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Abstract

Let p be a prime. We say that a transitive action of a group L on a set � is p-sub-regular if there exist
x, y ∈� such that 〈Lx , L y〉 = L and LY

x
∼= Zp , where Y = yLx is the orbit of y under Lx . Our main result

is that if 0 is a G-arc-transitive graph and the permutation group induced by the action of Gv on 0(v)

is p-sub-regular, then the order of a G-arc-stabilizer is equal to ps−1 where s ≤ 7, s 6= 6, and moreover,
if p = 2, then s ≤ 5. This generalizes a classical result of Tutte on cubic arc-transitive graphs as well as
some more recent results. We also give a characterization of p-sub-regular actions in terms of arc-regular
actions on digraphs and discuss some interesting examples of small degree.
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1. Introduction

Throughout this paper, all graphs considered will be finite, simple and connected. Let
0 be such a graph and let G ≤ Aut(0). Then 0 is said to be G-arc-transitive (G-
arc-regular) if G acts transitively (regularly) on arcs of 0. The study of arc-transitive
graphs was initiated by Tutte [16]. His classical result is that if 0 is a cubic G-arc-
transitive graph, then G acts regularly on s-arcs for some s ≤ 5 and the order of the
arc-stabilizer Guv is 2s−1.

Since then, arc-transitive graphs have been widely studied. It is well known
that the order of an arc-stabilizer is unbounded for arc-transitive graphs in general.
Nevertheless, some results can be obtained by considering the local action of an arc-
transitive group, which we now define.

If G is a group acting on a set and 2 is a union of orbits under this action, then G2

will denote the permutation group induced by the action of G on 2. Let 0 be a G-
arc-transitive graph, let v be a vertex of 0 and let 0(v) denote the neighborhood of v

in 0. We call G0(v)
v the local action of (0, G). Moreover, if P is a permutation group

property and G0(v)
v has property P , then we say that (0, G) is a locally P pair.
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Let k denote the valency of 0. Note that, since 0 is G-arc-transitive, G0(v)
v is a

transitive subgroup of the symmetric group Sk and, up to equivalence, does not depend
on the choice of v. Sami [10] studied locally Dk pairs (0, G) where Dk denotes the
dihedral group of order 2k acting naturally on a set of cardinality k. In particular, he
showed that, if k is odd, the order of a G-arc-stabilizer divides 24, generalizing Tutte’s
result. In this paper, we further extend this result by obtaining similar bounds for a
wider class of local actions, which we now define.

DEFINITION 1.1. Let p be a prime. We say that a transitive action of a group L on
a set � is p-sub-regular if there exist x, y ∈� such that 〈Lx , L y〉 = L and LY

x
∼= Zp,

where Y = yLx is the orbit of y under Lx .

One can easily see that the natural action of Dk is 2-sub-regular for every odd
integer k. A characterization of p-sub-regular actions in terms of half-arc-transitive
actions on graphs will be given in Section 3, and several families of p-sub-regular
actions will be described. With this definition, we can now state our main result.

THEOREM 1.2. Let (0, G) be a locally p-sub-regular pair and let uv be an arc of 0.
Then the order of the arc-stabilizer Guv is equal to ps−1 where s ≤ 7, s 6= 6. Moreover,
if p = 2, then s ≤ 5.

Since dihedral groups of odd degree are 2-sub-regular, this is a generalization of
Sami’s (and hence Tutte’s) result. These results can be viewed as part of a more general
problem. Call a transitive permutation groups L restrictive if there exists a constant
c(L) such that, for any locally L pair (0, G), the inequality |Guv| ≤ c(L) holds.

PROBLEM 1.3. Characterize restrictive permutation groups.

A lot of work has been done on this problem. A trivial observation is that regular
groups are restrictive. The previously mentioned results of Tutte and Sami show that
odd dihedral groups are restrictive. Gardiner [4, 5] showed that doubly primitive
groups are restrictive. In the same vein, Weiss [18] conjectured that primitive groups
are restrictive. The conjecture was recently verified in the 2-transitive case [12–15] but
the general conjecture is still quite open. See [2, 7] for some recent results.

Besides purely theoretical benefits, obtaining such upper bounds on the order of
arc-stabilizers for graphs of a certain family also yields an efficient way to enumerate
the graphs of this family up to a certain order. See [1, 3, 9] for examples.

Apart from D4, all transitive actions of degree at most 5 are either regular, 2-
transitive or p-sub-regular, for some p. It is well known that the order of arc-stabilizers
of locally D4 pairs is unbounded. Hence, with respect to Problem 1.3, the smallest
open degree is 6. As a starting point to solving Problem 1.3, it would therefore be
interesting to classify transitive groups of degree 6 according to the existence of such
a bounding constant.

Section 2 will be devoted to the proof of Theorem 1.2. In Section 3, we give a
characterization of p-sub-regular actions. We also give a list of p-sub-regular actions
that is exhaustive up to degree 26.
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2. Proof of Theorem 1.2

Our group theory notation is rather standard and follows Wielandt [19]. If x, g
are elements of a group G, we will denote by xg

= g−1xg the conjugate of x by g.
Similarly, if X ⊆ G, then X g will denote {xg

| x ∈ X}. Finally, if G is a group acting
on a set � and x ∈�, then xG will denote the orbit of x under G.

Our notation and terminology with respect to graphs is also fairly standard. Even
though our main interest lies in simple graphs, it will be convenient for us to view
graphs in a slightly more general context of digraphs. A digraph 0 = (V, A) consists
of a finite set of vertices V and a set of arcs A ⊆ (V × V )\{(v, v) | v ∈ V }. For an arc
(u, v) of a digraph 0, we say that u and v are the vertices of (u, v). Also, we say that v

is an out-neighbor of u and that u is an in-neighbor of v. The symbols 0+(v), 0−(v)

and 0(v) denote the set of out-neighbors of v, the set of in-neighbors of v and the
union 0+(v) ∪ 0−(v), respectively. We call |0+(v)| and |0−(v)| the out-degree and
the in-degree of v, respectively. If the out-degree (in-degree) is constant for all v ∈ V ,
we will call it the out-valency (in-valency) of 0. If the in-valency and the out-valency
are equal, we call it simply the valency.

If for all u, v ∈ V , we find that (u, v) ∈ A whenever (v, u) ∈ A, we say that 0 is a
graph. An edge of a graph is an unordered pair {u, v} (also denoted by uv) such that
(u, v) is an arc of the graph.

An n-arc U = (u0, . . . , un) is a sequence of n + 1 vertices of 0 such that
(ui , ui+1) ∈ A for 0≤ i ≤ n − 1 and ui 6= ui+2 for 0≤ i ≤ n − 2. We will call u0
the start-vertex of U and un the end-vertex of U . Similarly, if n ≥ 1, then (u0, u1)

will be called the starting arc of U and (un−1, un) will be called the ending arc of
U . A subsequence of U of the form (ui , ui+1, . . . , u j−1, u j ) for some 0≤ i ≤ j ≤ n
is called a sub-( j − i)-arc of U . An n-arc of the form (u1, . . . , un, u) will be called
a successor of U . Note that the graph 0 is connected if and only if, for any pair of
vertices x, y ∈ V , there is an n-arc (for some n) with start-vertex x and end-vertex y.

We now introduce the notion of nice arcs.

DEFINITION 2.1. Let 0 be a graph, let G ≤ Aut(0), let (x, y, z) be a 2-arc of 0 and
let n ≥ 2 be an integer. An n-arc of 0 will be called nice (with respect to (x, y, z) and
G) if each of its sub-2-arcs is in the orbit of (x, z, y) under G. A 1-arc of 0 is called
nice if it belongs in the G-orbit of the arc (x, y).

We will simply call an n-arc nice and omit the mention of (x, y, z) and G when
ambiguity is unlikely. Note that every 1-arc is nice if and only if G is arc-transitive.
Similarly, every n-arc of 0 with n ≥ 2 is nice if and only if G acts transitively on 2-arcs
of 0. The 2-arc-transitive graphs have been extensively studied and, as we will see, the
notion of nice n-arcs allows us to apply some of the techniques to the 1-arc-transitive
case.

The following basic result will be used a few times. The proof is a simple exercise.
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LEMMA 2.2. Let G be a finite group acting transitively on a set � and let R be a
transitive nonempty relation on �. If R is preserved by G, then it is an equivalence
relation.

Our next aim is to give sufficient conditions for G to act regularly on nice s-arcs for
some s ≥ 2.

LEMMA 2.3. Let p be a prime, let (0, G) be a locally p-sub-regular pair, let z be a
vertex of 0 and let L = G0(z)

z . Let x, y ∈ 0(z) such that L = 〈Lx , L y〉 and LY
x
∼= Zp,

where Y = yLx . Let s be the largest integer such that G acts transitively on s-arcs of 0

that are nice with respect to (x, z, y) and G. Let (v0, . . . , vs) be a nice s-arc of 0 and
let Gi be the pointwise stabilizer of (v0, . . . , vs−i ). Then, for 0≤ i ≤ s − 1, it follows
that |Gi | = pi . In particular, |G0| = 1 and G acts regularly on nice s-arcs.

PROOF. Note that |yLx | = p implies that a nice t-arc has exactly p nice successors.
For 1≤ i ≤ s − 1, it follows that |(vs−i+1)

Gi | = |Gi : Gi−1| = p and, by induction,
that |Gi | = pi

|G0|. It remains only to prove that |G0| = 1.
For two arcs a and b, we write a b if there is a nice t-arc with starting arc a

and ending arc b. This relation is transitive and is also preserved by G; hence, by
Lemma 2.2, it is an equivalence relation. Let a = (x, z) and let E = [a] be the
equivalence class of a under . We will show that every arc of 0 is in E .

Let (u, v) ∈ E . By arc-transitivity, there exists a nice 2-arc (u, v, w). Clearly,
(v, w) ∈ E and then, because  is an equivalence relation preserved by G, the
class E is preserved setwise by both Guv and Gvw and hence by Gv . In particular,
all arcs incident to v are in E . Repeating this argument using transitivity of G and
connectedness of 0 allows us to conclude that every arc of 0 is in E .

Now, let g ∈ G0 and let A be a nice s-arc stabilized by g. If g acts transitively on
the p nice successors of A then G acts transitively on nice (s + 1)-arcs, which is a
contradiction. Since LY

x
∼= Zp, it follows that g stabilizes each nice successor of A. As

we showed above, every arc of 0 is in [(vs−1, vs)] and therefore g = 1. 2

Our next goal is to bound s. First, we need the following result.

LEMMA 2.4 [6, Lemma 1]. Let x and g be elements of G. Put xi = xgi for i ∈ Z and
define Hi = 〈x1, . . . , xi 〉 for each i ≥ 1. Let H0 = 1. Suppose that x has prime order
p and that there exist positive integers t and n such that:

(1) 〈Ht , g〉 = G;
(2) |Hi : Hi−1| = p, for 1≤ i ≤ t; and
(3) Ht contains no nonidentity normal subgroup of G and no nonidentity subgroup

of the center of Ht+n .

Then t ≤ 3n and t 6= 3n − 1. Moreover, if n = 2, p = 2, and t = 6, then Ht contains a
nonidentity normal subgroup of H8.
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The lemma as stated above is due to Glauberman but the proof is essentially due
to Sims [11, Proposition 2.6]. It draws heavily on ideas contained in two papers of
Tutte [16, 17]. We are now ready to prove our main result.

PROOF OF THEOREM 1.2. Let (0, G) be a locally p-sub-regular pair. We need to
show that the order of Guv is equal to ps−1 where s ≤ 7, s 6= 6, and that, if p = 2, then
s ≤ 5. Let z be a vertex of 0 and let L = G0(z)

z . Since (0, G) is a locally p-sub-regular
pair, there exist neighbors x, y ∈ 0(z) such that LY

x
∼= Zp and L = L◦, where Y = yLx

and L◦ = 〈Lx , L y〉. Since L = L◦ and L is transitive, x L◦
= 0(z). This shows that the

hypothesis of Lemma 2.3 is satisfied.
Let s be the largest integer such that G acts transitively on s-arcs of 0 that are

nice with respect to (x, z, y) and G. Let (v0, . . . , vs) be a nice s-arc of 0 and
let Gi be the pointwise stabilizer of (v0, . . . , vs−i ). By Lemma 2.3, we know that
|Gi | = pi for 0≤ i ≤ s − 1. In particular, |G1| = p. Let x0 be a generator of G1,

let g ∈ G be such that (v1, . . . , vs)
g
= (v0, . . . , vs−1) and let xi = xgi

0 . Finally, let
Hi = 〈x0, . . . , xi−1〉 and let H0 = 1. The rest of the proof is split into three steps.

STEP 1. We will show that Gi = Hi for 0≤ i ≤ s by induction on i . It is clearly true
for i = 0. Let 1≤ i ≤ s and suppose that the statement is true for i − 1. This implies
that Hi = 〈Hi−1, xi−1〉 = 〈Gi−1, xi−1〉. It is easy to check that 〈Gi−1, xi−1〉 ⊆ Gi .

Note that x0 does not fix vs , hence xi−1 = xgi−1

0 does not fix v
gi−1

s = vs−i+1, therefore
xi−1 /∈ Gi−1. If i < s, we have |Gi : Gi−1| = p and hence Gi = 〈Gi−1, xi−1〉 = Hi .
If i = s, let v−1 = v

g
0 . Clearly, (v−1, v0, v1) is a nice 2-arc. Note that, by the Frattini

argument, the fact that L◦ = L implies that Gv0 = 〈Gv0v1, Gv−1v0〉. It follows that

Gs = Gv0 = 〈Gv0v1, Gv−1v0〉 = 〈Gs−1, (Gs−1)
g
〉 = 〈Hs−1, (Hs−1)

g
〉 = Hs .

This completes Step 1.

STEP 2. We will show that Hs+1 acts transitively on edges of 0 and that
G = 〈Hs+1, g〉. By Step 1, we know that Hs+1 = 〈Hs, (Hs)

g
〉 = 〈Gs, (Gs)

g
〉 =

〈Gv0, Gv−1〉. Since 0 is connected and G-arc-transitive, this shows that Hs+1 acts
transitively on the edges of 0. Moreover, since v−1 = v

g
0 , this also shows that

G = 〈Hs+1, g〉. This completes Step 2.

STEP 3. Note that G acts transitively on edges of 0 and, as was shown in Step 2, so
does Hs+1. Since Hs−1 = Gv0v1 is a G-arc-stabilizer, it follows that Hs−1 contains no
nonidentity normal subgroup of G and no nonidentity normal subgroup of Hs+1. This
allows us to apply Lemma 2.4 (with n = 2 and t = s − 1) to conclude that s ≤ 7 and
s 6= 6 and, if p = 2, then s ≤ 5. This concludes the proof of Theorem 1.2. 2

3. p-sub-regular actions

We will now study p-sub-regular actions in more detail. We first recall the
definition. Let p be a prime. We say that a transitive action of a group L on a
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set � is p-sub-regular if there exist x, y ∈� such that L = 〈Lx , L y〉 (Condition 1)
and LY

x
∼= Zp, where Y = yLx (Condition 2). We now need a few more definitions

which will be needed to characterize p-sub-regular actions.

DEFINITION 3.1. Let 0 = (V, A) be a digraph. For n an even natural number, an
alternating n-arc U = (u0, . . . , un) is a sequence of n + 1 vertices of 0 such that,
for every even integer i with 0≤ i ≤ n − 2, both (ui , ui+1) and (ui+2, ui+1) are in A.
0 will be called alternating-connected if, for any pair of vertices x, y ∈ V , there is an
alternating n-arc with start-vertex x and end-vertex y.

It is worth mentioning that alternating-connected digraphs are precisely the alter-
complete digraphs of alter-exponent 1, as defined in [8]. We now characterize p-sub-
regular actions as groups of automorphisms of certain digraphs.

THEOREM 3.2. Let p be a prime and let L be a group acting on a set �. Then this
action is p-sub-regular if and only if there exists an L-arc-regular and alternating-
connected digraph 0 = (�, A) of out-valency p.

PROOF. (⇐) Let 0 = (�, A) be an L-arc-regular and alternating-connected digraph
of out-valency p. Clearly, L is transitive on �. Let (x, y) be an arc of 0. It is not hard
to see that the set of end-vertices of alternating n-arcs with start-vertex x is closed
under the natural action of 〈Lx , L y〉. Since 0 is alternating-connected, this implies
that 〈Lx , L y〉 acts transitively on �, and Condition 1 follows. Condition 2 follows
from the assumption that 0 is L-arc-regular and has out-valency p.

(⇒) Let L act p-sub-regularly as witnessed by x, y ∈�, and let 0 = (�, (x, y)L).
By definition, 0 is L-arc-transitive. By Condition 2, 0 has out-valency p. Consider
the set X of end-vertices of alternating n-arcs with start-vertex x . Clearly, x ∈ X ,
and X is closed under Lx . If (x, x1, . . . , xn) is an alternating n-arc and g ∈ L y , then
(x, y, xg, (x1)

g, . . . , (xn)
g) is an alternating (n + 2)-arc, and hence X is closed under

L y . By Condition 1, X is closed under L . Since L is transitive on �, this implies that
X =� and 0 is alternating-connected. Since 0 is L-arc-transitive, this implies that 0

is connected.
We now show that Lxy = 1. Note that 0 is connected hence there exists a sequence

(V0, V1, . . . , Vn) of subsets of � such that V0 = {x}, Vn =� and Vi+1 = Vi ∪ 0+(vi )

for some vi ∈ Vi . Let L i be the pointwise stabilizer of Vi . By Condition 2, |L i : L i+1|

divides p. Since Ln = 1, it follows that L0 = Lx is a p-group. Moreover, we know that

|Lxy | = |L
0−(y)
xy ||

⋂
v∈0−(y) Lvy | and, since p does not divide |L0−(y)

xy |, we conclude

that L0−(y)
xy = 1. This, together with Condition 2, implies that Lxy fixes X pointwise.

Since X =� we conclude that Lxy = 1. 2

Hence, if L acts p-sub-regularly on � as witnessed by x, y ∈�, then Lxy = 1. This
is the motivation for calling such actions p-sub-regular. It also suggests that p-sub-
regular actions are, in some sense, close to being Frobenius. The following examples
will show that many p-sub-regular actions of small degree are in fact Frobenius.
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EXAMPLES. Our first four infinite families of examples are all Frobenius groups.
Hence, they can be represented as semidirect products G = K o H where the action
under consideration is that of G on K where K acts regularly by multiplication and H
acts by conjugation.

(1) Zn o Z2 = 〈a, b | a2
= bn

= (ab)2
= 1〉 ∼= Dn , for n ≥ 3 odd. These are

dihedral groups. Here, p = 2.
(2) Zq o Zp = 〈a, b | a p

= bq
= a−1babm

= 1〉, for odd primes p and q with
p | (q − 1) and m an element of order p in Z∗q . These are subgroups of affine
transformations of the field of order q .

(3) (Z2)
n o Zp, for n ≥ 2 and p = 2n

− 1 a prime. This is the group of affine
transformations of the field of order 2n .

(4) (Zn)
p−1 o Zp = 〈b1, . . . , bp−1〉o 〈a〉 where (bi )

a
= bi+1 for 1≤ i ≤ p − 2

and (bp−1)
a
= (b1 · · · bp−1)

−1, for p an odd prime and n ≥ 2 not divisible by 3.

The next two infinite families are closely related to each other.

(1) SL(2, p) acting on the p2
− 1 nonzero vectors in (Zp)

2, for p an odd prime.
This is the usual action of matrices acting on vectors by multiplication.

(2) P SL(2, p) acting on (p2
− 1)/2 points, for p an odd prime. Actions in this

family are induced from actions in the previous family by identifying opposite
pairs of matrices and opposite pairs of vectors.

For p > 3, the groups in the above two families are not Frobenius. There are also
some nice examples of small degree that do not fall in any of the above families, such
as A5 acting on the 20 vertices of the dodecahedron. This action is obviously not
Frobenius. It is also imprimitive, as opposite vertices of the dodecahedron form a
block system.

An exhaustive computer search through a library of transitive group actions of small
degree reveals that, apart from A5 acting on the vertices of the dodecahedron, all p-
sub-regular actions of degree at most 26 appear in at least one of the six infinite families
listed above. Some of theses actions are primitive and hence part of our work can be
viewed as an effort towards the Weiss conjecture. On the other hand, the imprimitive
actions also need to be considered in view of the more general Problem 1.3. From the
perspective of this problem, most of the past efforts have been concentrating on the
locally primitive graphs, thus working in the setting of the Weiss conjecture. We hope
that our results will spur further investigation of arc-stabilizers in locally imprimitive
graphs, and perhaps shed new light on the problem of bounding the order of arc-
stabilizers in arc-transitive graphs in general.
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