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SUMMARY

Using isolates from reported cases of Escherichia coli O157 from Alberta, Canada in 2002,

we applied randomization tests to determine if cases associated with an outbreak or statistical

space–time cluster had more similar pulsed-field gel electrophoresis patterns, based on Dice

coefficients, than expected by chance alone. Within each outbreak and space–time cluster, we

assessed the mean, median, 25th percentile, 75th percentile, standard deviation, coefficient of

variation, and interquartile range of the Dice coefficients of each pairwise comparison among

the isolates. To assess the statistical significance of measures of location (e.g. mean) and variation

(e.g. standard deviation) we created randomization distributions using all isolates or only isolates

from sporadic cases. We determined that randomization tests are an appropriate tool for

evaluating the similarity among isolates from cases that have been linked epidemiologically or

statistically. We found little difference between using all cases or only sporadic cases when

creating our randomization distributions.

INTRODUCTION

Escherichia coli O157 is a significant human pathogen

that is routinely detected in public health surveillance

programmes in Europe, North America, and Japan

[1–4]. It is a major cause of gastroenteritis, haemor-

rhagic colitis, and haemolytic–uraemic syndrome

in these regions [5]. Although E. coli O157 is a

major foodborne pathogen [6], infections have also

been associated with contaminated drinking and

recreational water [7], direct exposure to shedding

animals or humans [8, 9], and exposure to environ-

ments contaminated with this pathogen [10]. Both

sporadic and outbreak cases have been reported, and

the use of molecular techniques has facilitated the

identification of cases associated with a common

source [11].

A variety of molecular typing methods have been

proposed for outbreak investigation and routine sur-

veillance [12]. For the identification of enteric patho-

gens, such as E. coli O157, the use of pulsed-field gel

electrophoresis (PFGE) has become increasingly

widespread throughout North America and the

world. The use of PFGE for surveillance has often
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involved the expansion or creation of PulseNet-like

molecular subtyping networks [1]. The popularity of

PFGE for epidemiological studies of E. coli O157 is

largely attributed to its high discriminatory power

and reproducibility relative to other methods [13]. In

retrospective evaluations, PFGE has proven highly

effective at differentiating isolates associated with

different outbreaks and in discriminating outbreak-

associated isolates from sporadic case isolates [14–16].

In public health settings, PFGE has proven invaluable

in the surveillance of E. coli O157 and some out-

breaks have been detected based on PFGE-subtype

surveillance alone [11]. The usefulness of PFGE sub-

typing networks of laboratories is highlighted by

their ability to recognize outbreaks over multiple

jurisdictions [2, 17].

Despite the success of PFGE in surveillance and

epidemiological investigations, there are both techni-

cal and theoretical concerns about the use of this

molecular technique [18, 19]. Users of subtyping

methods based on banding patterns, like PFGE, are

often required to make subjective decisions concern-

ing pattern designation and the degree of similarity

among patterns. The use of computerized systems for

assisting in the assignment of bands relative to known

standards helps perform these tasks but still requires

manual editing and an element of subjectivity [20].

Consequently, there are efforts to produce typing

techniques that provide more objective or binary

results [18, 21]. Using PFGE to determine the degree

of genetic similarity among isolates has also proven to

be a contentious issue. Due to the lack of correlation

in similarity coefficients among banding patterns

produced by different restriction enzymes, it has been

estimated that at least six enzymes are required to in-

fer genetic relationships among isolates subtyped

using PFGE without epidemiological data [19]. The

lack of character independence among bands in

PFGE patterns also limits the reliability of phylo-

genetic analyses based on this subtyping method [22].

However, surveillance programmes using PFGE for

subtyping E. coli O157 rarely apply this technique

without epidemiological data, and public health

workers are generally not as interested in evolutionary

relationships as population geneticists or evolution-

ary biologists.

In surveillance programmes and outbreak in-

vestigations, PFGE is used along with spatial, tem-

poral, and other epidemiological information to make

decisions concerning relationships among cases. In

this context, phenotypic similarity among banding

patterns is a relevant matter even if based on a single

restriction enzyme. Based on epidemiological in-

vestigations, the banding patterns of isolates from

outbreaks are often identical or highly similar based

on the PFGE patterns produced by a single enzyme

[14, 15, 23]. Recently, spatial scan statistics have been

used to retrospectively identify outbreaks of E. coli

O157 using a space–time permutation model [24].

These outbreaks were validated based on the spatio-

temporal location of previously confirmed outbreaks

and/or the number of isolates sharing a banding pat-

tern. However, the presence of a few highly related

isolates in a cluster of cases may be explained by

chance alone depending on the size of the cluster and

the typical degree of variability in banding patterns

among isolates identified in a molecular surveillance

programme. Consequently, the question of pheno-

typic similarity within a cluster of cases needs to be

expressed as more than the function of the number of

shared bands or the number of isolates sharing a dis-

tinct pattern. It may be more important to assess

whether the degree of similarity or variation among

patterns is significantly different from what would be

expected by chance events.

Dice coefficients are frequently used as a measure of

similarity for band-based molecular techniques [25].

Dice coefficients are calculated by multiplying the

number of shared bands between two patterns by two

and then dividing by the sum of the number of bands

in each pattern. A variety of statistics, such as the

mean or median, can be applied to Dice coefficients to

measure the similarity among a cluster of isolates

believed to come from a common source. However,

establishing statistical significance to these measures

requires some type of distribution. In theory, one

could establish an empirical distribution by looking at

a series of isolates collected by a surveillance pro-

gramme over a defined period of time (e.g. a calendar

year). By using all possible permutations of clusters of

a fixed size from this database, an empirical distri-

bution could be created. The percentile that a cluster

of interest fell into relative to this distribution could

be used to assess the statistical significance of the

cluster. Unfortunately, enumerating all possible per-

mutations can become computationally quite de-

manding. For instance, the number of possible

permutations of 10 isolates from a population of 50

isolates is 1.03r1010. However, a large sample taken

randomly from this population can provide an ad-

equate representation of the complete enumeration

[26, 27]. In fact, these types of randomization tests,
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also referred to as Monte Carlo hypothesis tests, have

found a wide range of applications in biology and

spatial epidemiology [27–29].

Based on a retrospective review of banding patterns

from PFGE analyses performed on isolates from re-

ported cases of E. coli O157, we created a randomi-

zation test to determine if cases associated with an

outbreak or statistical space–time cluster were more

similar and showed less variation than expected by

chance alone. An outbreak was defined as two or

more cases sharing an epidemiological link. A

space–time cluster was defined as a statistically sig-

nificant space–time cluster identified using a space–

time permutation model. Dice coefficients were used

to assess the similarity in PFGE patterns among the

isolates of these outbreaks and space–time clusters.

Our research objectives included determining: whe-

ther isolates from outbreak-related cases have stat-

istically greater similarity and lower levels of variation

than expected by chance; the impact of outbreak size

on the significance level of various measures of simi-

larity and variation; the impact of including all cases

or only sporadic cases for creating a randomization

distribution.

METHODS AND MATERIALS

Molecular and epidemiological data

The Alberta Provincial Laboratory for Public Health

(Microbiology) is a member of PulseNet Canada and

CDC-PulseNet. Like other laboratories within these

networks, its members followed a standardized pro-

tocol for performing PFGE to facilitate the sharing of

these patterns among different laboratories and jur-

isdictions [30]. They routinely performed PFGE,

using the restriction enzyme XbaI, on all reported

cases in Alberta where a microbiological sample was

available. These PFGE patterns were stored elec-

tronically using BioNumerics software version 2.5

(Applied Maths, Kortrijk, Belgium).

We reviewed the laboratory’s electronic database

for all isolates processed in 2002. For our subsequent

analyses, we only included isolates from human cases

that were Alberta residents whose symptoms first ap-

peared in 2002. In a small number of cases (<2%),

multiple PFGE patterns were available from a single

case due to the collection of multiple faecal samples

from the same patient. In these cases, only the first

isolate processed by the laboratory was used in sub-

sequent analyses. In total, 248 isolates from sporadic

and outbreak cases were included in creating ran-

domization distributions except when the analysis

only involved isolates from sporadic cases (n=184).

Cases were defined as sporadic or part of an out-

break based on Notifiable Disease Report (NDR)

data compiled in the Communicable Disease Report-

ing System (CDRS) maintained by the Disease Con-

trol and Prevention Branch of Alberta Health and

Wellness. Sporadic cases were defined as those

that were not linked to another case by epidemio-

logical evidence. Outbreak cases were identified in the

CDRS as sharing an epidemiological link based on a

unique identifier or common address. We described

outbreaks where all cases shared a single address as

‘household outbreaks’. In contrast, outbreaks where

cases came from two or more addresses were defined

as ‘community outbreaks ’. A more detailed descrip-

tion of the data editing involved in identifying out-

break cases in the CDRS has been described

previously [24]. The protocol for this research was

approved by the University of Guelph Research

Ethics Board.

Statistics

PFGE patterns among isolates were compared using

BioNumerics version 2.5 (Applied Maths). Optimiza-

tion and position tolerance settings were based on

empirical tests using 20 isolates with four unique

laboratory-identified PFGE patterns (five isolates per

pattern). Each isolate came from a different gel. Using

the unweighted pair-group method using arithmetic

averages (UPGMA) and testing the effect of position

tolerance settings and optimization parameters over a

range of 0–4% (increasing both together at 0.5% in-

crements), we found that a setting of 0.5% for the

optimization and position tolerance made the fewest

errors in terms of grouping isolates with the same

patterns.

A matrix of Dice coefficients used to compare the

similarity in banding patterns among the study iso-

lates was exported from BioNumerics version 2.5 as a

text file. The text file was edited in Intercooled STATA

8.0 (Stata Corp., College Station, TX, USA) for

Windows and this software was used to create our

randomization distributions. These distributions were

created for clusters ranging from 2 to 10 isolates. A

program written in STATA performed the following

operations 10 000 times : randomly select a fixed

number of isolates without replacement ; calculate

the mean, median, 25th percentile, 75th percentile,
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standard deviation, coefficient of variation and inter-

quartile range of Dice coefficients from all possible

pairwise permutations of the randomly selected iso-

lates ; and store the results of each iteration in a

common file. These randomization distributions were

created with all recorded isolates (n=248) and later

with only isolates from sporadic cases (n=184). Using

these randomization distributions for each cluster size

(i.e. 2–10 isolates), we determined the Dice coefficient

that marked the 2.5, 5, 10, 25, 50, 75, 90, 95, and 97.5

percentiles. These percentiles were used to determine

the statistical significance of similarity and variation

among isolates found in outbreaks and space–time

clusters. For instance, a mean Dice coefficient that fell

above the 97.5 percentile or below the 2.5 percentile of

a randomization distribution would have a P value of

<5% for a two-tailed test.

Outbreaks assessed

We assessed the statistical significance of the measures

of location and variation of Dice coefficients among

isolates from eight community outbreaks, 10 house-

hold outbreaks, and two space–time clusters identified

in 2002 in Alberta. The space–time clusters were

identified using a space–time permutation model

with SatScan version 3.1.2 [24, 31]. We only included

outbreaks where an isolate was analysed with

PFGE in more than 75% of cases. Only 4 of 22

epidemiologically identified outbreaks failed to meet

this criterion. Under our one-tailed null-hypotheses,

the measures of location (e.g. mean) of Dice coef-

ficients within an outbreak would not be greater than

expected by chance and measures of variation (e.g.

standard deviation) would not be less than expected

by chance. We assessed these outbreaks using

randomization distributions produced with all re-

corded isolates and with only isolates from sporadic

cases. We also included the results of two-tailed tests

for comparison.

RESULTS

As we increased the number of isolates in creating our

randomization distributions, we found that the 95th

percentile of the mean, median, 25th percentile, and

75th percentile Dice coefficient among all unique

pairwise comparisons decreased (Fig. 1). In contrast,

the 5th percentile of the standard deviation, coef-

ficient of variation, and interquartile range of these

Dice coefficients increased with increasing isolate

number (Fig. 2). There appeared to be little difference

in the pattern and values of these ‘cut-off’ values for

assessing our one-tailed hypotheses whether we used

isolates from all cases or only sporadic cases (Figs 1

and 2).
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Fig. 1. The 95th percentile of the randomization distributions of the mean (&), median (+), 25th percentile (m), and 75th

percentile (2) of Dice coefficients for clusters ranging in size from 2 to 10 isolates. These values were used to determine
P values of f5% for the appropriate one-tailed tests.
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We assessed the significance of measures of location

and variation of Dice coefficients for all outbreaks

where appropriate. In the case of outbreaks involving

two cases, there was only one pairwise comparison so

there was no variation to measure. We found that in

more than 60% of outbreaks, the mean, median, and

75th percentile were statistically significant using a

one-tailed test whether we used all or only sporadic

data to create our randomization distributions

(Table 1). The 25th percentile was statistically signifi-

cant in slightly less than 60% of outbreaks (Table 1).

In contrast, measures of variation were rarely smaller

than expected by chance alone (Table 1). The per-

centage of significant outcomes for each measure was

similar for two-tailed tests (Table 1). In general, there

was little difference between using all data or only

sporadic data except in a space–time cluster (outbreak

20) where the median Dice coefficient was only sig-

nificant with a two-tailed test when all the data were

used (Table 2).

Eleven of the outbreaks only involved two cases

(Table 2). In three of these outbreaks (outbreaks 1,

4, 5), the mean and median Dice coefficients were not

statistically significant, but in two of these outbreaks

(outbreaks 1 and 4) the isolates were given the same

pattern number (Tables 2 and 3). A visual review of

these digitized PFGE profiles suggested that differ-

ences in the placement of digital markers between
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Fig. 2. The 5th percentile of the randomization distributions of the standard deviation ($), coefficient of variation (+), and

interquartile range (m) of Dice coefficients for clusters ranging in size from 2 to 10 isolates. These values were used to
determine P values of f5% for the appropriate one-tailed tests.

Table 1. The percentage of outbreaks where the

statistical measure was statistically significant

(Pf0.05) in a one-tailed or two-tailed test using all (A)

or only sporadic (S) data

Measure
No. of
outbreaks

% Significant
(one-tailed)

% Significant
(two-tailed)

Mean (A) 20 70.0 65.0

Mean (S) 20 70.0 65.0
Median (A) 20 75.0 65.0
Median (S) 20 75.0 65.0

75th (A) 9 77.8 77.8
75th (S) 9 77.8 77.8
25th (A) 9 55.6 55.6

25th (S) 9 55.6 55.6
S.D. (A) 9 11.1 11.1
S.D. (S) 9 11.1 11.1
CV (A)* 9 22.2 0

CV (S) 9 22.2 0
IQR (A) 9 0 0
IQR (S) 9 0 0

Measures of location included the mean, median, 75th per-

centile (75th), 25th percentile (25th). Measures of variation
included the standard deviation (S.D.), coefficient of vari-
ation (CV), and the interquartile range (IQR). Measures of

variation were not evaluated for outbreaks involving two
cases since there was only one pair for comparison.
* 11.1% of outbreaks if the one-tailed hypothesis had been

in the opposite direction (i.e. greater than expected by
chance alone).
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isolates with the same pattern, rather than the po-

sition of the bands on the gel, explained the relatively

low Dice coefficients between identical patterns.

Among epidemiologically identified outbreaks with

more than three isolates, the mean, median, and 75th

percentile were greater than expected by chance alone

(Table 2). The isolates from the two statistically sig-

nificant space–time clusters (outbreaks 17 and 20) had

statistically significant higher 75th percentile Dice

coefficients, and one of these clusters (outbreak 20)

had a higher median Dice coefficient than expected by

chance (Table 2).

In terms of variation in Dice coefficients within

outbreaks, two outbreaks (outbreaks 15 and 16) with

five isolates had Dice coefficients with statistically

significant low coefficients of variation (Table 2). One

of these outbreaks (outbreak 15) had one PFGE

pattern while the other outbreak (outbreak 16) had

three different patterns (Table 3). Only a statistically

significant space–time cluster with nine isolates and

five different patterns (outbreak 20) had Dice coef-

ficients with a statistically significant standard devi-

ation (Table 2). However, the standard deviation for

this space–time cluster was not significant for our

one-tailed null-hypothesis since the level of variation

was greater than expected by chance.

DISCUSSION

Using 18 known outbreaks and two space–time clus-

ters that were believed to capture outbreak cases from

a previous study [24], we found that our randomiza-

tion tests worked well at identifying isolates that were

Table 2. A summary of information for each outbreak

Outbreak
no. Type Cases Isolates Pairs Patterns Mean Median

Percentile

S.D. CV IQR25th 75th

1 Comm 2 2 1 1 89.8 89.8 n.a. n.a. n.a. n.a. n.a.
2 Comm 2 2 1 1 94.1# 94.1# n.a. n.a. n.a. n.a. n.a.
3 Comm 2 2 1 1 100* 100* n.a. n.a. n.a. n.a. n.a.

4 House 2 2 1 1 89.4 89.4 n.a. n.a. n.a. n.a. n.a.
5 House 2 2 1 2 92.0 92.0 n.a. n.a. n.a. n.a. n.a.
6 House 2 2 1 2 97.9* 97.9* n.a. n.a. n.a. n.a. n.a.
7 House 2 2 1 1 98.0* 98.0* n.a. n.a. n.a. n.a. n.a.

8 House 2 2 1 1 100* 100* n.a. n.a. n.a. n.a. n.a.
9 House 2 2 1 1 100* 100* n.a. n.a. n.a. n.a. n.a.
10 House 2 2 1 1 100* 100* n.a. n.a. n.a. n.a. n.a.

11 House 2 2 1 1 100* 100* n.a. n.a. n.a. n.a. n.a.
12 Comm 3 3 3 2 78.3 69.4 96.0 69.4 15.4 19.6 26.6
13 House 3 3 3 1 95.8* 93.6* 100* 93.6* 3.7 3.9 6.4

14 House 3 3 3 1 92.8* 91.3# 95.7 91.3* 2.5 2.7 4.3
15 Comm 6 5 10 1 95.4* 95.8* 100* 91.7* 4.6 4.8# 8.3
16 Comm 6 5 10 3 94.8* 95.7* 100* 91.3* 4.5 4.7# 8.7
17 Stat 8 7 21 4 80.5 81.6 96.0* 69.4 14.5 18.0 26.6

18 Comm 9 8 28 2 89.9* 100* 100* 79.4 16.2 18.1 20.6
19 Comm 10 9 36 3 92.6* 93.6* 100* 87.5* 6.8 7.3 12.5
20 Stat 10 9 36 5 79.1 87.5$ 100* 80.0 26.3· 33.2 20.0

Community (Comm), household (House) or statistical (Stat) outbreak type (Type) ; number of cases (Cases) ; number of

isolates where pulsed-field gel electrophoresis (PFGE) results were available (Isolates) ; the number of unique pairwise
comparisons for Dice coefficients (Pairs) ; the number of different PFGE patterns (Patterns) ; and the mean, median, 75th
percentile, 25th percentile, standard deviation (S.D.), coefficient of variation (CV), and interquartile range (IQR) of the Dice

coefficients of the unique pairwise comparisons among isolates. Unless indicated, the results were not different if all the data
or only sporadic data were used for the randomization distributions.
* Significant two-tailed test (Pf0.05).

# Significant one-tailed test (Pf0.05).
$ Two-tailed significance if all data used but one-tailed significance if only sporadic data used to create randomization
distributions.
· Significant two-tailed test, but not in the correct direction to reject the one-tailed null-hypothesis ; n.a., not applicable.
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more similar in their PFGE patterns than expected by

chance alone. In particular, the mean, median, and

75th percentile of Dice coefficients within a group of

isolates appear to be most useful in identifying these

close relationships rather than measures of variation

(e.g. standard deviation). In the case of the statistical

space–time clusters, the 75th percentile appeared to be

the most useful measure for validating these statistical

outbreaks. A statistical approach to outbreak identi-

fication based on a spatial scan statistic may capture a

few cases that are unrelated to the outbreak. As a re-

sult, these additional cases may decrease the overall

mean or median Dice coefficient, but by capturing a

high number of outbreak cases, the upper quartile of

pairwise comparisons continues to have high Dice

coefficients. This is exemplified by comparing out-

breaks 19 and 20. The space–time cluster (outbreak

20) was epidemiologically validated by sharing most

of its cases with the epidemiologically identified out-

break 19 [24]. The addition of a few isolates that were

not considered to be related to a daycare outbreak [8]

led to a much smaller mean Dice coefficient in the

statistical outbreak. Overall, the randomization tests

worked well even when outbreaks were associated

with multiple patterns, and the impact of using all

or only sporadic cases for creating randomization

distributions did not have a large impact on how we

interpreted our results. However, it is important to

note that all the outbreaks observed in that year

involved a small number of cases. Large outbreaks

may yield greater differences between randomization

distributions. We predict that the inclusion of a

large number of highly similar PFGE patterns in

the sampled population would result in a higher

degree of similarity being required for statistical

significance.

Unlike cluster analyses that are typically used for

studying relationships among isolates, our technique

was specifically designed to test hypotheses concern-

ing specific clusters of isolates. Rather than make

qualitative or semi-quantitative judgements regarding

the relative proximity of isolates on a phylogenetic

tree, our method directly tests hypotheses concerning

the cluster of interest with respect to the typical vari-

ation seen in the molecular surveillance system.

Cluster analyses are generally used to imply evol-

utionary/genetic relationships, but molecular tech-

niques such as PFGE violate basic assumptions

regarding the independence of character traits.

Consequently, the overall relationship of isolates

among the branches of a phylogenetic tree created

using PFGE should only be interpreted from a

phenotypic perspective [22]. Likewise, applying our

randomization tests to PFGE data should not be used

to imply genotypic relationships. Tenover [32] has

proposed some useful criteria for assessing the possi-

bility that patterns are related, but these do not pro-

vide any statistical evidence, do not account for the

number of isolates being compared (Figs 1 and 2), nor

are they based on the typical variation seen within a

surveillance system. We anticipate that our randomi-

zation tests would be most useful in confirming the

phenotypic similarity of isolates from cases that are

suspected to be linked based on epidemiological or

statistical methods, but do not all share the same

PFGE pattern. For instance, a community outbreak

(outbreak 16) had multiple patterns that were highly

similar, but different enough to justify unique pattern

designations (Tables 2 and 3).

Recently, statistical approaches for identifying

outbreaks, based on the proximity of cases in space,

time, or space–time, have been tested or implemented

for infectious disease surveillance [24, 33–35]. Mol-

ecular data have been used qualitatively to deter-

mine the epidemiological validity of some of these

Table 3. The national pulsed-field gel-electrophoresis

(PFGE) pattern number of each isolate from

each outbreak

Outbreak no. PFGE patterns

1 0.0765 (2X)
2 0.0665 (2X)

3 0.0508 (2X)
4 0.0483 (2X)
5 0.0013, 0.0703
6 0.0508, 0.0631

7 0.0391 (2X)
8 0.0001 (2X)
9 0.0660 (2X)

10 0.0532 (2X)
11 0.0683 (2X)
12 0.0665 (2X), 0.0664

13 0.0001 (3X)
14 0.0508 (3X)
15 0.0765 (5X)
16 0.0508 (3X), 0.0646, 0.0516

17 0.0508, 0.0355, 0.0720, 0.0722 (4X)
18 0.0368 (7X), 0.0761
19 0.0001 (7X), 0.0657, 0.0684

20 0.0001 (5X), 0.0657, 0.0654, 0.0670, 0.0684

(X) indicates the number of isolates with the same PFGE
pattern number.
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statistical outbreaks [24]. Complementing these stat-

istical approaches to outbreak identification with our

randomization tests would allow for the automation

of both the search and validation procedures for

outbreak identification. However, we caution that

these statistical approaches may be more conservative

in their overall performance than the abilities of

public health workers in the field. Pearl et al. [24]

discussed issues concerning limits to spatial resolution

in some databases as well as the possibility of mis-

classification error when using household addresses as

a proxy for the location of infection. Epidemiologists

on the other hand can integrate various types of

spatial information to find links among potential

outbreak cases. Analogously, microbiologists would

be aware of particular PFGE patterns that are new,

common, or rare within their surveillance system and

make appropriate decisions based on this infor-

mation. The randomization tests we described are

currently limited to the use of Dice coefficients and do

not incorporate information concerning the preva-

lence of specific patterns. We suspect that the use of

these statistical approaches for outbreak identifi-

cation and molecular validation will be most useful

for outbreaks that are more spatially and/or tem-

porally diffuse, involve a number of isolates with dif-

ferent patterns, and as a consequence are more easily

overlooked by public health workers. A statistically

significant space–time cluster (outbreak 17) ex-

emplifies this situation since it consisted of cases from

three communities, the link among cases was only

suspected as a result of a space–time scan of reported

cases, and the randomization test applied to the

PFGE data from this space–time cluster (Table 2)

provided statistical validation that these isolates

were more closely related than expected by chance

alone [24].

The matrix of Dice coefficients used for these ran-

domization tests can be impacted by a variety of fac-

tors including: the choice of settings for automated

comparisons among the PFGE patterns; within and

between worker variation in the placement of digital

markers for the weight of particular bands; and vari-

ation in the quality of gels. While experienced lab-

oratory workers are largely able to correct for this

‘noise ’ when performing pattern recognition, auto-

mated procedures are more limited. Consequently, we

found instances where identical patterns were given

mean Dice coefficients below a level that would be

statistically significant. However, it is important to

emphasize that these limitations are not the result

of the randomization tests themselves, but the tech-

niques involved in automating pattern recognition.

Randomization procedures can be easily adapted to

quantify more objective or binary typing systems such

as sequencing or multilocus variable number tandem

repeat analysis. Ultimately, the benefit of this tech-

nique is that it can address hypotheses concerning the

relative similarity of isolates with respect to the

amount of genetic and/or phenotypic variation seen in

a population of organisms. Claiming that two organ-

isms are the same due to a certain percentage of

homology based on any technique is arbitrary unless

it is considered in the context of the typical amount of

variation seen within the population. Defining the

population of interest will inherently depend on the

hypotheses being addressed, and the adoption of fixed

‘rules of thumb’ for significant levels of homology

should be avoided.
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