¥ + O(e?)] holds, even though
they are not generated from the NAE approach. Quantities such as 7 and o can also be
obtained near the axis and used to calculate C, which showed good agreement with direct
numerical evaluation of (|V/|?/B?). As shown in figure 7, numerical results of the GAM
dynamics are qualitatively similar to the NAE configurations. For the RH residual, good
agreement between theory and numerical results can be achieved throughout the volume
for both the QA and QH configurations, the difference being less than 10 %. Therefore,
the theoretical description of the collisionless zonal-flow dynamics can be applicable to
actual QS stellarator configurations when the QS-breaking components of B become small
enough.

4. Conclusions

The linear collisionless plasma response to a zonal-density perturbation in QS
stellarators is studied, including the GAM oscillations and the RH residual-flow level. It is
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FIGURE 7. Simulation results for the precise QA and QH configurations. (a,b) Value of
E.(r) at € =0.1. The black dashed curve is from the numerical fit (3.5). (b) Comparison
between analytical (curves) and numerical (markers) results for the RH level. The precise QH
configuration has a smaller range in r than the precise QA configuration, but still a larger range
in € = nr due to its larger 7.

found that, while the GAM oscillations in QA configurations are similar to tokamaks, they
become non-existent in QH configurations due to the small effective safety factor gy in
helical-angle coordinates. Compared with concentric-circular tokamaks, the RH residual
is also found to be modified by a geometric factor C, which we derived analytically using
the NAE framework. It is found that C > 1 for the QA configurations and C < 1 for the
QH configurations studied in the paper. Nevertheless, the QH configurations still have
much larger RH residual due to the much smaller gy. These analytic results are compared
with numerical simulation results from GTC. While the GAM physics is reasonably
predicted by the theory, we found that, for the RH residual level, good agreement between
analytical and numerical results is achieved only when the amplitude of the QS-breaking
magnetic-field component is small enough. Since zonal flows can be important for
regulating turbulent transport, these results suggest a possible relation between the
transport level and the stellarator geometric parameters via nonlinear interactions with
zonal flows.
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