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ON PERIODIC SOLUTIONS OF A SEMILINEAR
HYPERBOLIC PARABOLIC EQUATION

MITSUHIRO NAKAO AND HISAKO KATO

Uniqueness and regularity of periodic solutions to the semilinear dissipative wave
equation with small parameter e > 0,

eu,, - An + ut + g(u) - f(x, t) on fi x R and u |en= 0, fi C RN,

are investigated when g(u) has a certain 'critical' nonlinearity.

1. INTRODUCTION

Let fi be a bounded domain in the iV-dimensional Euclidean space R with
smooth boundary dCl and let us consider the periodicity problem for the semilinear
wave equation with a dissipation:

i utt - Au + vut + g(u) = f(x, t) on £1 x R, v > 0,

u(x, t + UJ) - u(x, t) for (z, t) e fi x R and u | e n = 0 for t G R,

where /(z, t) is an w-periodic function in t and g(u) is a nonlinear function satisfying

(1.2) s(0) = 0 and 0 ^ g'{u) < jfco(l + |«|a)

for some a ^ 0. We assume v = 1 without loss of generality.
Concerning the existence of a 'weak' solution of the problem (1.1) it is well known

that if / £ L2{u>\ £2(fi)) and 0 < a ^ 2/(N - 2) (0 ^ a < oo if N = 1, 2), then the
problem admits a solution u in the class

(i.3) cL>; ih(fi)) n c1 («; i2(fi))

(see Clements [1], Nakao [4], et cetera), where we denote by C(w; X), X: Banach space,
the space of w-periodic continuous X-valued functions on R = (—oo, +oo). Similar
notations will be used freely.
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Concerning the uniqueness and regularity, however, there remain some important
open problems. First of all the uniqueness of weak solutions in the class (1.3) is not
known. Moreover, it is not known whether the solution is classical or not for the case
a = 2/(N — 2) (N ^ 3), which is different from the case of initial-boundary value
problems (see Sather [7], Wahl [9], et cetera). Of course, if 0 < a < 2/(N - 2) the
regularity problem becomes easier and has been solved (see Kato and Nakao [2]).

Our purpose in this paper is to discuss the uniqueness of the weak solution for
the case 0 ^ a ^ 2/(N — 2) as well as the regularity of it for the 'critical' case a =
2/{N — 2) in some restricted situations.

The problem we consider is in fact:

) = f(x, t) on U x R, e > 0,

and D^u |en= 0, 0 ^ \fi\ $J m — 1,

f euu + Au + ut + g[u
(1.4) <

[ u(x, t + u) = u(x, t)

where A is a symmetric uniformly elliptic operator of order 2m:

Au= J2 (-l)HDa(aa0

with smooth coefficients aap(x) (aap G C3 m is sufficient), and hence

Q

C ||u||2o ^ (Au, u) < C" ||u||20 for u 6 Hm D H2m
Urn. Hm

with some positive constants C and C". Observe that if e = 0, the problem (1.4) is of
parabolic type and for this equation the uniqueness is trivial and the regularity is easier.
Motivated by these observations we shall investigate the uniqueness and the regularity
problems for (1.4) under a smallness assumption on e > 0. Moreover we shall derive
relations between the solutions ue of (1.4) and the solution uo of the reduced parabolic
problem:

(1.5) ut + Au + g(u) = f(x, t) onQxR

with the periodicity and the boundary conditions.
When we treat the problem (1.4) with small parameter e the equation is sometimes

called the 'hyperbolic parabolic' type. Such an equation has been considered by several
authors; in particular our problem is closely related to that in Section 3, Chapter 4,
in the book by Vejvoda [8]. In [8], however, the nonlinear term g(u) of the equation
is replaced by (ig(u) with a small parameter fj. and essentially only small amplitude
solutions are considered. There a Fourier expansion method is employed, while here we
use an energy method.
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Recently, Milani [3] treated a similar problem for the quasilinear wave equation.
But, in [3], it is assumed that the forcing term / is small and the solutions treated
are 'small', while we would emphasise again that we make no smallness assumption on
/ and hence our solution may be 'large'. For other related works see Rabinowitz [6],
Wahl [10] and the references cited in the book [8].

2. STATEMENTS OF THE RESULTS

The function spaces we use are all familiar and the definition of them will be
omitted. But, we note that ||-|| denotes Z2-norm on fi. We also assume 0 < e ^ 1
without loss of generality. Our first result reads as follows.

THEOREM 1 . Suppose that f e L2(u;L2(Cl)) and set

(2.1) d o = ( / 2 )

Concerning the nonlinear term we assume tiat g belongs to C1(R) and satisfies

(2.2) 0(0) = 0 and 0 <</'(«)< M * + M")

for some 0 < a < 2m/(N - 2m) ( 0 ^ a < o o i / l < i V < 2m).

Tien, there exists a constant Co independent of f and g such that if

(2.3) A(e, d0) = C0k
2
0(l + 4a)e < 1,

tie problem (1.4) has a unique solution u in the class

(2.4) C^i

As a special case of Theorem 1 we have:

COROLLARY 1. If g(u) is at most of linear growth, that is, (2.2) is satisfied with
a = 0, there exists a constant C\ independent of g and f such that if

(2.5) 0 < e ^ Ci/tJ,

tie solution of (1.4) is unique in the class (2.4).

The solution u = ue of the problem (1.4) converges to the solution wo of the
parabolic problem (1.5) as e —> 0 in the following sense:
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THEOREM 2 . Under the assumption (2.3) we let uc and u0 be the solutions of
(1.4) and (1.5), respectively, and set wc(t) = ue(t) — Uo(t). Then, there exists a constant
Ci = C2(d0) such that

(2.6) dt < C2e.

If we assume, in addition, f £ Wlt2(u>; L2(Sl)) and set

(2.7) d, =.

the solution ue(t) belongs to

W2'2 («; £2(fi)) n W1'2 («; Hm) n l 2 ( « ; H2m)

and the estimate:

(2.8) + IKOII
«„

holds, where C3 is a constant depending on do and d\.

Next, we shall state our result concerning the regularity of the solution of (1.4).

THEOREM 3 . Let 2m < N < 4m. Suppose that f belongs to

W3'2(o,;X2(n)) n C^f fm) n C(a.;F2m)

and set

(2.9)

(2.10)

(ft (» = 0, 1, 2, 3),

M1=suV\\Dtf(t)\\ and M2 = sup {\\f(t)\\Hlm + ||/«(*)||Hm} •

Concerning g(u), suppose that 5 belongs to C2m+1(i2) and satisfies, in addition
to (1.2),

(2.11) |S
(i)(i

with a = 2m/(N - 2m).
Then, under the assumption (2.3), the solution u of Theorem 1 belongs in fact to

(2.12) C4 (w; L2(n)) f| Cj («; Hm 0 F4m-,-m)
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and the following estimate holds:

(2.13)

^r "(0

+ sup \ e C4

where C4 is a constant depending on di (0 ^ i ^ 3) and Mj (t = 1, 2), but independent

of e.

REMARK 1. By the Sobolev's imbedding theorem: Rim C C(H), we see u £
C(w; C 2 m (n ) ) n C^w; C m ( n ) ) n C2(w; C(0) ) , that is, our solution is classical.

REMARK 2. The assumption N < 4m is made for simplicity. We could treat the case
N ^ 47Ti by carrying out a more careful analysis.

COROLLARY 2 . Under the assumptions on f and g in Theorem 3 the parabolic

problem (1.5) has a unique solution u<, in the class

j=o

and the estimate

(2.14)

holds.

f
Jo

7C «o(*)
}=0 (£)• C4 < 00

THEOREM 4 . Let ue(<) and uo(t) be t ie solutions of the problem (1.4) and

(1.5), respectively, and set w = ue — «o • Then, under the assumptions of Theorem 3

the following estimates hold:

(2.15)

(2.16)

(2.17)

f
Jo

sup L \\wt{t)\^ + \\w(t)\\\ ) ^ C(d0,

+ \Wt)\\2H2Jdt + suP{£ + \\Mt)\\2
HJ

c{d0, du

Jo
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(2.18)

(2.19)

and

(2.20)

C{d0, du d2, d3)e
2,

, du d2, d3, Mu

sup||iott||H2m ^ C(d0, dlt d2,

REMARK 3. When 1 ^ N ^ 2m, the assertions of Theorem 3 and Theorem 4 are valid
without the smallness condition (2.3) on e.

3. PROOF OF THEOREM 1

First we shall prepare the following a •priori estimates, which are in fact sufficient
for the proof of the existence of a weak solution. In what follows we denote by C
general constants independent of e which may be different from line to line. To clarify
the dependence on some quantity q we use the notation C(q) et cetera.

PROPOSITION 3 . 1 . Let u(t) be a solution of (1.4) in the class (2.4). Then we
have

(3.1)

and

(3.2)

where | |J41/2U|| is defined by

r
Jo

1/2

(3.3) U1 / 2 J =

which is equivalent to Nul
ii i "

PROOF: The proof is given by a standard energy method and we sketch it briefly.
Multiplying the equation (1.4) by Ut by ut and integrating over [0, w] x 0 we have

(3.4)
1/2
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which implies (3.1) immediately. Next, multiplying the equation (1.4) by u and inte-

grating we get

J" 11|Ji1'2«(')|f + J g(u)udx\ dt = e £ \\ut(t)\\
2 dt + £Jnfu dxdt

and hence

(3.5) / jllji^Vof + / 9{u)udx\ dt ^ Cd\.

From (3.1) and (3.5) we see

/ " (e||ttt(<)||2 + |U1 / 2»(*) | f + / g(u)udx)dt ^ Cd\
Jo I I' I' Jn J

and hence, there exists t* £ (0, u>) such that

(3.6) e MOII 2 + |U1 / 2^*) | | 2 + / g(u(t*))u(t*)dx < Cd\.
II ii Jn

Thus, using the equation (1.4), we see

( ) | r ) + / r W \
II J Jn Jo

(3'7) < l(e\\ut(t*)\\2 + |U1/2^*)||2) + [ T*
n / Jn Jo

+ r i
Jo Jn

which completes the proof of (3.2) u

Theorem 1 is an immediate consequence of the following proposition.

PROPOSITION 3 . 2 . Letting u and v be two solutions of the problem (1.4) in

the class (2.4), we have the estimate for w = u — v:

(3.8) I" WAV'WWI* dt ^ A(e, d0) I" \All2w{t)f dt
Jo II II Jo " "

wiere A(e, do) is the constant given by (2.3).

PROOF: W = u — v satisfies the equation

(3.9) e wu + Aw + wt + g(u) + g(v) = 0
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together with the periodicity and the boundary conditions. Multiplying the equation
(3.9) by w and integrating we have

(3.10) r I L 1 / 2 ^ ) ! 2 dt^e [" \\wt(t)\\
2 dt,

Jo " " Jo

where the monotonicity of g(u) is used essentially. Next, multiplying the equation by
Wt and integrating we have

(3-11)

\\wt(t)\\
2 dt = - r I (g{u) - g(v))wtdxdt

Jo Jn
1/2 , fU v 1/2

\ II \\2t\

U
u / ll ll ll ll\ 2a ii n2 "4 1I2 / tu \ 1I2

(l + U^u\\ + U^vll) \\A^w\\ dt\ ( \\wt\\
2dt) ,

\ ll ll II 11/ II II J \J0 /
where we have used the Sobolev inequality:

/
o

U u, , •> 1 / 2 , fU

/ { i + (M + H)a}aH2dxdt\ II \\wt\\
2dt\

^ ueHm if 0 < a ^ 2m/(N - 2m),

( 0 ^ a < o o if l < i \ T ^ 2m).

It follows from (3.10), (3.11) and (3.7) that

4. P R O O F OF THEOREM 2

For we = ue — t*o we have the equation:

(4.1) euu + Aw +wt + g(u) - g{u0) = 0 (u = ue, w = we).

Multiplying the equation (4.1) by w and using the monotonicity of g(u) and the
periodicity of u and w we see

/

" II II fu f

L41/2u;(<) dt^-e / uttwdxdt
/"" /— £ I I UtWt dxdt

Jo Jnaw \

\\ut(t)fdt)au, v 1/2

K(t)||2d<J (by (3.1)).

a 1/2 / ,u> \ 1/2

f) f̂ 21 / 2
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Moreover, we see easily

\\wt(t)\\
2 dtj

and hence, by (4.2)

/
Jo

which is the first assertion of Theorem 2.

Next, for the proof of second part, we assume / G W1/2 (w; Z2(fi)) .

Then, we shall use the equation:

(4.3) eutu + Aut + uu + g'(u)ut = ft

to derive further a priori estimates. In fact, the following proposition assures us that
the solution u = ue belongs to

C2(w;L2(il)) n C1 (u>;Hm\ nc(w;H2m n km\

PROPOSITION 4 . 1 . Under the assumption (2.3), we have the estimates

(4.4) / ||tt«(*)||a dt ^ C{d\ + k2{\ + d2
0
a)d0d1},

Jo
and

(4.5) sup{e \\utt(t)\\
2 + WA^utWf} ^ Cd\.

PROOF: Multiplying the equation (4.3) by uu and integrating we see easily

r \\utt(t)\\
2 dt^dj + 2 r j \g'(u) \\ut\\ Utt\dxdt

Jo Jo Jn

^£+2k0 / (1 + |u|a) Kl lu«l dxdt

Jo Jn

^4 + Ck2

+ \f
1 Jo
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and hence, with the aid of (3.2),

(4.6) r |M*)||2 dt ̂  2d\ + Cfc2(l + d2a) f" lU1/ 2^)! 2 dt.
Jo Jo " "

On the other hand, multiplying the equation (4.3) by it< and integrating we see

(4.7) / \\A^2ut(t)\\2 dt ^ e f \\uu(t)fdt+[ f ftutdxdt
Jo » 'I Jo Jo Jn

\\utt{t)\\
2 dt + \j" H^/V)!2 dt + Cd\.

It follows from (4.6) and (4.7) that

r \\utt(t)\\
2 dt

(4-8) J°
< Ck2

0(l + d2a)e / \\utt(t)\\
2 dt + 2d\ + Cfco

2(l + dl^dodt.
Jo

Thus, under the assumption CA:Q(1 + <foa)e < 1/2, which is equivalent to (2.3) by
changing Co if necessary, we have the estimate (4.4).

Moreover, (4.5) follows immediately from (4.4) and (4.7). Finally we note that
these estimates give

(4.9) J"

which implies, as in the proof of (3.2), the estimate (4.5). u

Now, we shall prove the second part of Theorem 2.
Multiplying the equation (4.1) by w(t) = ue — UQ and integrating over fl x [0, u>]

as is usual, we have

(4.9)
/"" ii I I 2 fu f

I \All2w{iy\ dt^-e uuwdxdt
Jo " I' Jo Jn

\\utt{t)f dt\ (£ \\A^2w(t)f dt\

and hence, by (4.4)

(4.10) / \\A^2w(t
Jo "
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Further, multiplying the equation (4.1) by iot we see

/

u tw t

||iot(t)||
2 dt < -e I I uuwt dxdt

Jo Jn
+ Ck0 [" f (1 + |u|" + \uo\

a) \w\ K | dxdt
Jo Jn

{ / r" \1?2 / r" ii n2 \ 1 / 2 1

4 1 l l««(*)l l 2*) + ( / p 1 / 2 ™ W | | dt) \
1

and we conclude from (2.6) and (4.4) that

r\\wt(t)fdt
Jo

Similarly, multiplying the equation (4.1) by Aw and integrating, we can prove

r\\Aw(t)\\2dt^C(d0,d1)e
2.

Jo

The proof of Theorem 2 is now complete. D

5. PROOFS OF THEOREM 3 AND THEOREM 4

By standard arguments it suffices for the proof of Theorem 3 to derive the a priori
estimate (2.13) for an assumed solution u in the class (2.12). For this we observe:

PROPOSITION 5 . 1 . Let u(t) be the solution of (1.4) in the sense of Theorem

1 and let U(t) be a solution in the class C1 (w; L2(Q,)) fl CI w; Hm j of the problem

( eUu + AU + Ut + g'(u)U = F(x, t) on 0 x R,

\U{x,t + u) = U(x,t) and U | e n = 0

with FeL2(u>;L2{Sl)).

Then, under the assumption (2.3), the estimates

r \\ut(t)w
2 dt < c{\+k2(i+d2a)} r

Jo Jo

and sup^WUtWlf + WA^Uwf} < C £ \\F(t)\\2 dt

hold.
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PROOF: The proof is essentially the same as that of (4.5) in Proposition 4.1 and
is omitted. D

Using Proposition 5.1 and Proposition 4.1 we shall show:

PROPOSITION 5 . 2 . Under the assumption (2.3) the solution u(t) in the class
(2.12) satisfies

(5.3) I \\uUt{t)\\2 dt ^ C5(d0, dltda)<oo
J

(5.4) sup{e ||u(t t(0||2 + ||yl1/2
U«(0||2 < C6(do, du d2) < oo,

and

(5.5) sup ||i4ti,(i)|| < Ci(d0, dlt da) < oo
t

for some constants Cs, Ce, Cy depending on the quantities indicated but independent
of e.

PROOF: Setting U = «t«, U satisfies the equation

(5.6) e Uu + AU + Ut+ g'{u)U = -g"(u)(ut)
2 + / „

with the periodicity and the boundary conditions. Here,

/ g'\u) 2 \ut\
4 dx ^ kl / (l + M"-1)8 \ut?dx

Jn Jn v '

< Ck2
0(\ + d\"-*)d\ (by (3.2) and (4.5)).

Thus, applying Proposition 5.1 we obtain the estimates (5.3) and (5.4). Moreover,
returning to the equation (4.3) we see easily

\\uttt(t)\\ ( ^ f ^j 2

^ C7(d0, du d2, Mi) < oo

for some constant CV. 0

PROPOSITION 5 . 3 . Under the assumption (2.3), the solution u(t) in the class
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(2.12) satisfies

(5.7)

(5.8) sup < e

* I
and

(5.9)

*7 U W it ^ C&(d0, di, d2, d3) < oo,

), di, d^, d3) < oo,

sup
t

Cio(do, di, d2, d3) < oo.

PROOF: Setting U = u«t, it satisfies the equation

(5.10) Uu + AU + Ut+ g'(u)U = -3g"(u)ututt - g"\u){ut)
s + f»t

with the periodicity and the boundary conditions. Here,

/ g"(u)utntt
 2 dx ^ k\ [ (l + hi i i2 i i2 J\ut\ \utt\ dx

Ck2
0(l(l

^ C{d0, du d2) < oo (by (3.2), (4.5) and (5.4)).

Thus, applying Proposition 5.1 to (5.10), we get (5.7) and (5.8). Furthermore, returning
to the equation (5.6) and using the estimates in hand we see easily

\\Autt(t)\\ (£)'•(*) ll/tfl

^ C(d0, di, d2, d3) < oo.

(Note that sup | | /« (0 l l < C(d2 + d*)) U

It remains to derive estimates for | |u(<) | |H 4 m and ||

PROPOSITION 5 . 4 . Under the assumption (2.3) the solution u(t) in the class

(2.12) satisfies further

(5.11)

and

(5.12)

, du d2, d3, M2) < oo

. du d2, d3, M2) < oo.
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PROOF: TO prove (5.11) we use the equation (1.4):

Au = -euu -ut- g(u) + f(t).

Here, we see by (5.5) and (5.9)

(5.13) ||— eutt — ut + f\\i{im ^ C(do, d\, d2) + M2.

To estimate ||^(ii)|j j ^ , we denote by Dk any partial differentiations in
x = (asi, x2, ...xpi) of order k. The estimation is standard and we sketch it briefly.
First, notice that

2m

(5.14) D2mg(u{t)) = Y y f c ) ( u ) E ("Du)<Tl (D2uY2 • • • {D2mu)"3m

k=l a€Sk

where we set

(5.15) Sk • j2m O-i + 0-2 + . . . + O"2m = k,

(T\ + 2<T2 + • • • + 2m (72m = 2m

We know that by the estimate (4.5) and (3.2)

(5.16) ||A«(OII < «ll««(')ll + IKWH + llfl(u)ll + II/WII
and hence, by the assumption N < 4m,

Thus,

(5.17)
2m

\\D2mg(u)\\ ^ C(d0, d1)
4=1 Sk

2m

£ E
*=1 St

where we should choose p , (j — 1, 2, . . . , 2m) in such a way that

2 m
2 < Pi

and

1 _ 1

2N/aj(N - 4m + 2j) if N > 4m - 2j,

Pj ^ < oo if N = 4m — 2j,

= co if N < Am — 2j.
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Such a choice of {pj} is possible, since

The estimate (5.11) follows from (5.13), (5.17) and the equation (1.4).

Next, using the equation (4.3):

Aut — -euttt - uu - g'(u)ut + ft

we can derive (5.12) by a similar argument, the details being omitted (see [5]). D

Now, all the estimates required for the proof of Theorem 3 have been derived and
the proof is complete.

6. P R O O F OF THEOREM 4

Setting w = ue — iio , we have

(5.18) ewtt+Aw+wt+ f g'{Buc + (1 - 0)uo)d0w = -eu0u-

Jo

Notice that the result of Proposition 5.1 is valid even if g'(u) in (5.1) is replaced by

Jo g'(0ue + (1 - O)uo)d6. Thus, we obtain (2.15) immediately.

(Note that /o
w K«| | 2<ft < C(di).)

Differentiating the equation (5.18) with respect to t we get

(5.19)
ut + Awt + wtt + / g'(0ue + (1 — 0)uo)d9wt

Jo

= - I g"(6ue + (1 - 0)uo)(6uet + (1 - 6)uot)d0w - euOt«.
./o

Applying a variant of Proposition 5.1 to (5.19) we have (2.16). (See the proof of

Proposition 5.2.) Moreover, differentiating the equation (5.19) once more we get

— 1 w + Awit + wtit + / g'(6ue + (1 - 0)uo)d6wu

= - I g'"(6ue + (1 - 6)uo)(6uet + (1 - 0)u0tfd6w
Jo

(5.20) - / g"{Ouc + {l-0)u0)(Ouett + {\-B)uQtt)d6w
Jo

-2 1 g"(0uc + (1 - 9)uo)(0uet + (1 - 9)uot)d0wt
Jo
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Applying a variant of Proposition 5.1 to (5.20) once more, and repeating similar
estimations as in the proof of Proposition 5.3, we can prove (2.17) and (2.18). The
estimate (2.19) follows from similar arguments as in the proof of Proposition 5.4, the
details being omitted.

Finally, using the equation (5.20) we get

sup||Au)«(<)|| ^ sup
t t T» UM +

sup /
t Jo

+

+ (l-9)uo)\d9\\wtt(t)\\

sup / g'"(9ue + (1 - 6)uo){9uet + (1 - 9)uotf dO \\w{t)\\
t Jo

+ sup g"(9ue + (1 - 0)uo){8ueU

+ 2 supup /
t Jo

g (9ue + (1 - 9)uo){9uet

-9)uo«) d9\\w{i)\\

1 - 9)uot)

<<?(<£„, dud2, dt)y/i (by (5.8)),

which proves (2.20). The proof is complete.
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